Condensates, Correlators and Holography
 Andrew V. ZAYAKIN

LMU-Munich

Plan of the talk

- AdS/CFT Basics
- Symmetries: Break or Save?
- QCD Models: bottom-up and top-down models
- Holography and Condensates:
- Kinetic coefficients
- Two-point correlators

My talk is intended to serve as a pedagogical introduction to the talks by Peter Kopnin and Alexander Krikun in this session as well.

The Conjecture

The AdS/CFT or Maldacena conjecture states the equivalence (also referred to as duality) between the following theories Polyakov 1998, Maldacena 1998, Witten 1998:

- Type IIB superstring theory on $\operatorname{AdS} S_{5} \times S^{5}$, where both $A d S_{5}$ and S^{5} have the same radius R, the 5 -form F_{5}^{+}has integer flux $N_{c}=\int_{S^{5}} F_{5}^{+}$, string coupling is g_{s}
- SYM in 4 dimensions, with gauge group $S U\left(N_{c}\right)$ and Yang-Mills coupling $g_{Y M}$ in its superconformal phase
with the following identification of the parameters of the theory

$$
\begin{gathered}
g_{s}=g_{Y M}^{2} \\
R^{4}=4 \pi g_{s} N_{c} \alpha^{\prime 2}
\end{gathered}
$$

and the axion expectation value in $A d S$ equals the SYM instanton angle

$$
\langle C\rangle=\theta_{I}
$$

Equivalence includes a precise map between the fields on the supergravity side and the local gauge invariant operators on the $\mathcal{N}=4$ SYM side.

A Cartoon of $A d S_{5} \times S^{5}$

Here we pictorially show what our geometry looks like:

The geometry of $A d S$ space can be described by the following embedding:

$$
-Y_{0}^{2}-Y_{1}^{2}+Y_{2}^{2}+Y_{3}^{2}+Y_{4}^{2}+Y_{5}^{2}=R^{2}
$$

thus a pseudo-orthogonal group $S O(2,4)$ with signature --++++ can act upon it.

Why Do We Need Such Geometry?

The geometry is designed in such a way that its isometry group would coincide with the internal and Lorentzian symmetry of the field theory [Maldacena 1998].

For review see D'Hoker, Freedman[2002], Gubser et al. [1999]. The AdS/CFT conjecture is:

$$
Z_{S Y M}[J]=Z_{\text {string }}[\Phi]
$$

where partition function $Z_{S Y M}[J]$ is calculated in presence of four-dimensional currents J, coupled to some operators O

$$
Z_{S Y M}[J] \equiv\left\langle e^{-\left(S+\sum J O_{J}\right)}\right\rangle
$$

and $Z_{\text {string }}\left[\Phi_{\partial A d S}\right]$, where the boundary value of each bulk field is related to the corresponding current

$$
\Phi_{\partial A d S}^{J} \sim J
$$

Some examples of correspondence:

- Dilaton field ϕ in supergravity is dual to operator $\operatorname{tr} F^{2}$ in SYM.
- Graviton field $h_{\mu \nu}$ is dual to energy-momentum current $T_{\mu \nu}$ in SYM.

Identification of Sources

In other words, the general case of a multiparticle correlator the Main Prescription is:if we have

$$
\begin{gathered}
S_{5 d} \text { - the five-dimensional action, } \\
\mathcal{O}_{i}(x) \text { - operators, } \\
\Phi_{i}(z, x) \text { - fields, } \\
\Phi_{\mathrm{c} i}(z, x) \text { are classical solutions for EOM on } \Phi_{i}(z, x) \\
\phi_{i}(z, x) \text { - fluctuations above them } \\
\int d^{4} x \sum_{i} \mathcal{O}_{i}(x) \phi_{i}(0, x) \text { - interaction term }
\end{gathered}
$$

then the multi-point correlator is

$$
\left\langle\mathcal{O}_{1}\left(x_{1}\right) \ldots \mathcal{O}_{n}\left(x_{n}\right)\right\rangle=\left.\frac{\delta}{\delta \phi_{1}\left(0, x_{1}\right)} \cdots \frac{\delta}{\delta \phi_{n}\left(0, x_{n}\right)} S_{5 d}\left[\Phi_{\mathrm{c} i}(z, x)+\phi_{i}(z, x)\right]\right|_{z \rightarrow 0, \phi_{i}(z, x)=0}
$$

This definition for correlator will be used here and in the talks by P.Kopnin and A.Krikun.

Examples in this Session

- Two-point functions $\left\langle\operatorname{tr} F^{2}(x) \operatorname{tr} F^{2}(0)\right\rangle$ in theories with condensates - my talk.
- One-point function of vector $U(1)$ current $\langle\vec{J}(\mu, B)\rangle$ - talk by P.Kopnin on chiral magnetic effect
- Four-point correlator of vector current - talk by A.Krikun.

(Non)-Normalizable Modes

- If bulk field $\phi_{\Delta}(z)$ is the counterpart of an operator $\operatorname{dim}(\hat{O})=\Delta$ then the mode $\phi \sim z^{4-\Delta}$ is known as the "non-normalizable" mode, the mode $\phi \sim z^{\Delta}$ as the "normalizable" mode. "Normalizability" is understood as convergence of action in the UV.
- Normalizable mode in a classical solution is useful for calculating one-point functions (condensates).
- Non-normalizable modes in Green functions are useful for all higher-order functions.

Example: ϕ is the dilaton, $e^{-\phi}$ corresponds to gluon field strength $\operatorname{tr} G^{2}$. The dual action is

$$
S=\left.\int d^{4} x \int \frac{d z}{z^{3}} \phi^{\prime 2} \stackrel{\text { EOM }}{=} \frac{1}{z^{3}} \phi \phi^{\prime}\right|_{z \rightarrow 0}
$$

let the dilaton classical solution be $e^{-\phi_{c}}=a+b z^{4}$. One-particle correlator is

$$
\left\langle\operatorname{tr} G^{2}\right\rangle=\frac{\delta S}{\delta \phi}=K(z) \frac{1}{z^{3}} \partial_{z} \phi_{c}=\left(a+b z^{4}\right) \cdot \frac{1}{z^{3}} \cdot 4 b z^{3}=4 b .
$$

Here $K(z)$ is the field ϕ bulk-to-boundary propagator; since it is normalized to $K(z)=1$ we don't need to know it. If we need $\left\langle\operatorname{tr} G^{2}(x) \operatorname{tr} G^{2}(0)\right\rangle$, we have to write down $\left\langle\operatorname{tr} G^{2}(x) \operatorname{tr} G^{2}(0)\right\rangle=\left.K(x, z) \partial_{z} K(x, z)\right|_{z \rightarrow 0}$, where the normalizable mode cannot enter since ϕ_{c} is gone from this expression. In other words, normalizable mode is the value of the operator VEV, whereas non-normalizable mode is the source of the operator.

Realistic Model-Building

The original theory is $\mathcal{N}=4 \mathrm{SYM}$ and is therefore completely unrealistic. How to cure that?

- Introduce condensates. Then you will end up in the same theory but over a different vacuum.
- Deform the metric. This might kill the conformal symmetry (e.g. add a logarithmic term to the dilaton). By deformations of the background you can obtain an $\mathcal{N}=2, \mathcal{N}=1$ or $\mathcal{N}=0$ theories.
- Add some matter in fundamental reps (action on branes). This will cut the supersymmetries by half.
- Make the matter massive.
- Switch on the temperature. At high temperatures all theories are approximately conformal, thus comparison between them makes more sense.

AdS/CFT with flavours

For review see: Aharony, [2002]; Mateos [2007]. General idea of introducing flavour into AdS/CFT is illustrated in the two pictures below:

(a)

(b)

We require $N_{c} \gg N_{f}$, for otherwise the stack of $N_{f} D 7$ branes will deform the metric essentially. This is known as "quenched approximation".

Flavoured Models on the Market

- Top-down models:
- Sakai-Sugimoto: embedding of one/two D8 branes into metric, generated by D4 metric.
- D3/D7: embedding of one D7 brane into metric, generated by D3 brane.
- Bottom-up models: (AdS/QCD) five-dimensional action with adjoint degrees of freedom (scalars, pseudoscalars, vectors, pseudovectors and dilaton):
- Soft-wall
- Hard-wall

Sakai-Sugimoto Model

There are $N_{c} D 4$ branes, compactified on a circle of radius R_{4} [Sakai,Sugimoto 2005]. A pack of $N_{f} D 8$ branes are located in a point on this circle, as well as a pack of $\overline{D 8}$ branes in an opposite point. The metric of the background is given by

$$
d s^{2}=u^{\frac{3}{2}}\left(-d x_{0}^{2}+d \mathbf{x}^{2}+f(u) d x^{4}\right)+u^{-\frac{3}{2}}\left(\frac{d u^{2}}{f(u)}+u^{2} d \Omega_{4}^{2}\right)
$$

Confined, chiral symmetry broken
(b)

Decontrinea, chiral symmetry broken
(c)

Deconfined, chiral symmetry restored

Phase Transitions

Curvature of $D 8$ brane is an order parameter for the chiral symmetry transition in the deconfined phase. At non-zero temperature there are two possible backgrounds. For $T<\frac{1}{2 \pi R_{4}}$ the dominant background is given by (a), wheer gluons are confinend and chiral symmetry broken. For $T>\frac{1}{2 \pi R_{4}}$ the dominant background is a cylinder, and the two possible embeddings of the $D 8$ branes are shown in fig. (b) and (c). For $T<0.154 / L$, where L is asymptotic distance between $D 8$-ends, a U-shaped (b) embedding dominates. At larger temperatures, configuration (c) with noth chiral symmetry and confinement broken dominates.

Confined, chiral symmetry broken
(b)

Decontınea, chiral symmetry broken
(c)

Deconfined, chiral symmetry restored

D3/D7 model

$D 7$ brane does not change the metric in the quenched approximation. The dynamics of the brane in an external electromagnetic field is described by a Dirac-Born-Infeld action

$$
S_{D 7}=\mu_{7} \int d^{8} \xi \sqrt{\operatorname{det}_{\alpha, \beta}\left(2 \pi \alpha^{\prime} B_{\alpha \beta}+g_{\mu \nu} \frac{\partial X^{\mu}}{\partial \xi^{\alpha}} \frac{\partial X^{\nu}}{\partial \xi^{\beta}}\right)}+\int d^{8} \xi C_{4} \wedge F \wedge B
$$

The $D 3 / D 7$ model is advantageous for making it possible to introduce $\langle\bar{\psi} \psi\rangle$ condensate into the theory together with quark mass via brane embedding function $w(\rho)$:

$$
X^{8}+i X^{9}=w(\rho) e^{i \phi},
$$

where ρ is the holographic coordinate in the sense of the metric

$$
\begin{gathered}
d s^{2}=\frac{d r^{2}}{r^{2}}+r^{2} d x_{4}^{2}+R^{2} d \Omega_{5}^{2}, \rho^{2}=r^{2}-\left(X^{8}\right)^{2}-\left(X^{9}\right)^{2}, \text { here } \\
\left.w(\rho)\right|_{\rho \rightarrow \infty}=a+\frac{b}{\rho^{2}},
\end{gathered}
$$

where mass and condensate are respectively

$$
m=a, \quad\langle\bar{\psi} \psi\rangle=2 b
$$

D3-D7 Spectrum

Shown is the schematic geometry of $D 3 / D 7$ model. The coordinates 8,9 describe the chiral dynamics of the model.

7-7 $\cup\left(N_{f}\right)$ theory
3-7 chiral multiplet \bar{Q} 7-3 chiral multiplet Q $3-3 N=4$ vector multiplet

AdS/QCD 5D models

Will be used as main calculation tool in the talks by A.Krikun and P.Kopnin. Basically there are two types of AdS/QCD models. They have the same action

$$
S=S_{Y M}[L]+S_{Y M}[R]+S_{C S}[L]-S_{C S}[R]+S_{s c}[L-R]
$$

$$
\begin{aligned}
S_{Y M}[A]= & -\frac{1}{8 g_{5}^{2}} \int e^{-\phi} F \wedge * F, \\
S_{C S}[A]= & -\frac{N_{c}}{24 \pi^{2}} \int A \wedge F \wedge F-\frac{1}{2} A \wedge A \wedge A \wedge F+\frac{1}{10} A \wedge A \wedge A \wedge A \wedge A, \\
S_{s c}[L-R]= & \int d^{4} x \frac{d z}{z^{3}} \int e^{-\phi}\left[\left(D^{\mu} X\right)^{\dagger} D^{\mu} X+\frac{3}{z^{5}}|X|^{2}\right]+ \\
& +\frac{N_{c}}{24 \pi^{2}} \operatorname{tr} \int d^{4} x d z \partial_{\mu} A_{\nu} \partial_{\lambda} A_{\rho} \frac{\partial_{\alpha} \pi}{f_{\pi}} \epsilon^{\mu \nu \lambda \rho \alpha}
\end{aligned}
$$

- Hard-wall model: in the IR a boundary is introduced at some $z=z_{m}$, where Dirichlet boundary conditions are imposed.
- Soft-wall model: a non-trivial dilaton field $\phi=\lambda z^{2}$ is switched on; at $z \rightarrow \infty$ finiteness of action is required.

Liu-Tseytlin-Ghoroku Background

Consider now the following self-dual finite-temperature background: dilaton is

$$
e^{\phi}=1+\frac{q}{\pi^{4} T^{4}} \log \left(\frac{1}{1-r^{4} \pi^{4} T^{4}}\right),
$$

axion is related to dilaton in the same way as in zero-temperature Liu-Tseytlin background

$$
C=e^{-\phi}-1,
$$

and the metric is

$$
d s^{2}=R^{2}\left(\frac{1-r^{4} \pi^{4} T^{4}}{r^{2}} d t^{2}+\frac{d x_{3}^{2}}{r^{2}}+\frac{d r^{2}}{r^{2}\left(1-r^{4} \pi^{4} T^{4}\right)}\right)+R^{2} d \Omega_{5}^{2},
$$

Physics Behind

This background is very interesting for modelling conformal $\mathcal{N}=4$ theory with condensates

$$
\left\langle\operatorname{tr} F^{+2}\right\rangle=q, \quad\left\langle\operatorname{tr} F^{-2}\right\rangle=0
$$

Thus this is "the softest possible" non-trivial symmetry breaking: we are just moved in a different self-dual vacuum, yet the theory is still conformal, its coupling being constant in the UV and β-function zero. Yet its IR properties are different from those of SYM over trivial vacuum; the coupling constant has got an IR singularity. The bulk theory action is

$$
S=\int d^{10} x \sqrt{g}\left(R-\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} e^{2 \phi}\left(\partial_{\mu} C\right)^{2}-\frac{1}{2}\left|F_{5}\right|^{2}\right)
$$

We shall calculate two-point correlation functions in this background, establish dilatation Ward identities, and calculate some of the kinetic coefficients for a theory holographically dual to this background.

Field-operator correspondence

Fluctuations of the fields on the bulk couple to the operators $\operatorname{tr} F^{2}, \operatorname{tr} F \tilde{F}, T_{\mu \nu}$ on the boundary. The gauge field part of the boundary action is normalized as

$$
S_{4 d}=\frac{1}{2 g_{Y M}^{2}} \int d^{4} x\left(\operatorname{tr} F^{2}-\frac{i \theta}{16 \pi^{2}} \operatorname{tr} F \tilde{F},\right)
$$

with non-trivial condensates switched on:

$$
\operatorname{tr} F^{2}=\operatorname{tr} F \tilde{F}=N_{c} \frac{q}{\pi^{2}}
$$

Fluctuation terms are defined as $\quad \phi=\phi_{c}+\varphi, \quad C=C_{0}+\xi, \quad g=g_{0 \mu \nu}+h_{\mu \nu} . \quad$ The interaction term is

$$
S_{\text {int }}=\int d^{4} x\left[\frac{1}{2} T_{\mu \nu} \bar{h}^{\mu \nu}-e^{-\phi_{c}}\left(\bar{\varphi} \operatorname{tr} F^{2}+\bar{\xi} \operatorname{tr} F \tilde{F}\right)\right],
$$

which, after introduction of $F^{ \pm}=\frac{F \pm \tilde{F}}{2}, \quad \eta^{ \pm}=\eta \pm \xi$, becomes

$$
S_{\text {int }}=\int d^{4} x\left[\frac{1}{2} T_{\mu \nu} \bar{h}^{\mu \nu}-e^{-\phi_{c}}\left(\bar{\eta}^{+} \operatorname{tr} F^{+2}+\bar{\eta}^{-} \operatorname{tr} F^{-2}\right)\right] .
$$

Fluctuations of fields

Choose the gauge $h_{5 \mu}=0, k^{\mu} h_{\mu \nu}=0, u^{\mu} h_{\mu \nu}=0$, where $k=(\omega, 0,0, k)$, constant vector u is $u=(1,0,0,0)$. We work with five fields:

$$
\bar{\Phi}_{i}=\left(\eta^{+}, \bar{h}_{11}+\bar{h}_{22}, \bar{h}_{11}-\bar{h}_{22}, \bar{h}_{12}, \eta^{-}\right),
$$

coupled to operators
$O_{i}=\left(\frac{1}{g_{s}^{2}} \operatorname{tr} F^{+2}, \frac{1}{8} T_{\mu}^{\mu}, \frac{3}{8} T_{11}-\frac{1}{8} T_{22}-\frac{1}{8} T_{33}-\frac{1}{8} T_{00}, T_{x y}, \frac{1}{g_{s}^{2}} \operatorname{tr} F^{-2}\right)$
and what we calculate is the matrix of correlators

$$
M_{i j}=\left.\left\langle O_{i} O_{j}\right\rangle\right|_{(p)}=\frac{\delta^{2} S_{\text {full }}}{\delta \bar{\Phi}_{i}(p) \delta \bar{\Phi}_{j}(-p)} .
$$

Additional action terms

The standard wisdom: take the action of the type

$$
S_{b u l k}=\int d^{4} x d z \phi^{\prime 2} g^{z z} \sqrt{g}
$$

and project onto the boundary as

$$
S_{\text {boundary }}=\left.\int d^{4} x \phi \phi^{\prime} g^{z z} \sqrt{g}\right|_{z \rightarrow 0}
$$

In terms of bulk-to-boundary Green functions $G(x, z)$ correlator is $\langle O(x) O(0)\rangle=\left.G(x, z) \partial_{z} G(0, z)\right|_{z=0}$. In our case two difficulties arise:

- The correct boundary term should be supplemented by the Gibbons-Hawking term, which makes globally diffeomorphism invariant the theory defined on manifold with boundary.
- The bilinear action of fields' fluctuations is non-diagonal, this means that we shall be dealing with a matrix of Green functions rather than with separately-treatable ones.

Mixing of modes

Let us define Green function matrix. Namely, if field Φ_{i} has a bulk solution $\Phi_{i}(z)$, satisfying $\left.z^{\delta_{i}} \Phi_{i}(z)\right|_{z \rightarrow 0}=\bar{\Phi}_{i}$, (for our fields $\delta_{i}=(0,0,2,2,0)$) then by definition

$$
K_{i j}(z)=\frac{\delta \Phi_{j}(z)}{\delta \bar{\Phi}_{i}}
$$

We establish the correct boundary term. The full action of our bulk theory is actually

$$
S_{f u l l}=S_{10 d}+S_{d i v}+S_{4 d}
$$

where the Gibbons-Hawking term

$$
S_{4 d}=-2 \partial_{z} \int d^{4} x \sqrt{-g_{4}}-c \int d^{4} x \sqrt{-g_{4}},
$$

here $g_{4}=\operatorname{det}\left(g_{i j}\right), i=0,1,2,3$. Another piece is the full divergence term

$$
S_{d i v}=\frac{3}{2} \partial_{\mu} W^{\mu}
$$

the vector W^{μ} found in textbooks is $W^{\mu}=\sqrt{-g}\left(g^{\alpha \beta} \delta \Gamma_{\alpha \beta}^{\mu}-g^{\alpha \mu} \delta \Gamma_{\alpha \beta}^{\beta}\right)$, where $\delta \Gamma_{\alpha \beta}^{\mu}=\Gamma_{\alpha \beta}^{\mu}(g+h)-\Gamma_{\alpha \beta}^{\mu}(g)$.

Second variation of action

Consider now the second variation of these actions in fluctuation fields; denoted these second-order expressions as $S_{10 d}^{(2)}, S_{d i v}^{(2)}, S_{4 d}^{(2)}$ respectively. They contain both fields and their derivatives. The two-point correlator is then

$$
\left\langle O_{i} O_{j}\right\rangle=K_{i k} \frac{\partial^{2} \mathcal{L}}{\partial \Phi_{k}^{\prime} \partial \Phi_{m}^{\prime}} \partial_{z} K_{j m}+K_{i k} \frac{\partial^{2} S_{4 d}^{(2)}}{\partial \Phi_{k} \partial \Phi_{m}^{\prime}} \partial_{z} K_{j m}+K_{i k} \frac{\partial^{2} S_{4 d}^{(2)}}{\partial \Phi_{k} \partial \Phi_{m}} K_{j m}
$$

here \mathcal{L} is Lagrangian density of the bulk action:

$$
S_{b u l k}=S_{10 d}^{(2)}+S_{d i v}^{(2)}=\int d z \mathcal{L}
$$

The above structure is obvious, since the bulk action is

$$
\delta^{2} S_{b u l k}=\frac{\delta \Phi_{m}(z)}{\delta \bar{\Phi}_{j}} \frac{\delta^{2} S_{b u l k}}{\delta \Phi_{m} \delta \Phi_{k}} \frac{\delta \Phi_{k}(z)}{\delta \bar{\Phi}_{i}}, \text { where }
$$

$\delta^{2} S_{b u l k}=\int d z\left[\frac{\partial^{2} L}{\partial \Phi_{m}^{\prime} \partial \Phi_{k}^{\prime}} \partial_{z} \delta \Phi_{m} \partial_{z} \delta \Phi_{k}+\frac{\partial^{2} L}{\partial \Phi_{m} \partial \Phi_{k}^{\prime}} \delta \Phi_{m} \partial_{z} \delta \Phi_{k}+\frac{\partial^{2} L}{\partial \Phi_{m} \partial \Phi_{k}} \delta \Phi_{m} \delta \Phi_{k}\right]$.

How to vary the action

Taking into account that Green functions of field fluctuations by definition satisfy equations:

$$
\left[-\partial_{z} \frac{\partial^{2} L}{\partial \Phi_{m}^{\prime} \partial \Phi_{k}^{\prime}} \partial_{z}+\frac{\partial^{2} L}{\partial \Phi_{m} \partial \Phi_{k}^{\prime}} \partial_{z}+\frac{\partial^{2} L}{\partial \Phi_{m} \partial \Phi_{k}}\right] \delta \Phi_{k}(z)=0
$$

one sees that the only contribution of $S_{b u l k}$ into the correlator will be:

$$
\delta^{2} S_{b u l k}=\delta \Phi_{m}(z) \frac{\partial^{2} L}{\partial \Phi_{m}^{\prime} \partial \Phi_{k}^{\prime}} \partial_{z} \delta \Phi_{k}(z)
$$

Now remembering the definition of Green function matrix $K_{m j}=\frac{\delta \Phi_{m}(z)}{\delta \bar{\Phi}_{j}}$, we arrive exactly at previous slide. Hawking-Gibbons term contributes the following:

$$
\delta^{2} S_{4 d}=\frac{\partial^{2} S_{4 d}}{\partial \Phi_{m}^{\prime} \partial \Phi_{k}} \partial_{z} \delta \Phi_{m} \delta \Phi_{k}+\frac{\partial^{2} S_{4 d}}{\partial \Phi_{m} \partial \Phi_{k}} \delta \Phi_{m} \delta \Phi_{k}
$$

The action $S_{4 d}$ contains no more than one derivative term, which is due to normal differentiating of extrinsic curvature, thus $\frac{\partial^{2} L}{\partial \Phi^{\prime 2}}=0$.

Correlators at $\omega \neq 0$

At finite frequency ω the matrix of correlators becomes after some algebra:
$\left(\begin{array}{ccccc}-4 q & -2 q & 0 & 0 & -2 q+\frac{1}{8} \log (2 \epsilon \omega \\ -2 q & -\frac{1}{32} \log (2 \epsilon \omega) \omega^{4} & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{32} \log (2 \epsilon \omega) \omega^{4} & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{8} \log (2 \epsilon \omega) \omega^{4} & 0 \\ -2 q \frac{1}{8} \log (2 \epsilon \omega) \omega^{4} & 0 & 0 & 0 & 0\end{array}\right.$

One of the most interesting physical implication of this correlator matrix comes from the $\left\langle T_{x y} T_{x y}\right\rangle$ element. It is proportional to $\left.\frac{\eta}{s}\right|_{T=0}$, and here we observe its independence of q. This fact is not trivial from dimensional considerations, since we do possess another dimensionful parameter, ω.

Summary of results at $\omega \neq 0$

We write out the most interesting elements of correlator matrix we can establish low-energy theorems. After due normalization we have

$$
\begin{aligned}
\int d^{4} x\left\langle\frac{\operatorname{tr} F^{+2}}{g^{2}} T\right\rangle & =-4\left\langle\frac{\operatorname{tr} F^{+2}}{g^{2}}\right\rangle \\
\int d^{4} x\left\langle\frac{\operatorname{tr} F^{-2}}{g^{2}} T\right\rangle & =0 \\
\int d^{4} x\left\langle\frac{\operatorname{tr} F^{2}}{g^{2}} \frac{\operatorname{tr} F^{2}}{g^{2}}\right\rangle & =-\frac{1}{2} \frac{1}{4 \pi^{2}}\left\langle\frac{\operatorname{tr} F^{2}}{g^{2}}\right\rangle \\
\int d^{4} x\left\langle\frac{\operatorname{tr} F^{2}}{g^{2}} \frac{\operatorname{tr} F \tilde{F}}{g^{2}}\right\rangle & =-\frac{1}{4} \frac{1}{4 \pi^{2}} \frac{\left\langle\operatorname{tr} F^{2}\right\rangle}{g^{2}} \\
\int d^{4} x\left\langle\frac{\operatorname{tr} F \tilde{F}}{g^{2}} \frac{\operatorname{tr} F \tilde{F}}{g^{2}}\right\rangle & =0
\end{aligned}
$$

Kubo formula

Shear viscosity is extracted from correlators according to the Kubo formula:

$$
\eta=\lim _{w \rightarrow 0} \frac{1}{2 \omega} \int d t d^{3} x e^{i \omega t}\left\langle\left[T_{x y}(t, x), T_{x y}(0,0)\right]\right\rangle .
$$

Similar correlator - transport coefficient relations apply to other correlators, e.g. bulk viscosity

$$
\zeta+\frac{4}{3} \eta=\lim _{w \rightarrow 0} \frac{1}{2 \omega} \int d t d^{3} x e^{i \omega t}\left\langle\left[T_{x x}(t, x), T_{x x}(0,0)\right]\right\rangle
$$

Viscosity coefficient

from $\left\langle T_{x y} T_{x y}\right\rangle,\left\langle T_{x x} T_{x x}\right\rangle$ we thus establish:

$$
\left.\frac{\eta}{s}(q, \omega)\right|_{T=0}=\frac{1}{4 \pi}, \quad \zeta=0
$$

This result is very important, since apriori it isunclear if condensate affects viscosity or not. Many people nowadays are trying to experimentally and theoretically establish the validity of $\frac{1}{4 \pi}$ bound(which by some is thought as general theorem in holography); my contribution is that viscosity is condensate-independent.

Conclusions

- Low energy theorems

$$
\int d^{4} x\langle\hat{O}(x) T(0)\rangle=-\operatorname{dim}(\hat{O})\langle\hat{O}\rangle
$$

work in holography with condensates.

- Interesting "sum rules" established for gluon field strength operators, e.g.
$\int d^{4} x\left\langle\operatorname{tr} F^{2}(x) \operatorname{tr} F^{2}(0)\right\rangle \sim\left\langle\operatorname{tr} F^{2}(0)\right\rangle$
- Relations $\frac{\eta}{s}=\frac{1}{4 \pi}, \zeta=0$ survive in theories with temperature and condensate.

