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Abstract

We consider geodesic equations for a black hole solution in the Randall-Sundrum II
scenario presented in [1]. This solution is a generalization of the Schwarzschild one and has
the mathematical form of the Reissner-Nördstrom solution, but with an additional “tidal
charge” instead of the electric charge. We examine the behavior of geodesic parameters and
show that the solution does not contradict the observational data and does not predict any
fundamentally new effects. A more serious restriction on the “tidal charge” value can be
extracted from the circular orbit equation.

1 Introduction

Impossibility of direct quantization of the general relativity, like it is done in the electrodynam-
ics, leads to serious problems in attempts to build an universal theory of all physical interac-
tions. On one hand we have general relativity, that fully describes all modern observational
data and gives basis for understanding of the Universe at large scales. On the other hand we
have quantum mechanics, that describes microscopical scales. Unfortunately, these two theo-
ries can not be combined with each other. Any attempt to directly quantize gravity leads to
an infinite amount of counterterms during renormalization because of the nonflat background
presence. This fact does not create any problems for experimental physics: gravitational in-
teraction becomes significant only for energies near 109 GeV, this means that the role of the
gravitational interaction in modern experimental physics vanishes. However, it is important to
consider gravity to understand and describe such phenomena as Big Bang, Early Universe, last
stages of Hawking evaporation [2, 3, 4]. To describe these phenomena, a generalized theory of
gravity is required, for example, the string theory in its low energy limit. When we turn to
four-dimensional spacetime, we arrive at the so-called “braneworld model“, which main idea is
that our world is four-dimensional slice of some higher dimensional spacetime — bulk. Matter
and fields are localized on a brane and only gravity can reach extra dimensions. Such mod-
els are remarkable with the fact that they can solve the hierarchy problem: why electroweak
scale is so much different from the great unification one. In this case, four-dimensional Planck
scale ceases to be fundamental and becomes effective [5]. A truly fundamental characteristic is
the multidimensional Planck scale, that is related to four-dimensional one via extra dimensional
properties. In braneworld models fundamental Planck scale can lower from 1019GeV to energies
of 1TeV, making search for experimental manifestation of extra-dimension not hopeless.
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2 Black hole solution

New types of black hole solutions, which arise in braneworld models, have new unusual prop-
erties due to presence of extra dimensions. One of the first localized on the brane black hole
solutions in Randall-Sundrum scenario was obtained in [1]. Authors [1] considered 5-dimensional
field equations:

G̃AB = κ̃2

(
−Λ̃g̃AB + δ(χ) (−λgAB + TAB)

)
, (1)

where tidels and large latins denote 5-dimensional quantities, small greek letters are used for
4-dimensional quantities.G̃AB — Einstein tensor, κ̃2 = 8π/M̃3

P l, MP l — Planck mass, brane

tension — λ, Λ̃ cosmological constant, gAB = g̃AB − nAnB — induced metric on the brane
(i.e. metric, obtained via projection of 5-dimensional metrik onto the brane), nA — spacelike
unit normal to the brane. TAB- energy-momentum tensor on the brane. Corresponding field
equations on the brane include terms, carrying bulk effects onto the brane:

Gµν = −Λgµν + κ2Tµν + κ̃4Sµν − Eµν , (2)

where κ2 = 8π/M2

P l, Sµν - squared energy-momentum, Eµν - 5-dimensional Weyl tensor pro-
jection. The vacuum solution is under consideration, which means after several transformation
equations reduce to:

Rµν = −Eµν , Rµ
µ = 0 = Eµ

µ, ▽µEµν = 0.

The solution on the brane has no any additional assumptions about 5-dimensional metric struc-
ture, the only important point is that it satisfies (2). Metric has the form:

ds2 = ∆(r)dt2 −
dr2

∆(r)
− r2(dθ2 + sin2 θdφ2), (3)

where

∆(r) = 1 +
α

r
+

β

r2
, (4)

α and β are constants. This metric has mathematical form of Reissner-Nördstrom type, where
α = −2M/M2

P l, M — black hole mass, and β = q/M̃2

P l, where q is “tidal charge”, arising from
bulk Weyl tensor, which projection on a brane is formally identified with energy-momentum
tensor. So, the tidal charge is an “imprint“ of the bulk free gravitational field. This metric gives
rise to two types of black hole solutions. One is the classical Reissner-Nördstrom solution with
two horizons. This solution corresponds to β < 0 (this case is absent in general relativity). The
solution with β < 0 has only one horizon, lower temperature and greater entropy, comparing to
it’s Schwarzschild counterpart:

rh =
M

MP l2

[
1 +

√
1 − q

MP l4

M2M̃P l2

]
. (5)

Gravitational potential in the Schwarzschild metric Φ =
M

M2

P lr
changes to:

Φ = −
M

M2

P lr
+

Q

2r2
. (6)

Authors of [1] have shown that the case q < 0 is physically more natural than q > 0 one.
For q < 0 the effective energy density on the brane is negative, just like energy density of
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isolated massive source gravitational field in the Newton theory. Negative q provides spacelike
singularity (like in Schwarzschild case), while positive value of q makes the singularity timelike,
leading to qualitative change of the Schwarzshild solution nature. An estimate on q can be
made, if we require the correction term in the modified potential to be much less than the
Schwarzschild term:

|q| ≪ 2

(
M̃P l

MP l

)2

M⊙R⊙, (7)

The authors argue, that this restriction anywhere allows q to be large enough to affect the
spacetime geometry in strong-gravity regime.

In this work we are looking for geodesic equations in metric (3) and compare them with
Swarzschild geodesic equation. Reissner-Nördstrom solution is unstable, because macroscopic
electrical charge is neutralized due to the surrounding plasma. Tidal charge arises in metric
from geometrical considerations, hence, is not constrained by the above argument. Reissner-
Nördstrom metric is well studied for positive values of charge parameter. Cases with negative
values of charge parameter were not studied, due to absence of this opportunity in classical
general relativity. This may give rise to new obsevrable effects.

3 Bound orbits

3.1 Timelike geodesic

We now turn to the orbits, which have an upper bound on r. This is the case, when E2 < 1.
We rewrite geodesic equations as: (

du

dφ

)2

= f(u). (8)

Equation (8) shows, that for the Schwarzshild case β = 0 f(u) is third-order function on u,
which means, it has in general three roots , for β 6= 0 f(u) is fourth-order function.

Different pairs of E2 and L lead to five different cases. Chandrasekar [13] sets two types of
orbits. Orbits of the first type oscillate between two values of r. Second type orbits start at
some distance and terminate in singularity. The first orbit is an analogue of keplerian orbit,
but there is no analogue for the second type in general relativity.

The principal difference in the case of fourth-order equation is that f(u) can have in general
one more root and changes it’s behavior when r → −∞. This can give rise to new types of
orbits connected with u4. Such case is only possible when all roots of f(u) = 0 are positive. We
expand f(u) like: f(u) = (u − u1)(u − u2)(u − u3)(u − u4) and suggest all roots to be positive.
After opening the brackets and comparing with (8), one obtains:

−u1 − u2 − u3 − u4 =
α

β
, (9)

hence, there is a contradiction, bacause α/β > 0. Therefore at least one root should be negative,
so the presence of β does not cause an appearance of new type of orbits. We would like to point
out that this result does not depend on L and E, which means it also remains correct for
unbound orbits.

3.2 Radial geodesics

Radial geodesics corresponding to L = 0 are:

(
dr

dτ

)2

= E2 − ∆. (10)
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We consider particles starting at some initial distance with zeroth motion and falling into
singularity. Initial conditions are: r − ri when ṙ = 0.

r1,2
i =

−α ±
√

α2 − 4β(1 − E2)

2(1 − E2)
, (11)

dt

dτ
=

r2E

r2 + αr + β
. (12)

for bound orbits there is only one positive value of ri, corresponding to positive sign (discrim-
inant in (11) for E2 < 1 and β < 0 becomes larger than α2 in absolute value). This value
exceeds the corresponding one of the Schwarzshild case:

rSch
i = −

α

1 − E2
. (13)

Coordinate time of reaching singularity is infinite, like in the Schwarzschild case. For the
proper time one obtains a complicated expression, which does not allow to estimate it’s value
or compare it to the Schwarzshield one, without substituting parameter values.

So, one can arrive to a conclusion, that the presence of tidal charge leads only to quantitative
changes in radial geodesics: increasement of initial distance ri and change of the equation for
proper time.

3.3 Circular orbits

Values of energy E and momentum L for circular orbits can be found from [13]:

f ′(u) = −
α + 2β

L2
− 2u − 3αu2 − 4βu3 = 0, (14)

f(u) =
E2 − 1

L2
−

αu + βu2

L2
− u2 − αu3 − βu4 = 0. (15)

On a corcular orbit of radius rc =
1

uc
one has:

E2 =
2(1 + αuc + βu2

c)
2

2 + 3αuc + βu2
c

, L2 =
−α − 2βuc

uc(2 + 3αuc + 4βu2
c)

. (16)

Values of E2 and L2 in the limit β → 0 correspond to Schwarzschild geometry. For β 6= 0 value
of L2 are larger. For negative β numerator in L2 increases, denumerator decreases. Based on
(16), one can obtain the following inequality (with E2 > 0, L2 > 0):

2 + 3αuc + 4βu2

c > 0. (17)

When β < 0 equation (17) reads:

0 < uc <
−3α +

√
9α2 − 32β

8β
,

−3α +
√

9α2 − 32β

4
< rc < ∞.

When β = 0 inequality (17) gives rise to a condition for the Schwarzschild circular orbits

rc > −
3

2
α.

If E and L take values of (16) correspondingly, equation (8) reads:

(
du

dφ

)2

= −(u − uc)
2

[
βu2 + (α + 2ucβ)u +

(
ucβ +

α

2

(
1 −

1

L2u2
c

))
uc

]
.
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Radius of marginally stable orbit can be obtained from the requirement that f(u) has an
inflection point on a corresponding inverse radius [13]:

f ′′(u) = −
2β

L2
− 2 − 6αu − 12βu2 = 0, (18)

considering (16):
8β2u3

c + 9αβu2

c + 3α2uc + α = 0. (19)

In the limit β = 0 one obtains Schwarzschild values uc = −1/3α ore rc = −3α.
Finally, the presence of negative tidal charge leads for circular orbits, just like for radial

geodesics, only to quantitative changes in the radii of marginally stable and unstable orbits.

4 Tidal charge contribution

The authors [1] assume, that the demand (7) allows for values of β to be large enough to affect
space-time geometry in strong gravity regime. Switching to units of M⊙ in alpha one obtains:

α = −a
M⊙

M2

pl

, (20)

Here a has the order of unity. Equating (4) to zero, one obtains tne equation for horizon radius,
mass and “tidal charge” in the form:

rh =
−α +

√
α2 − 4β

2
. (21)

It is convinient to redefine β similarly (20) as:

β = b
M2

⊙

M4

pl

. (22)

Here we introduce the “normalized tidal charge” b, characterizing the value of β in solar mass
scale.

Comparing the “normalized tidal charge”’ (20) with the “tidal charge” found in (7) one can
obtain a physical constraint on the “normalized tidal charge”:

|b| ≪ 2R⊙

M2

pl

M⊙
. (23)

Substituting solar mass and radius values (R⊙ = 696000 km, M⊙ = 2 · 1030 kg, Mpl = 10−8 kg)
and converting this values to the Planckian system of units with ~ = c = 1, we get:

|b| ≪ 106.

One can see that the bound (7) is weaker than the one we can obtain from (19), because a ∼ 1
corresponds to (20).

Indeed, the replacement ũc = ucM⊙/M2

pl in (19) gives rise to:

8b2ũc
3 + 9abũc

2 + 3a2ũc + a = 0. (24)

Considering the demand the correction term containing b to be mutch smaller than the Schwarzschield
one containing a ∼ 1 one gets:

|b| ≪ 1.

The solution appears to be self-consistent for these values of β and does not contradict to the
general relativity and observation data [14].

Finally the “tidal charge” as five-dimensional theory contribution depends on the black hole
mass. So one needs the exact solution to study the workability of the model under discussion.
In this aproach a stronger bound on the tidal “charge” value can be found from circular orbits
and the last stable circular orbit consideration.
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5 Conclusions

Although the presence of the “tidal charge” β changes the geodesic equations, it should not
affect the shape and possible types of geodesic for solar masses to avoid the contradiction withe
the present observational data. The constraint to the “tidal charge” value β, introduced in [1]
and in this paper makes all other possible effects, caused by β unobservable for solar mass and
larger black holes. Probably, the “tidal charge” manifests itself in microphysics.

Finally the black hole solution [1] does not contradict to general relativity and observational
data for choosen parameter values. A stronger bound on the tidal charge vcalue can be found
considering circular orbits and the last stable circular orbit.
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