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Outline

• Metastable strings, walls, and vacua

• Tunneling exponent

• Pre-exponent for strings and walls

• Thermal effects at low temperature

• Destruction of strings and walls in collisions of Goldstone bosons. Extracting

particle processes from the thermal effect.

• Schwinger e+e− pair creation

• Thermal effects and photon-induced pair creation

• Photon-induced process from WKB. Low energy.

• Photon-induced process from WKB. High energy.



• Metastable String:
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• Metastable Wall:

(e.g. axion wall)

Hole in the wall (bubble) of radius r. Energy:

E = 2πµr − πεr2

ε - surface tension of the wall, µ - linear tension of the boundary.

Critical size: R = 2µ/ε.



• Decay of metastable strings and walls is similar to the false vacuum decay (also

Schwinger process for the strings):

A critical ‘bubble’ is formed by tunneling, which then expands. Probability of

decay = the rate γ of nucleation of the critical bubbles per volume/area/length.

Tunneling exponent:

String (d = 2) : γ ∝ exp

(

− πµ2

ε1 − ε2

)

Wall (d = 3) : γ ∝ exp

(

−16πµ3

3ε2

)

False vacuum decay in d = 4 : γ ∝ exp

(

−27π2µ4

2ε3

)

M.B.V., I.Yu. Kobzarev and L.B. Okun, 1974

• The pre-exponent however is different

because the interface “drags” a part of string/wall.



• Euclidean-space formulation (Coleman 1977)

String (the case of wall is similar): Nambu-Goto effective (Euclidean) action

S = ε1 A1 + ε2 A2 + µP

A1,2 - world area of the string 1,2; P - length of the world line (perimeter) of the

interface between 1 and 2.

Classical solutions (with the string 1 at infinity): trivial - flat string 1; bounce:

Radius : R =
µ

ε1 − ε2

(Diameter `c = 2R)

Action on the bounce (relative to the flat string) SB = πµ2/(ε1 − ε2).

Decay rate ∝ exp(−SB).



• Pre-exponent

A calculation of the path integral Z with e−S over the fluctuations around the

bounce is needed. Probability γ0 per time T per length X:

γ0 =
1

XT
Im

Z12

Z1

• Longitudinal — variations of the bounce boundary in the (x,t) plane - same

as in false vacuum decay/Schwinger process — pre-exponential factor

(ε1 − ε2)/2π V. Kiselev, K. Selivanov 1984, MBV 1985

• Transverse modes — massless Goldstone bosons on the string — extra factor

F (ε2/ε1)

F
(

ε2

ε1

)

=

√

ε1 + ε2

2 ε1
Γ
(

ε1 + ε2

ε1 − ε2
+ 1

) (

ε1 − ε2

ε1 + ε2

)

ε1+ε2
ε1−ε2 ×

exp
(

ε1 + ε2

ε1 − ε2

)(

2π
ε1 + ε2

ε1 − ε2

)−1/2



F (0) = e/
√

4π = 0.7668 . . . and F (1) = 1 A. Monin, MBV, 2008

• Total string decay rate

γ0 = F
(

ε2

ε1

)

ε1 − ε2

2π
exp

(

− π µ2
R

ε1 − ε2

)

µR — renormalized mass parameter µ.

Renormalized by the pieces of the string dragged along with the ends.

• Similar situation in the case of wall decay: the UV terms from the NG action

can all be absorbed into renormalization of µ.

Not true for higher-dimensional branes.



• Thermal catalysis of the decay.

Massless transverse waves (Goldstone modes) are excited at arbitrarily low

temperature T . Expect the thermal catalysis factor K(T ) in

γ(T ) = K(T ) γ0

to expand in powers of T .

In the Euclidean thermal formulation need to consider time with the period

β = 1/T .



Nothing happens to the bounce as long as 2R < β. The only modification is in

the path integral over the modes around the bounce.

Periodic plane:

For a single bounce the eigen modes are O(2) symmetric:

zk(t, x) =Re,Im(Rk/wk) with w = t + ix. Can be made periodic:

gk =
Rk

wk
+

∞
∑

n=1

[

Rk

(w − nβ)k
+

Rk

(w + nβ)k

]

but these are not eigen modes.

A mixing between the modes gk in the action occurs.



• General expression

K = Det
[

1 − D2
]−(d−2)/2

where

Dpk = −
[

(−1)k + (−1)p
]

(RT )k+p+2 p

p + b

(p + k + 1)!

(p + 1)! k!
ζ(p + k + 2)

with b = (ε1 + ε2)/(ε1 − ε2). A. Monin, MBV, 2008

Critical temperature T`c = 1 (at larger T the bounce does not fit on the

cylinder).

                                                                            R T
0.35 0.40 0.45 0.50

G

1.0

1.1

1.2

1.3

1.4

1.5



• Low temperature expansion

K = 1 + (d − 2)
π8

450

(

ε1 − ε2

3ε1 − ε2

)2
(

`cT

2

)8

+ O(T 12)

Why T 8?

To answer one needs to consider the breaking of the string in collisions of the

Goldstone bosons.

Thermal catalysis = additional contribution due to breaking of the string in

collisions of thermally excited Goldstone bosons.



• Consider the process (n Goldstone bosons → broken string + X).

Let z(x, t) be the field of (one polarization of) the Goldstone bosons (a shift by

z(t, x) in a transverse direction). Consider low-energy ω — expansion in

derivatives of z. z = const (overall shift of the string) and ∂z =const (overall

fixed rotation) cannot enter an amplitude. Essential terms start with ∂2z ∝ ω2,

and there is 1/
√

ω factor per each particle due to normalization. ⇒ each boson’s

energy enters as ω3/2 in the amplitude, i.e. ω3 in the probability.

Start with the minimal process n = 2. The (dimensionless) probability W2 of

breaking string in two-particle collisions can depend only on the invariant

s = 4ω1ω2. At small s W2 = C s3 + . . .. In a thermal state with the distribution

function for the bosons

n(ω) =
1

exp(ω/T ) − 1

the contribution δγ of the two-particle process to the thermal decay rate is

δγ = (d − 2)
∫

n(ω1)n(ω2)W2(4ω1ω2)
dω1dω2

(2π)2
= (d − 2) C

16π6

225
T 8

Compare with the T 8 term in K ⇒ determine C.



W2 = γ0 R2

[

π2

32

(

ε1 − ε2

3ε1 − ε2

)2

R6 s3 + . . .

]

• Higher terms of the T expansion for K are contributed by higher terms in s in

W2 and also by Wn with higher n. In order to untangle we introduce a negative

chemical potential µ for Goldstone bosons. Denote ν = −µ > 0, so that

n(ν, ω) =
1

exp[(ω + ν)/T ] − 1

The ζ(q) =
∑∞

n=1 n−q is replaced in the integrals by Liq(e
−ν/T ) =

∑∞
n=1 e−nν/T n−q.

K(ν, T ) = Det
[

1 −D2(ν, T )
]−(d−2)/2

[D(ν, T )]pk = −
[

(−1)k + (−1)p
]

(RT )k+p+2 p

p + b

(p + k + 1)!

(p + 1)! k!
Lip+k+2

(

e−ν/T
)

Two parameters, ν and T allow to untangle the energy dependence from the

dependence on the number of Goldstones. A. Monin, MBV, 2009



• Operationally the number of Goldstones = the power of D in

K(ν, T ) = exp

{

−d − 2

2
Tr ln

[

1 −D(ν, T )2
]

}

=

1+
d − 2

2
Tr
[

D(ν, T )2
]

+
d − 2

4
Tr
[

D(ν, T )4
]

+
(d − 2)2

8

{

Tr
[

D(ν, T )2
]}2

+O
(

D6
)

• Only even powers of D are present ⇒ the string is destroyed only in

collisions of even number of Goldstone bosons. We do not understand the

deep reason for this . . . . This property is not true for the destruction of a

metastable wall by the Goldstones: odd terms are also present.

• Only the Goldstones with the same polarization destroy the string in binary

collisions (W2 ∝ (d − 2)). For quartic collisions a cross-talk between different

polarizations is present (the term ∝ (d − 2)2).

• All the probabilities Wn are smooth functions of energy. The catalysis factor

K blows up at the critical T not because some processes become large, but

because infinitely many processes become important simultaneously.



The term d−2
2

Tr [D(ν, T )2] contains the full contribution of binary collisions at

any s (satisfying though s � ε1 for the whole approach to be applicable).

W2(s) = 8 π2 γ0 R2
[

Φb(
√

sR)
]2

with

Φb(x) =
x

2

∞
∑

p=1

1

p + b + 1

x2p

(p − 1)! (p + 1)!

In particular at b = 1 (corresponding to ε2 = 0) one has Φ1(x) = I3(x) (the third

Bessel function). In this case

W2(s) = 2 π2 γ0 `2
c

[

I3

(√
s `c

2

)]2

At
√

s`c � 1 (at any b) W2 ∝ γ0 exp(
√

s`c) — the known semiclassical behavior

— tunneling at energy E =
√

s rather than at E = 0.



• Metastable wall decay

Spontaneous:

γ
(0)
W =

C
ε7/3

exp

(

−16 π σ3
R

3 ε2

)

σR - renormalized tension of the boundary.

Thermal:

Long expression (Monin, MBV ‘09). At low T reduces to

γW (T ) =
[

1 + 12 (d − 3) ζ2(5) (RW T )10 + . . .
]

γ
(0)
W

with RW = 2σ/ε.

Stimulated by collisions of Goldsotone bosons:

Effective length λ (a 2+1 dim analog of cross section): λ(s) with

s = 2ω1ω2 (1 + cos θ).

The T 10 thermal behavior corresponds to low energy s3 behavior of λ:

λ =
d − 3

5
π2 γ

(0)
W s3 R10

W + . . .

At
√

sRW � 1 reduces to

λ ∼ exp

(

−16 π σ3

3 ε2
+ 4

√
s

σ

ε

)



• Schwinger pair creation

-
~E

`
u u

e− e+

Work = eE ` ⇒ critical distance `c = 2m/(eE). Similar to string break.

Tunneling at ` < `c. (Fritz Sauter 1929)

Γ

V
=

(eE)2

4π3
exp

(

−π m2

eE

)

(Schwinger 1951)

Ecrit ∼ m2/e ∼ 10(16) V/cm. People discuss approaching (within a factor of

10−3?) such field strength by colliding femtosecond pulses from lasers.



• Recently suggested (Gies, Dunne, Schutzhold ‘08 - ‘09) that and additional

photon beam should stimulate pair creation (effectively lower the barrier).

Can be viewed as attenuation of the photon beam intensity ∝ exp(−κ L) over

length L.

κ = − 1

ω
ImΠ

Π - vacuum polarization in external field (π(k) = ImΠ|k2=0 6= 0).

Π is known in a complicated integral form (Dittrich & Gies 2000). A

semiclassical calculation of κ is much simpler.

ImΠ depends on k⊥ = ω sin θ (due to the Lorentz invariance of the bounce in

(t,x)). The relevant combination, Keldysh parameter, γθ = ω sin θ m/(eE).

ω/m � 1, but ωR = ωm/(eE) arbitrary.

Separate behavior for different polarization of the photon w.r.t. ~E: π‖, π⊥.



• Consider the Schwinger process in a thermal bath

and consider the effect of the interaction of the current in the loop(s).

Type (a): self interaction — T independent rad. correction to the rate

∆S = −πα (Affleck, Alvarez, Manton 1982).

Type (b): thermal effect. (A sophomore exercise in interaction of currents). ∆S

per period:

−e2

2

+∞
∑

n=1





1 − 2(RT/n)2

√

1 − (2 RT/n)2
− 1



 = −e2

2

∞
∑

p=2

22p−1(RT )2p (p − 1) Γ(p − 1/2)√
π Γ(p + 1)

ζ(2p)

Thermal factor in the rate: exp(−∆S) = 1 − ∆S + . . .

Aµ is in the (t,x) plane ⇒ only the parallel polarization is relevant.



Thermal effect = the effect of photons in the bath. In the order e2 one photon

contribution = Γ1γ = (−∆S) Γ.

Write general expression for κ‖ as an expansion

κ‖(~k) =
1

ω

∞
∑

p=2

Cp(ω sin θ)2p−2

Then

Γ1γ

V
=
∫ d3 k

(2π)3

κ‖(~k)

eω/T − 1
=

∞
∑

p=2

Cp
2

(2π)2
T 2n Γ(2p)

√
πΓ(p)

Γ(p + 1/2)
ζ(2p)

Compare with the T expansion for ∆S and find the coefficients Cp.

κ‖(~k) =
2α m2

ω
exp

(

−π m2

eE

)

∞
∑

n=1

Γ(n + 1/2)√
π (n − 1)! n! (n + 1)!

γ2n
θ

=
2α m2

ω
exp

(

−π m2

eE

)

[I1(γθ)]
2

I1 - Bessel.



• Alternative calculation. Semiclassical Π(k).

Euclidean Π:

Πµν(x) = 〈jµ(x)jν(0)〉
Effective action S[γ] for electron on trajectory γ (Xµ(s)):

S =
∮

γ

(

m
√

Ẋ2
µ − eAext

µ Ẋµ

)

ds

πµν(x) ≡ ImΠµν(x) = −(eE)3

8π3
exp

[

−πm2

eE

]

∫

〈jµ(x)jν(0)〉xB
d4xB

xB - position of the bounce, and

jγ
µ(x) = e

∮

γ
Ẋµ(s)δ4(x − X(s)) ds



π‖ :

Currents on the stationary trajectory: only ja with a = 0, 1.

ja(x) = e
∮

Ẋa(s) δ4(x − X(s)) ds = ena(θ)δ(r − R)δ(y)δ(z)

na - tangential unit vector to a circle, ra = (t, x).

∫

d4xB jB
a (x)jB

b (0) = e2 4R2rarb − δabr
4

r3
√

4R2 − r2
θ(2R − r) δ(y)δ(z)

πab(q) =
∫

d4x πab(x) eiqx = −2αm2I2
1

(

√

−q2 R
)

(

δab −
qaqb

q2

)

exp

(

−πm2

eE

)

q2 = q2
0 + q2

1 ⇒ in Minkowski −q2 → ω2 − k2
‖ = k2

⊥ = ω2 sin2 θ.



π⊥ :

Fluctuations of the trajectory in ⊥ direction: Xµ(s) = Xa(s) + ξµ(s).

t

x

z

Standard Gaussian integral:

Π⊥ = 〈j3(x)j3(0)〉 = e2
∫

Dξ ds1ds2ξ̇
B
3 (s1)ξ̇

B
3 (s2)δ

4
(

x − XB(s1)
)

δ4
(

XB(s2)
)

e−SB−δS[ξ]

Result

π⊥ = −α

π
eE

(

1 − I2
0 (γθ)

)

exp

[

−πm2

eE

]

π⊥/π‖ ∼ eE/m2.



• Additional contribution to π⊥: πm
⊥ from the magnetic moment.

Suppressed by ω2/m2 rather than eE/m2.

Magnetic moment interaction (Lorentz generalization of −~µ · ~B):

Lint =
1

4m
εµνλσFµνfλj

γ
σ → − 1

2m
Aν∂µεµνλσfλj

γ
σ

fµ - Lorentz boost of unit vector in the direction of e polarization.

“Magnetic” current: jm
ν = − 1

2m
εµνλσfλ ∂µj

γ
σ .

〈jm
ν (x)jm

ρ (0)〉 =
1

4m2
εµνλσ fλ εχρξτ fξ ∂µ ∂χ 〈jγ

σ(x)jγ
τ (0)〉

Result:

πm
⊥ =

1

2
(π22 + π33) = − 1

8m2
f2

µ q2π‖ = − 1

8m2
q2 π‖(q

2)



• High energy: ω sin θ not small compared to m.

Lorentz boost in the direction of ~E, so that k = (ω sin θ, 0, 0, ω sin θ).

The energy ω sin θ is transferred to tunneling - lowers the barrier.

The momentum conservation: p⊥(e+) + p⊥(e−) = ω sin θ - increases the barrier.

Euclidean space trajectory gets ‘tilted’. Time duration T; z ‘duration’: Z.

t

x

z

ω sin θ

2χ

Action to extremize (ϕ - polar angle in the (t,x) projection of the loop):

S = m
∫

√

x′2
µdϕ − e

∫

Aµx
′
µdϕ − T ω sin θ + Z ω sin θ

x′ = dx/dϕ. Result: π‖,⊥ ∼

exp

[

γθ −
(

2m2

eE
+

eE

2m2
γ2

θ

)

arctan
2m2

eE γθ

]

= exp

{

−2m2

eE

[

(1 + x2) arctan
1

x
− x

]

}

x = ω sin θ/(2m). Need x ∼ m2/(eE) to remove the suppression.



• Main lesson:

Extracting the probabilities of multiparticle (2+) processes from the thermal rate

looks a lot simpler than calculating multipoint (4+) correlators.

For a one-particle-induced rate both approaches look workable. The direct one

possibly allows for some extra features.


