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Abstract

We review briefly the non-linear supersymmetry formalisms in the standard realization and
superfield methods. We then evaluate the goldstino couplings to the MSSM superfields and
discuss their phenomenological consequences. These refer to the tree level Higgs mass and
to invisible Higgs and Z boson decays. The Higgs mass is increased from its MSSM tree-level
value and brought above the LEP2 mass bound for a low scale of supersymmetry breaking√
f ∼ 2 TeV to 7 TeV. The invisible decay rates of the Higgs and Z bosons into goldstino

and neutralino are computed and shown to bring stronger constraints on f than their decays
into goldstino pairs, computed previously, which are subleading in 1/f .

1 Introduction

The interest in non-linear realizations of supersymmetry [1] goes back to the early days of super-
symmetry. In the following we review the formalism of standard realization (Volkov-Akulov) of
non-linear supersymmetry as well as the superfield description that was developed afterwards.
As an application of the constrained superfield formalism, we compute all the couplings of the
goldstino (which transforms non-linearly under Susy) to the minimal supersymmetric standard
model (MSSM) fields and investigate some of their phenomenological consequences.

Spontaneous supersymmetry breaking at low energies predicts a nearly massless goldstino.
This plays the role of the longitudinal component of the gravitino, which acquires a mass
f/MP lanck, in the milli-eV range if the supersymmetry breaking scale

√
f is in the multi-TeV

region. By the equivalence theorem [2], it interacts with a strength 1/
√
f which is much stronger

than the Planck suppressed couplings of the transverse gravitino, and is therefore well described
by the gravity-decoupled limit of a massless Goldstone fermion. In this talk we discuss the low
energy consequences of a light goldstino by assuming that

√
f is an independent parameter that

is a few orders of magnitude higher than the soft breaking terms in the MSSM. The picture
is as follows: at high scales above

√
f one has the MSSM and goldstino superfields. At TeV

scales, higher than msoft but below
√
f one has the MSSM together with the “non-linear”

goldstino. At lower energies, below superpartners masses (∼ msoft) one is left only with the
goldstino fermion coupled to the SM fields. We consider the energy region E ∼ msoft <

√
f

when goldstino effective interactions are determined by non-linear supersymmetry.
The self-interactions of the goldstino are given by the famous Volkov-Akulov action [1]. This

method, geometric in nature, gives also a universal coupling of goldstino to matter through its
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energy momentum tensor, of the form (1/f2)Tµνt
µν , where Tµν , tµν are the stress tensors of

matter and of (free) goldstino, respectively [3, 4]. It was noticed however that this coupling is not
the most general invariant under non-linear supersymmetry [4, 5, 6]. General invariant couplings
can be derived using the so-called superfield formulations of non-linear supersymmetry. One
of them promotes any ordinary field to a superfield by introducing a modified superspace that
takes account of the non-linear supersymmetry transformations of the goldstino [7, 8, 9, 10].
Finally, there is the method of constrained superfields: these are usual superfields, but they
are also subject to constraints that eliminate the superpartners in terms of the light degrees of
freedom and of the (Weyl) goldstino [11, 12, 13, 14].

In the following we shall review briefly these methods and present the corresponding gold-
stino couplings induced by a given Lagrangian upon “supersymmetrizing” it in a non-linear
way. We then review the constrained superfields method, and then discuss the phenomenolog-
ical implications for the case of the Minimal Supersymmetric Standard Model (MSSM) which
is coupled to a non-linearly transforming goldstino field. These phenomenological consequences
refer to: 1) the corrections to the Higgs mass, which can be increased already at the tree level,
relative to its MSSM tree-level value for a hidden sector supersymmetry scale in the region of
few TeV and to 2) the invisible decays of the Higgs and Z bosons. Indeed, to the leading order in
the goldstino coupling, the Higgs and Z bosons can decay into a goldstino and a (next-to-lightest
NLSP) neutralino1, with a significant decay rate, if the hidden sector supersymmetry scale is
low (and the NLSP light enough). From the accurately measured ΓZ decay rate of Z boson
one can set bounds on the scale of Susy breaking

√
f . Regarding the Higgs decay, this partial

decay rate can become comparable to that into a pair of photons in the MSSM. Moreover, it
dominates over other decay channels, such as Z into a pair of goldstinos which is O(1/f2) and
was considered previously in the literature. These effects are presented in the last section.

2 Non-linear supersymmetry in the standard realization

To derive the non-linear supersymmetry transformation law one considers first a supersymmetry
transformation xµ

′
= xµ+ i ( θσµξ− ξσµθ); θ′ = θ+ ξ, and θ

′
= θ+ ξ, where the spinor indices

are not shown. This transformation induces a non-linear realization on the spinors θ which can
actually be generalized to arbitrary spinor fields, in particular the Weyl goldstino spinor χ, by
an analogy between θ and χ; here θ = κχ where κ is introduced on dimensional grounds. The
analogy gives [10]

χ′(x′) = χ(x) +
1

κ
ξ, (1)

After Taylor expanding about x one finds the transformation of the Weyl goldstino field

δχ =
1

κ
ξα + κ Λµξ ∂µ χ, where Λµξ = i (χσµξ̄ − ξσµχ̄) (2)

A similar relation, hermitian conjugate of that above, holds true for χ. Here Λµξ is a goldstino

field dependent translation vector and ξα, ξ̄α̇ are the (Grassmann) parameters of the transfor-
mation; κ is the goldstino decay constant; this constant has dimension of mass−2 and is related
to the (hidden sector) supersymmetry breaking scale

√
f = Λsusy:

κ =
1√
2 f

=
1√

2 Λ2
susy

(3)

We wish to construct a Lagrangian for an effective low-energy description of the goldstino and
its interactions with Standard Model fields. We first consider the part of the effective action

1The goldstino is the LSP particle.
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which contains only self-couplings of the goldstino. This must contain the standard kinetic
term for a Weyl spinor with additional terms necessary to make the action invariant under the
standard non-linear realization (2). An action which satisfies these criteria has been constructed
by Akulov and Volkov [1], where one defines the ’vierbein’

E ν
µ = δ ν

µ + i κ2(∂µχσ
ν χ̄− χσν∂µχ̄) (4)

It can be shown using (2) that

δ(det E) = iκ ∂µ[(χσ
µξ̄ − ξσµχ̄) detE] ≡ κ∂µ(Λ

µ
ξ detE) , (5)

It is then natural to construct the Akulov-Volkov Lagrangian [1],

LAV = − 1

2κ2
detE = − 1

2κ2
+
i

2
(χσµ∂µχ̄− ∂µχσ

µχ̄) + ... (6)

so the action defined by LAV is invariant. In the last step in (6) we expanded in powers of κ;
the first term in the rhs is the cosmological constant; the second term is the usual kinetic term
for the goldstino; the dots denote self-couplings proportional to the second or higher powers of
κ and give the non-linear Susy extension of the kinetic energy of a Weyl spinor. The expansion
actually stops because of the anticommuting properties of the goldstino spinor.

The supersymmetry algebra can be also realized non-linearly on other (non-goldstino) fields
such as matter and gauge fields [3, 4]. Let φi denote some generic field, where i an index in
some representation of the Lorentz group or of an internal symmetry group. One defines

δφi = κ Λµξ ∂µφi . (7)

This is usually referred to as the standard realization. It can be checked that this provides
a representation of supersymmetry. Eq. (7) has the same form as the transformation of the
goldstino (2) except for the absence of the first term. However, derivatives of φi (the field
strength Fµν and gauge covariant derivatives Dµφi) do not transform covariantly according to
the standard realization, even though the field φi does so. This can be avoided, by generalizing
the ordinary gauge-covariant derivative and defining the non-linearly realized supersymmetry-
covariant derivative

Dµφi ≡ (E−1) ν
µ Dνφi . (8)

where (E−1) ν
µ is the inverse of matrix (4). If φi is a field transforming in the standard realization

then Dµφi also varies according to the standard realization δ(Dµφi) = κΛµξ (Dµφi). A similar
procedure can be applied to the field strength:

Fa
µν ≡ (E−1) σ

µ (E−1) ρν F
a
σρ , (9)

where F aµν is the ordinary field-strength. Therefore δ (Fa
µν) = κΛρξ ∂ρFa

µν and Fa
µν transforms

according to the standard realization. If we expand the rhs in (9) in powers of κ, the first
term will be F aµν , followed by appropriate couplings to the goldstino field. Using these building
blocks, one can then construct an invariant effective action. If in the SM Lagrangian

LSM = LSM(φi,Dµφi, F
a
µν), (10)

we replace all variables of LSM by their counterparts: F aµν → Fa
µν and Dµ → Dµ, the resulting

Lagrangian itself transforms like a field in the standard realization:

δ
(

LSM (φi,Dµφi,Fa
µν)

)

= κΛσξ ∂σLSM(φi,Dµφi,Fa
µν) . (11)
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We further multiply LSM by detE to find

Seff =

∫

d4xLeff =

∫

d4x detE LSM(φi,Dµφi,Fa
µν) . (12)

which is invariant under the supersymmetry transformation, as it can be seen by using the
transformation of detE given in (5). Expanding the effective Lagrangian Leff in powers of κ, the
lowest (κ-independent) term is the Standard Model (SM) Lagrangian itself. The additional, κ-
dependent terms are needed to render the action supersymmetric and they describe appropriate
interactions of the SM-fields to the goldstino:

Leff = LSM(φi,Dµφi, F
a
µν) + (iκ2χ

↔

∂µσνχ̄) Tµν + ... (13)

where the dots denote higher powers of κ (negligible in the low-energy limit) and Tµν is the
gauge-invariant energy-momentum tensor. The tensor coupling (13) is completely determined
and it is model-independent. However, the above procedure to construct the goldstino couplings
does not give the most general effective action invariant under non-linear supersymmetry. This
is because additional supersymmetric terms can in principle be added to the above effective
Lagrangian. Such terms, supersymmetric on their own, could come with an arbitrary relative
normalization, that cannot be determined within the effective field theory.

One can employ two superfield formalisms to find general couplings of the goldstino to
a given Lagrangian. The first of them promotes any field to a superfield, by introducing a
modified superspace that takes into account the non-linear supersymmetry transformations
of the goldstino. This amounts of shifting the spacetime coordinates xµ by Λµθ given in (2),
where θ are the usual superspace (Weyl) fermionic coordinates: xµ → x̃µ = xµ + Λµθ (x̃).
A similar procedure is applied to the goldstino Weyl fermion, to which one associates the
goldstino superfield: χ(x) → θ/κ + χ(x̃). With these objects one can proceed to construct
a supersymmetric action, using covariant derivatives as before in terms of the ‘vierbein’ (4)
depending on the shifted coordinates x̃. For details see [7, 8, 9, 10]. The second formalism to
find the general couplings of the goldstino to a given Lagrangian is the method of constrained
superfields.

3 Non-linear supersymmetry with constrained superfields

A very convenient approach to non-linear supersymmetry is that using constrained superfields.
The method preserves all the advantages of working with the standard superfield formalism.
Ultimately, the role of these constraints is to eliminate the “massive” superpartners (of the SM
and of the goldstino) in terms of the light degrees of freedom (SM particles and the goldstino)
[11, 12, 13, 14] (see also [15, 16]). In this way a non-linear realization of supersymmetry
is obtained, in which no superpartners are present anymore. As in the standard realization
of Volkov-Akulov, in constructing a non-linear supersymmetric version of a given model the
goldstino chiral superfield (SM gauge singlet) X plays the leading role. To see how this works
and the relation to LAV of eq. (6), consider the Lagrangian [13, 14] (f below is related to κ as
in (3)):

LX =

∫

d4θX†X −
{

f

∫

d2θX + h.c.

}

= |∂µϕ|2+F †F+
( i

2
χσµ∂µχ− f F +h.c.

)

(14)

and impose a constraint on the goldstino superfield X2
nl = 0. This constraint is solved by

Xbl = ϕ+
√

2 θχ+ θθ F, where ϕ =
χχ

2F
(15)
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which shows explicitly how the sgoldstino (ϕ) is eliminated in terms of goldstino χ. The use of
this Xnl solution in LX gives, after eliminating the auxiliary fields [13, 14]:

LX = − 1

2κ2
+ i χσµ∂µ χ+

κ2

2
χ2∂2χ2 − κ6

2
χ2χ2 ∂2χ2 ∂2χ2 (16)

which is just the Volkov-Akulov Lagrangian LAV , that is, LX is equivalent on shell to LAV (this
is not true off shell, due to having different degrees of freedom) [13]. Also, on shell, F = f + ....
where f is the hidden sector SUSY breaking scale. In the infrared description of the SUSY
breaking, the scalar component (sgoldstino) ϕ becomes a function of the goldstino χ and is
therefore removed from the spectrum which contains only χ, as in LAV . This is the situation
for the case of a single constrained superfield, the goldstino.

There can be additional constraints for the matter and vector superfields, which essentially
integrate out some of the superpartners in terms of the light degrees of freedom. For example

QnlXnl = 0 eliminates sfermions, leaves Weyl fermion.

D
α̇

[

XnlH
†
nl

]

= 0 eliminates higgsino, leaves complex Higgs.

XnlAnl −XnlA
†
nl = 0 eliminates fermion, leaves real scalar (17)

WnlXnl = 0 eliminates gauginos, leaves gauge fields.

In this way, by adding all these constraints to L, one obtains a supersymmetric Lagrangian in
which all superpartners are “integrated out” and are absent in the infrared, being expressed in
terms of the light degrees of freedom. The latter are the only degrees of freedom present in
the low energy spectrum and have non-linear supersymmetry transformation rules. However,
not all of the above constraints need be satisfied simultaneously. For example, in the energy
region msoft ∼ E ≤

√
f , the only constraint is that of the goldstino superfield that undergoes

non-linear transformation, while for the MSSM case, its superfields are unconstrained.
The next step is to find goldstino couplings to a given Lagrangian, like that of MSSM. The

strategy is to write down an effective expansion of the Lagrangian (function of all superfields,
including the goldstino) in powers of 1/f and restrict it to a given order in it. The method is
general and useful to find couplings involving more than one goldstino [14]. Let us follow this
idea and consider a supersymmetric theory with chiral multiplets Φi ≡ (φi, ψi, Fi) and vector
multiplets V ≡ (Aaµ, λ

a,Da) which couples in the most general way to Xnl. Its Lagrangian is

L =

∫

d4θ
[

X†
nlXnl + Φ†

i (e
V Φ)i − (m2

i /f
2)X†

nlXnlΦ
†
i (e

V Φ)i

]

+

{
∫

d2θ
[

fXnl +W (Φi)

+
Bij
2f

Xnl ΦiΦj +
Aijk
6 f

XnlΦiΦjΦk +
1

4

(

1 +
2mλ

f
Xnl

)

TrWαWα

]

+ h.c.

}

, (18)

where m2
i , Bij , Aijk are soft terms, mλ is the gaugino mass. From this, one can find the goldstino

(χ) couplings to ordinary matter/gauge superfields, in the leading orders in 1/f .
It can be checked that these couplings are equivalent to those obtained “in the standard

way” by the equivalence theorem [2], from a theory with the corresponding explicit soft breaking
(see below) in which the goldstino couples as:

(1/f) ∂µχ Jµ = −(1/f)χ ∂µJµ + (total space-time derivative), (19)

Here Jµ is the supercurrent of the theory corresponding to that in (18) in which the goldstino
is essentially replaced by the spurion S, according to S ≡ msoftθ

2 ↔ (msoft/f)Xnl [14], with
the corresponding explicit soft breaking terms:
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L′ =

∫

d4θ
[

1 −m2
i θ

2θ
2
]

Φ†
i (e

V Φ)i +

∫

d2θ
[

W (Φi)− (1/2)Bij θ
2ΦiΦj −(1/6)Aijk θ

2 ΦiΦjΦk

+
1

4
(1 − 2mλθ

2)TrWαWα

]

+ h.c. , (20)

With this, eq.(19) shows that, on-shell, all goldstino couplings are proportional to soft terms.
Indeed, the supercurrent of (20) and its divergence are given by (with Dµ,ij = δij ∂µ+ i g Aaµ T

a
ij)

Jµα = −[σνσµψi]α [Dν, ijφj ]
† + i [σµψi]αFi −

1

2
√

2
[σνσρ σµλ

a
]α F

a
νρ +

i√
2
Da [σµλ

a
]α

∂µJ
µ
α = ψi,α (m2

iφ
†
j +Bijφj + (1/2)Aijkφjφk ) +

mλ√
2

[

(σµν) βα λaβF
a
µν +Da λaα

]

. (21)

so all goldstino couplings are proportional to the soft terms. From (19), (21) one then recovers
the couplings with one goldstino. However, the constrained superfields formalism in (18) has
an advantage over this “standard procedure” in that it can be applied even when evaluating
couplings with more than one goldstino. As mentioned, this is done by writing all effective
operators (involving Xnl) to a fixed order in 1/f . It is more difficult to find these from (20). It
should be mentioned however, that this method does not take into account possible derivative
couplings of the goldstino to the matter, which can arise, through the Ferrara-Zumino current.

4 Goldstino couplings to the MSSM and their implications.

In the following we explore some phenomenological applications of the above formalism. We
only impose the constraint on the goldstino superfield, ie this is the only field with a non-
linear supersymmetry transformation in the energy region E ∼ msoft <

√
f . At energy scales

below msoft, constraints similar to that of goldstino superfield must be applied to the MSSM
superfields themselves, corresponding to integrating out the corresponding superpartners in
terms of the light degrees of freedom. Nevertheless, the problems that we address are not
affected at tree level by the additional constraints on the MSSM superfields such as quarks and
leptons superfields. These can actually be imposed at a later stage on the results found. For
related applications of goldstino interactions and phenomenology see also references [17] to [22].

4.1 Effective Lagrangian of goldstino couplings to MSSM

Using the method of constrained superfields we determine the general couplings of the goldstino
to MSSM superfields that involve one and two goldstino spinors. As mentioned, we do not take
into account the derivative couplings of the goldstino to matter, which can in principle arise.
Here, the only difference from the ordinary MSSM is in the supersymmetry breaking sector.
Supersymmetry is broken spontaneously via a vacuum expectation value of F , fixed by its
equation of motion (see later). The Lagrangian of the MSSM coupled to the goldstino is then

LH =
∑

i=1,2

ci

∫

d4θ X†
nlXnl H

†
i e

Vi Hi +
∑

Φ

cΦ

∫

d4θ X†
nlXnl Φ

†eV Φ +
B

f

∫

d2θXnlH1H2

+
Au
f

∫

d2θ XnlH2QU
c +

Ad
f

∫

d2θXnlQD
cH1 +

Ae
f

∫

d2θXnl LE
cH1 + h.c.

+

3
∑

i=1

1

16 g2
i ζ

2mλi

f

∫

d2θ Xnl Tr [WαWα]i + h.c. (22)

where an effective expansion in 1/f is assumed. Here cΦ = −m2
Φ/f

2, Φ : Q,U c,Dc, L,Ec;
mΦ are soft masses which we can choose to be all equal to m0; ζ cancels the Trace factor.
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After eliminating the auxiliary fields one obtains new couplings Lnew beyond those of the usual
onshell, supersymmetric part of MSSM. The onshell Lagrangian is

Lnew ≡ LauxF (1) + LauxF (2) + LauxD + Lextram + Lextrag (23)

The first two terms are obtained from eliminating the auxiliary F fields; Laux
F,(1) recovers all

MSSM soft terms (not shown) plus a cosmological term; for Laux
F,(2) one has, up to O(1/f3)

LauxF (2) =
{ χχ

2 f2

[

µ
(

m2
1+m2

2

)

h1.h2−
(

m2
1+m2

Q+m2
D

)

h1.φQφD−
(

m2
1+m2

L+m2
E

)

h1.φLφE

−
(

m2
2 +m2

Q +m2
U

)

φQφU .h2+
(

B h2 −Ad φQφD −Ae φL φE
)†(
µh2 − φQφD − φL φE

)

+
(

B h1 −Au φQ φU
)†(

µh1 − φQ φU
)

+
(

Ad φD h1 −Au h2 φU
)†(

φD h1 − h2 φU
)

+ Ad
(

|φQ.h1|2 + |φE h1|2
)

+Au |h2.φQ|2 +Ae |φL.h1|2
]

+ h.c.
}

− 1

f2

∣

∣

∣
B h1.h2

+ Auh2.φQ φU+AdφQ φD.h1+AeφL φE .h1+
mλi

2
λiλi+

(

m2
1|h1|2+m2

2|h2|2+m2
Φ|φΦ|2

)

∣

∣

∣

2

− 1

f

[

m2
1 χψh1

h1 +m2
2 χψh2

h2 +m2
Φ χψΦ φΦ + h.c.

]

+ O(1/f3) (24)

which contains Weyl goldstino couplings to MSSM fields, but also couplings independent of χ
such as new quartic Higgs couplings! A summation is understood over the SM group indices:
i = 1, 2, 3 in the gaugino term and over Φ = Q,U c,Dc, L,Ec in the mass terms; appropriate
contractions among SU(2)L doublets are understood for holomorphic products, when the order
displayed is relevant. There are leading interactions O(1/f) in the last line which are actually
dimension-four in fields. Similar couplings exist at O(1/f2) and involve scalar and gaugino
fields. Finally, the Yukawa matrices are restored in (24) by replacing φQφD → φQγdφD, φQφU →
φQγuφU , φLφE → φLγeφE .

There are also new couplings from terms involving the auxiliary components of the vector
superfields of the SM. Eliminating them one finds

LauxD =
−1

2

3
∑

i=1

[

D̃a
i +

1

4 f2

(

mλi
χχ+ h.c.

)

D̃a
i +

1√
2 f

(

mλi
χλai + h.c.

)

]2
+ O(1/f3) (25)

which brings gaugino-goldstino and Higgs-goldstino couplings; D̃a
i are MSSM auxiliary fields

D̃1 = −1/2 g1
(

− h†1h1 + h†2h2 + 1/3 φ†QφQ − 4/3 φ†UφU + 2/3 φ†DφD − φ†LφL + 2φ†EφE
)

D̃a
2 = −1/2 g2

(

h†1σ
ah1 + h†2σ

ah2 + φ†Qσ
aφQ + φ†Lσ

aφL
)

D̃a
3 = −1/2 g3

(

φ†Q t
aφQ − φ†U t

aφU − φ†D t
aφD

)

(26)

Further, the total Lagrangian also contains new couplings, not induced by the auxiliary fields
and absent in the MSSM. In the matter sector these are:
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Lextram =
1

4f2
|∂µ(χχ)|2 +

( i

2
χσµ ∂µχ+ h.c.

)

−
2

∑

i=1

m2
i

f2

{

χψhi
χψhi

+
[ i

2
(χσµ χ) (h†i Dµ hi) +

i

2
|hi|2 χσµ∂µχ+ h.c.

]}

−
[

m2
i → m2

Φ,Hi → Φ
]

+

{

B

f

[ 1

2 f
χχψh1

.ψh2
− h1.(χψh2

) − (χψh1
).h2

]

+
Au
f

[ 1

2 f
χχ

(

h2.ψQ ψU + ψh2
.φQ ψU + ψh2

.ψQ φU
)

− χ (h2.φQ ψU + h2.ψQ φU

+ ψh2
.φQ φU )

]

+
[Ad
f

( 1

2 f
χχ (ψQ ψD.h1 + φQ ψD.ψh1

+ ψQ φD.ψh1
)

− χ (φQ ψD.h1 + ψQ φD.h1+φQ φD.ψh1
)
)

+(D→E,L→Q)
]

+h.c.

}

+O(1/f3). (27)

Note the presence of interactions that are dimension-four in fields like (B/f)h1χψh2
, relevant

for phenomenology at low f . Finally, there are also new couplings in the gauge sector

Lextrag =

3
∑

i=1

mλi

2 f

[ χχ

−2 f

(

2 i λaσµ ∆µ λ
a − 1

2
F aµν F

aµν − i

4
ǫµνρσ F aµν F

a
ρσ

)

−
√

2χσµνλa F aµν

]

i
+ h.c.+ O(1/f3), (28)

with i = 1, 2, 3 the gauge group index and σµν = i/4 (σµσν − σνσµ).
Lnew together with the onshell part of the purely supersymmetric part of the MSSM La-

grangian give the final action which contains all the goldstino couplings to the MSSM with one
and two goldstinos. Some of their phenomenological implications are discussed below.

4.2 MSSM Higgs potential and mass corrections

From Lnew the full scalar potential is also identified. For the Higgs sector this is

V = f2 +
(

|µ|2 +m2
1

)

|h1|2 +
(

|µ|2 +m2
2

)

|h2|2 +
(

B h1.h2 + h.c.
)

(29)

+
1

f2

∣

∣

∣
m2

1 |h1|2 +m2
2 |h2|2 +B h1.h2

∣

∣

∣

2
+
g2
1 + g2

2

8

[

|h1|2 − |h2|2
]2

+
g2
2

2
|h†1 h2|2 + O(1/f3)

Notice the first term in the last line, generated onshell, which is dimension-four in fields and not
present in the MSSM. Its origin is ultimately due to the constraint on the goldstino superfield
and elimination of the sgoldstino in terms of light degrees of freedom (Weyl goldstino). When
f is large, with soft masses fixed, one recovers the usual MSSM limit. This scalar potential
brings corrections to the value of the Higgs mass of the MSSM. Their exact form can be found
in [21]; at large u ≡ tan β with mA fixed one finds

m2
h =

[

m2
Z + O(1/u2)

]

+
v2

2 f2

[

(2µ2 +m2
Z)2 + O(1/u2)

]

+ O(1/f3)

m2
H =

[

m2
A + O(1/u2)

]

+
1

f2
O(1/u2) + O(1/f3) (30)

Therefore, mh is increased from its MSSM tree-level value. This increase is driven by a large µ
and apparently is of supersymmetric origin, but the quartic Higgs couplings giving this effect
involved combinations of soft masses (see (29)). These soft masses combined to give, at the EW
minimum, the µ-dependent increase in (30). As seen from Figs. 1 a), b), there is a reasonable
range in the parameter space for which the Higgs mass can reach the LEP2 bound of 114.4 GeV
even at the tree level, due to effective corrections associated with integrating out the scalar and

8



2000 4000 6000 8000 10 000
80

90

100

110

120

130

140

150

(a) mh in function of
√
f , µ parameter

2000 4000 6000 8000 10 000
80

90

100

110

120

130

140

150

(b) mh in function of
√
f , µ parameter

Figure 1: The tree-level Higgs masses (GeV) as functions of
√
f (in GeV); here mA =150 GeV and mh

increases as µ varies from 400 to 3000 GeV in steps of 100 GeV. In (a) tanβ=50 and in (b) tanβ=5,

showing a milder dependence on tanβ than in MSSM.

auxiliary field of the goldstino superfield. This result is important since it does not require new
physics in the visible sector to solve the discrepancy between MSSM tree level bound and the
LEP2 bound. This is done for the case of a low enough supersymmetry breaking scale,

√
f ∼ 2

to 7 TeV. This effect could also be relevant for a scenario in which the Higgs mass is found
at a mass well above the 114.4 GeV bound2, in which case the MSSM requires large quantum
corrections (and a significant amount of fine tuning of the EW scale).

4.3 Invisible Higgs and Z bosons decays

The couplings of the goldstino field to the MSSM fields have some interesting consequences. One
is that for a light neutralino NLSP (goldstino is the LSP) there is the possibility of a decay of
the neutral higgses into a goldstino and the NLSP χ0

1. The coupling Higgs-goldstino-neutralino
is only suppressed by 1/f . It arises from the following terms in Lnew and from the terms in the
supersymmetric part of the usual MSSM Lagrangian, hereafter denoted Lonshell0 :

Lnew + Lonshell0 ⊃ − 1

f

[

m2
1 χψh0

1

h0 ∗
1 +m2

2 χψh0

2

h0 ∗
2

]

− B

f

[

χψh0

2

h0
1 + χψh0

1

h0
2

]

− 1

f

∑

i=1,2

mλi√
2
D̃a
i χλ

a
i −

1√
2

[

g2λ
3
2 − g1λ1

][

h0 ∗
1 ψh0

1

− h0 ∗
2 ψh0

2

]

+ h.c. (31)

If the NLSP is light enough, mχ0

1

< mh, then h0,H0 can decay into it plus a goldstino which

has a mass of order f/MP lanck ∼ 10−3 eV3. The decay rate is

Γh0→χ0

1
χ =

mh

16π f2

∣

∣

∣

4
∑

k=1

δ′k Z1k

∣

∣

∣

2
(

1 −
m2
χ0

1

m2
h0

)2

(32)

where Z is the matrix diagonalising the neutralino mass matrix. The partial decay rate has
corrections coming from both higgsino (Z13, Z14) and gaugino fields (Z11, Z12), since they both
acquire a goldstino component. The gaugino correction arises after gaugino-goldstino mixing,
SUSY and EW symmetry breaking, (as shown by mλi

, mZ dependence in δ′k with the latter
provided in [21]) and was not included in previous similar studies [22, 24, 25].

2In the MSSM the EW scale fine tuning is minimized at mh ≈ 114 ± 2 GeV, beyond this value it increases
exponentially, to a level of one part in 1000 for mh ≈ 122 GeV [27]. See also [28].

3If this is not true, the decay of neutralino into h
0 and goldstino takes place, examined in [25].
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Figure 2: The partial decay rate of h0 → χχ0

1
for (a): tanβ = 50, mλ1

= 70 GeV, mλ2
= 150 GeV,

µ increases from 50 GeV (top curve) by a step 50 GeV, mA = 150 GeV. Compare against Fig. 1 (a)

corresponding to a similar parameters range. At larger µ, mh increases, but the partial decay rate

decreases. Similar picture is obtained at low tanβ ∼ 5. (b): As for (a) but with tanβ = 5. Compare

against Fig. 1 (b). The total SM decay rate, for mh ∼ 114 GeV, is of order 10−3, thus the branching

ratio in the above cases becomes comparable to that of SM Higgs going into γγ (see Fig. 2 in [23]).

In Fig. 2 the partial decay rate is presented for various values of µ, mA and mλ1,2
. A larger

decay rate requires a light µ ∼ O(100) GeV, when the neutralino χ0
1 has a larger higgsino

component. At the same time an increase of mh above the LEP bound requires a larger value
for µ, close to µ ≈ 700 GeV if

√
f ≈ 1.5 TeV, and µ ≈ 850 GeV if

√
f ≈ 2 TeV, see Figure 1

(a). The results in Figure 2 show that the partial decay rate can be significant (∼ 3 × 10−6

GeV), if we recall that the total SM Higgs decay rate (for mh ≈ 114 GeV) is about 3 × 10−3

GeV, with a branching ratio of h0 → γγ of 2 × 10−3, (Figure 2 in [23]). Thus the branching
ratio of the process can be close to that of SM h0 → γγ. The decay is not very sensitive to tan β
(Figure 2 (b)), due to the extra contribution (beyond MSSM) from the quartic Higgs coupling.
It would be interesting to analyze the above decay rate at the one-loop level, for a more careful
comparison to SM Higgs decays rates.

Another coupling that is also present in the leading order (1/f) is that of goldstino to Zµ
boson and to a neutralino. Depending on the relative mass relations, it can bring about a decay
of Zµ (χ0

j) into χ0
j (Zµ) and a goldstino, respectively. The relevant terms are

Lnew + Lonshell0 ⊃ −1

4
ψh0

1

σµψh0

1

(g2V
3
2 − g1 V1)µ +

1

4
ψh0

2

σµψh0

2

(g2V
3
2 − g1 V1)µ

}

−
2

∑

i=1

mλi√
2 f

χσµν λai F
a
µν, i + h.c. (33)

where the last term was generated in (28) (i labels the gauge group). Since the higgsinos
acquired a goldstino component (∝ χ/f) via mass mixing, the first line above induces additional
O(1/f) couplings of the higgsino to goldstino and to Zµ = (1/g) (g2V

3
2 −g1 V1)µ with g2 = g2

1+g2
2 .

Then, if mχ0

1

is lighter than Zµ then a decay of the latter into χ0
1 + χ is possible. The decay

rate of this process is (with j = 1):

ΓZ→χχ0

j
=

m5
Z

32πf2

[

ζ1|wj |2 + ζ2 |vj |2 + ζ3 (wj v
∗
j + w∗

j vj)
](

1 −
m2
χj

m2
Z

)2
(34)

with ζ1 = 2(2 + r2)µ2/m2
Z , ζ2 = 2(8 + r2)(1 + 2r2), ζ3 = −2(4 + 5r2)µ/mZ where r =

mχj
/mZ . This decay rate should be within the LEP error for ΓZ , which is 2.3 MeV [26]
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(ignoring theoretical uncertainties which are small). From this, one finds a lower bound for√
f , which can be as high as

√
f ≈ 700 GeV for the parameter space considered previously

in Figure 1, while generic values are
√
f ∼ O(400) GeV. Therefore the results for the increase

of mh, that needed a value for
√
f in the TeV region, escape this constraint. This constraint

does not apply if the lightest neutralino has a mass larger than mZ (this can be arranged for
example by a larger mλ1

), when the opposite decay (χj → Z χ) takes place.
There also exists the interesting possibility of an invisible decay of Zµ gauge boson into a

pair of goldstino fields, that we review here [6, 14, 18]. This is induced by the following terms
in the Lagrangian, after the Higgs field acquires a VEV:

Lnew + Lonshell0 ⊃
{ 1

4 f2
χσµχ (g2V

3
2 − g1 V1)µ (m2

1 v
2
1/2 −m2

2 v
2
2/2)

− 1

4
ψh0

1

σµψh0

1

(g2V
3
2 − g1 V1)µ +

1

4
ψh0

2

σµψh0

2

(g2V
3
2 − g1 V1)µ

}

+ h.c. (35)

The decay rate is then

ΓZ→χχ =
mZ

24π g2

[

m4
Z

2 f2

]2

cos2 2β (36)

in agreement with previous results obtained for B = 0 [6, 14, 18]. The decay rate is independent
of mA and should be within the LEP error for ΓZ (2.3 MeV [26]). One can then easily see that
the increase of the Higgs mass above the LEP bound (114.4 GeV) seen earlier in Figure 1 is
consistent with the current bounds for this decay rate, which thus places only mild constraints
on f , below the TeV scale (≈ 200 GeV) [6, 18]. This is due to the extra suppression powers
of 1/f relative to the decay rates evaluated earlier in this section. A similar analysis can also
be done for the decay of the lightest higss into a pair of goldstinos, but it does not bring any
significant constraints for f , being strongly suppressed (∼ 1/f4).

5 Conclusions

We reviewed briefly the non-linear supersymmetry in the standard realization of Volkov-Akulov
and in the constrained superfield formalism. The latter method can be easily applied to the
MSSM model, to derive the couplings of the MSSM superfields to the goldstino fermion. This
is possible for an energy region above msoft and below the scale of supersymmetry breaking√
f which is assumed to be a few times higher than the soft masses. In this energy range

the only field that undergoes non-linear transformations is the goldstino field. Using this idea,
all goldstino couplings to the MSSM were computed up to and including the order O(1/f2).
Regarding phenomenology, one interesting consequence is the increase of the lightest Higgs mass
from its MSSM tree level value, which becomes close to the LEP2 bound for

√
f ∼ 2 − 7 TeV.

This value is consistent with the current constraints from invisible Z and Higgs decays. Finally,
it is important to emphasize the main differences of this model to the MSSM: (1) the presence
of an additional fermionic light mode, namely the goldstino (or equivalently the longitudinal
gravitino) which is SM singlet and (2) the existence of an extra symmetry, namely non-linear
supersymmetry.
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