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Problems in ”standard” cosmology

• Horizon problem, flatness problem, relic problem,...
→ Inflation

• Missing matter
→ Dark matter

• Accelerated expansion of the universe
→ Dark energy

• Cosmological constant problem (from qft)
→ ?

There is enough motivation to modify something!
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Guiding idea

• In the SM and GR there are many different mass scales:
• mHiggs , 〈h〉
• MP ∼ 1√

G
• ΛQCD , ...

• Question 1: Can we construct a theory in which all these
scales are related, induced dynamically?

• Question 2: Is it possible to construct a theory that
doesn’t contain such absolute scales at all?
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Construction of the model

Introduce a new scalar field χ.

LνMSM =LSM[M→0] + LG +
1

2
(∂µχ)2 − V (ϕ, χ)

+
(
N̄I iγ

µ∂µNI − hαI L̄αNI ϕ̃− fI N̄I
c
NIχ+ h.c.

)
,

V (ϕ, χ) = λ

(
ϕ†ϕ− 1

2
ζ2χ2

)2

+ β(χ2 − χ2
0)2 ,

LG = −
(
ξχχ

2 + 2ξhϕ
†ϕ
) R

2
.

χ0 6= 0, β > 0 ⇒ Induced gravity (Zee (1979), Smolin (1979))
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The case for scale invariance

• The model is somewhat artificial.
• Terms m2

Hϕ
†ϕ, mNN̄I

c
NI and M2

P are absent.
• Terms χ2

0χ
2 and χ4

0 are present.

• Try to construct a theory with no dimensional constants
at all → χ0 = 0.

• No dimensional parameters → dilatational symmetry

φ(x)→ σnφ(σx)

gµν(x)→ gµν(σx)
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The case for a flat direction

V (ϕ, χ) =
λ

4

(
h2 − ζ2χ2

)2
+ βχ4

• The ground state should break the dilatational symmetry.

• ”Only possibility” is to have a flat direction → β = 0.

V (ϕ, χ) =
λ

4

(
h2 − ζ2χ2

)2

• Ground state is infinitely degenerate.
• Physics doesn’t depend on field values at the minimum.
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Interim balance

Model based on scale invariance + flat direction

• Horizon problem, flatness problem, monopole problem,...
→ Inflation due to roll down to the potential minimum

• Missing matter
→ Dark matter given by sterile neutrinos

• Cosmological constant problem
→ Λ = 0, due to scale invariance and flat direction

• Accelerated expansion of the universe
→ Problem is not adressed by this model!
We need another ingredient.
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Unimodular gravity

• UG mainly appeared in the context of the cosmological
constant problem

L =
√
−g(−M2

PR + Λ)

• Idea is to constrain variables by det(gµν) = −1

L → LUG = −M2
P R̂ + Λ

• Equations of motion are

R̂µν −
1

4
R̂ĝµν = 0

→ Λ doesn’t appear.
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• But apply ∇̂µ to equations ⇒ ∂ν

(
R̂
4

)
= 0

⇒ R̂
4 = constant ≡ Λ0

• Reinsert this into equations to get

R̂µν −
1

2
R̂ĝµν + Λ0ĝµν = 0

→ Integration constant acts as a cosmological constant.

• These are the equations for GR with a cosmological
constant Λ0 in the coordinate frame where det gµν = −1.

• Hence, the result

L̂ = −M2
P R̂ ↔ L =

√
−g(−M2

PR + Λ0)

(Van der Bij (1982), Zee (1985),...)
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UG plus other fields

• General result for UG in combination with
non-gravitational fields.

LUG = L(ĝµν , φ, ∂φ)↔ LGR =
√
−g(L(gµν , φ, ∂φ) + Λ0)

Result doesn’t depend on the nature of the fields and on
the way they couple to gravity.
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UG in our model

• Replace GR by UG, scalar and gravity parts become

LUG =− 1

2
(ξχχ

2 + ξhh2)R̂ +
1

2
(∂χ)2 +

1

2
(∂h)2

− V (h, χ)

• Theory is still scale invariant.

• Has the same classical solutions as

LGR =
√
−g
(
− 1

2
(ξχχ

2 + ξhh2)R +
1

2
(∂χ)2 +

1

2
(∂h)2

− V (h, χ)− Λ0

)
Λ0 depends on initial conditions and is not really part of
the action.

• Classically it’s enough to analyse LGR for different values
of Λ0.
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UG in our model

• Change to the Einstein frame

g̃µν = (ξχχ
2 + ξhh2)M−2

P gµν

• Action in Einstein frame

LE =
√
−g̃

(
−M2

P

R̃

2
+ K − UE (h, χ)

)

UE (h, χ) =
M4

P

(ξχχ2 + ξhh2)2
(V (h, χ) + Λ0)

K = kinetic term

• K is non diagonal, but positive definite for ξχ, ξh > 0.
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UE (h, χ) =
M4

P
(ξχχ2+ξhh2)2

(
λ
4

(
h2 − ζ2χ2

)2
+ Λ0

)

Λ0 < 0 Λ0 > 0

We will suppose that 0 < Λ0<∼M4
P
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Inflation and reheating

• UE (h, χ) =
M4

P
(ξχχ2+ξhh2)2 (V (h, χ) + Λ0)

• Chaotic inflation → initially χ and h away from valley and
χ, h > MP → First term in potential dominates.

• For ξh � 1,ξχ � 1 and χ ∼ h dynamics dominated by h
→ χ ∼ const.

• Inflation due to roll down of h into the valley.

• Reheating due to oscillations of h in the valley.

• ξh ∼ 700− 20000 produces correct perturbation spectrum
and a reheating temperature of Trh ∼ 1013GeV .
(Bezrukov and Shaposhnikov)
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Late time evolution

• Fields are trapped in the valley h ∼ ζχ.
→ Second term of potential dominates.

• UE (h, χ) ∼ M4
P

Λ0
(ξχχ2+ξhh2)2

• Good phenomenology can be obtained for
λ ∼ 1 and ζ ≪ 1 ⇒ h ≪ χ.

• Define dilaton field η along the valley and φ perpendicular
to it.

• Equations of motion

η̈ + 3H η̇ +
dUη

dη
≈ 0

φ̈+ 3Hφ̇+ m2
hφ ≈ 0
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Late time evolution

The late time evolution of the universe is described by

η̈ + 3H η̇ +
dUη

dη
= 0

H2 =
1

3M2
P

(
1

2
η̇2 + Uη +

Cγ

a4
+

CM

a3

)
Uη =

Λ0

ξ2
χ

exp

(
− γη

MP

)
γ =

4√
6 + 1

ξχ

→ well-studied model (quintessence field,...)

• γ >
√

3 → scaling solutions, no dark energy

• γ <
√

3 → no scaling solutions, Ωη keeps growing
(Wetterich (1988), Ferreira and Joyce (1998))
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Dark energy

• For γ <
√

3 thawing quintessence (Ferreira and Joyce
(1998), Caldwell(2005)) → dark energy

• Field frozen by Hubble friction at early times, then slow
roll-down

• Result for this scenario (Ferreira and Joyce (1998))

1 + ω =
γ2

3

[
1√
Ωη

− 1

2

(
1

Ωη
− 1

)
log

1 +
√

Ωη

1−
√

Ωη

]2

• Identify Ωη = ΩDE

• WMAP data → −0.04 < 1 + ω < 0.2 and ΩDE ≈ 0.73
⇒ γ < 1.11 <

√
3 (ok for thawing scenario)

• 0 < ξχ < 0.16

• Fate of the universe in this model

Ωη → 1, ω → γ2

3 − 1, a(t) ∝ t
2

γ2

(Ferreira, Joyce)
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Interim balance

Model based on scale invariance + flat direction + UG

• Horizon problem, flatness problem, relic problem,...
→ Inflation due to roll down to the potential minimum

• Missing matter
→ Dark matter given by sterile neutrinos

• Cosmological constant problem
→ Λ = 0 since we require a flat direction

• Accelerated expansion of the universe
→ Dark energy due to UG with Λ0 > 0
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Quantum aspects

• Results remain valid on quantum level if
• Quantum theory is exactly scale invariant
• Dilaton remains exactly massless (flat direction)
• Initial conditions of UG give dark energy

• But, in all common theories dilatation symmetry is
anomalous
→ ∂µJµ ∝ β(g)G a

αβGαβ a

• Can we construct a scale invariant quantum theory?
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Standard renormalization

• Theory is continued to d = 4− 2ε dimensions

S =

∫
dxd

{
1

2

[
(∂µχ)2 + (∂µh)2

]
− λ

(
h2 − ζ2χ2

)2
}

• Fields have mass dimension 1− ε
• λ has dimension 2ε
• Action is no longer scale invariant.

• Define finite dimensionless coupling λR

λ = µ2ε

[
λR +

∞∑
n=0

an

εn

]
µ has dimensions of mass

• Fix an such that renormalized Green’s functions are finite
to all orders of perturbation theory.
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Standard renormalization

• One loop effective potential along the flat direction in MS
scheme

V1(χ) =
m4

H(χ)

64π2

[
log

m2
H(χ)

µ2
− 3

2

]
m2

H(χ) = 2λζ2(1 + ζ2)χ2

• Dilatation anomaly appears because regularization breaks
the symmetry.
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Scale invariant procedure

• Continuation to d-dimensions in a scale invariant way.

• Instead of µ introduce a combination of the fields with the
correct mass dimension

µ2ε →
(
ξχχ

2 + ξhh2
) ε

1−ε
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One-loop effective potential

• Denote ω2 = ξχχ
2 + ξhh2.

• Write the classical potential in d dimensions

U =
λR

4

[
ω2
] ε

1−ε
[
h2 − ζ2

Rχ
2
]2

• Introduce counter terms

Ucc =
[
ω2
] ε

1−ε

[
Ah2χ2

(
1

ε̄
+ a

)
+

Bχ4

(
1

ε̄
+ b

)
+ Ch4

(
1

ε̄
+ c

)]

• We have parameters A,B,C , a, b, c .
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One-loop effective potential

• A,B,C are chosen to cancel the divergences.

• One loop correction is automatically scale invariant.

• U1(h, χ) does not automatically have a flat direction.

• Fix b, c such that W1(ζR) = W ′
1(ζR) = 0.

→ Flat direction
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Effective Higgs potential

One loop potential for χ = χ0, v ≡ ζRχ0 and ζR ≪ 1

U1 =
m4(h)

64π2

[
log

m2(h)

v 2
+O

(
ζ2
R

)]
+

λ2
R

64π2

[
C0v 4 + C2v 2h2 + C4h4

]
+O

(
h6

χ2
0

)
where m2(h) = λR(3h2 − v 2).

• First term is standard effective potential for the theory
with h only and the potential U = λ

4

(
h2 − ζ2χ2

0

)2
.

• Additional terms give redefinitions of coupling, mass and
vacuum energy.

• Corrections to the Higgs mass proportional to v 2 ∝ ζ2
Rχ

2
0

→ No problem of stability of the Higgs mass.
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Running coupling

• Higgs-Higgs scattering at v �
√

s � χ0 (ζR ≪ 1)

Γ4 = λR +
9λ2

R

64π2

[
log

(
s

ξχχ2
0

)
+ const

]
+O

(
ζ2
R

)
• Coupling runs in standard way.
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Conclusions

• Constructed a scale invariant cosmological model.
• All Scales are generated dynamically.
• Inflation similar to Higgs inflation.
• Sterile Neutrino as DM candidate.
• Dark energy due to unimodular gravity.
• ω > −1

• Constructed a class of scale invariant quantum theories.
• Dilatation symmetry is spontaneously broken.
• Standard running of coupling constants.
• No problem of stability of the Higgs mass.

• Classical results could remain valid in full quantum theory.
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Some remaining tasks and
questions

• Detailed analysis of inflation.

• The model doesn’t adress the question about the big
difference between the electroweak and the Planck scale.

• Can one do an experiment to detect effects of the dilaton?

• Are the scale invariant theories unitary, ... ?

Thank You.
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