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Plan of the talk

AdS/CFT Basics

Symmetries: Break or Save?

QCD Models: bottom-up and top-down models

Holography and Condensates:
Kinetic coefficients
Two-point correlators

My talk is intended to serve as a pedagogical introduction
to the talks by Peter Kopnin and Alexander Krikun in this
session as well.

– p.



The Conjecture

The AdS/CFT or Maldacena conjecture states the equivalence (also referred to as duality)
between the following theories Polyakov 1998, Maldacena 1998, Witten 1998:

Type IIB superstring theory on AdS5 × S5, where both AdS5 and S5 have the same
radius R, the 5-form F+

5 has integer flux Nc =
∫

S5 F
+
5 , string coupling is gs

SYM in 4 dimensions, with gauge group SU(Nc) and Yang-Mills coupling gY M in its
superconformal phase

with the following identification of the parameters of the theory

gs = g2Y M ,

R4 = 4πgsNcα
′2,

and the axion expectation value in AdS equals the SYM instanton angle

〈C〉 = θI

Equivalence includes a precise map between the fields on the supergravity side and the local
gauge invariant operators on the N = 4 SYM side.
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A Cartoon of AdS5 × S5

Here we pictorially show what our geometry looks like:

AdS
5

S
5

+
The geometry of AdS space can be described by the following embedding:

−Y 2
0 − Y 2

1 + Y 2
2 + Y 2

3 + Y 2
4 + Y 2

5 = R2

thus a pseudo-orthogonal group SO(2, 4) with signature −−++++ can act upon it.
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Why Do We Need Such Geometry?

The geometry is designed in such a way that its isometry
group would coincide with the internal and Lorentzian
symmetry of the field theory [Maldacena 1998].

A pack of
N D3  branesc

Our spacetime
x ,x ,x ,x0 1 2 3
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Basics on AdS/CFT correspondence

For review see D’Hoker, Freedman[2002], Gubser et al. [1999]. The AdS/CFT conjecture is:

ZSY M [J ] = Zstring [Φ]

where partition function ZSY M [J ] is calculated in presence of four-dimensional currents J ,
coupled to some operators O

ZSY M [J ] ≡ 〈e−(S+
∑

JOJ )〉,

and Zstring [Φ∂AdS ], where the boundary value of each bulk field is related to the
corresponding current

ΦJ
∂AdS ∼ J.

Some examples of correspondence:

Dilaton field φ in supergravity is dual to operator trF 2 in SYM.

Graviton field hµν is dual to energy-momentum current Tµν in SYM.
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Identification of Sources

In other words, the general case of a multiparticle correlator the Main Prescription is:if we
have

S5d – the five-dimensional action,
Oi(x) – operators,
Φi(z, x) – fields,

Φc i(z, x) are classical solutions for EOM on Φi(z, x)

φi(z, x) – fluctuations above them
∫

d4x
∑

i Oi(x)φi(0, x) – interaction term

then the multi-point correlator is

〈O1(x1) . . .On(xn)〉 =
δ

δφ1(0, x1)
. . .

δ

δφn(0, xn)
S5d[Φc i(z, x) + φi(z, x)]|z→0,φi(z,x)=0

This definition for correlator will be used here and in the talks by P.Kopnin and A.Krikun.
Examples in this Session

Two-point functions 〈trF 2(x) trF 2(0)〉 in theories with condensates – my talk.

One-point function of vector U(1) current 〈 ~J(µ,B)〉 – talk by P.Kopnin on chiral
magnetic effect

Four-point correlator of vector current – talk by A.Krikun.
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(Non)-Normalizable Modes

If bulk field φ∆(z) is the counterpart of an operator dim(Ô) = ∆ then the mode
φ ∼ z4−∆ is known as the “non-normalizable” mode, the mode φ ∼ z∆ as the
“normalizable” mode. “Normalizability” is understood as convergence of action in the
UV.

Normalizable mode in a classical solution is useful for calculating one-point functions
(condensates).

Non-normalizable modes in Green functions are useful for all higher-order functions.

Example: φ is the dilaton, e−φ corresponds to gluon field strength trG2. The dual action is

S =

∫

d4x

∫

dz

z3
φ′2

EOM
=

1

z3
φφ′

∣

∣

∣

∣

z→0

,

let the dilaton classical solution be e−φc = a+ bz4. One-particle correlator is
〈trG2〉 = δS

δφ
= K(z) 1

z3
∂zφc = (a+ bz4) · 1

z3
· 4bz3 = 4b.

Here K(z) is the field φ bulk-to-boundary propagator; since it is normalized to K(z) = 1 we
don’t need to know it. If we need 〈trG2(x) trG2(0)〉, we have to write down
〈trG2(x) trG2(0)〉 = K(x, z)∂zK(x, z)|z→0, where the normalizable mode cannot enter
since φc is gone from this expression. In other words, normalizable mode is the value of the
operator VEV, whereas non-normalizable mode is the source of the operator.
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Realistic Model-Building

The original theory is N = 4 SYM and is therefore completely unrealistic.
How to cure that?

Introduce condensates. Then you will end up in the same theory but
over a different vacuum.

Deform the metric. This might kill the conformal symmetry (e.g. add
a logarithmic term to the dilaton). By deformations of the background
you can obtain an N = 2, N = 1 or N = 0 theories.

Add some matter in fundamental reps (action on branes). This will
cut the supersymmetries by half.

Make the matter massive.

Switch on the temperature. At high temperatures all theories are
approximately conformal, thus comparison between them makes
more sense.
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AdS/CFT with flavours

For review see: Aharony, [2002]; Mateos [2007]. General idea of introducing
flavour into AdS/CFT is illustrated in the two pictures below:

u
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Green

Red
d

N D3 branesc

N D7 branesf

p
+

meson

p
0
meson

gluon

u

Blue

Green

Red
d

N D3 branesc

N D7 branesf

ubububub

ug

dr

(a) (b)

We require Nc ≫ Nf , for otherwise the stack of Nf D7 branes will deform
the metric essentially. This is known as “quenched approximation”.
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Flavoured Models on the Market

Top-down models:
Sakai-Sugimoto: embedding of one/two D8 branes
into metric, generated by D4 metric.
D3/D7: embedding of one D7 brane into metric,
generated by D3 brane.

Bottom-up models: (AdS/QCD) five-dimensional action
with adjoint degrees of freedom (scalars,
pseudoscalars, vectors, pseudovectors and dilaton):

Soft-wall
Hard-wall
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Sakai—Sugimoto Model

There are Nc D4 branes, compactified on a circle of radius R4 [Sakai,Sugimoto 2005]. A pack of
Nf D8 branes are located in a point on this circle, as well as a pack of D8 branes in an
opposite point. The metric of the background is given by

ds2 = u
3
2

(

−dx20 + dx2 + f(u)dx4
)

+ u−
3
2

(

du2

f(u)
+ u2dΩ2

4

)

where f(u) = 1− u3
KK

u3 , Kaluza–Klein scale is 4
9R2

4

. It can be depicted as follows:

u

x
4

D4

uKK

Confined,
chiral symmetry broken

Deconfined,
chiral symmetry restored

Deconfined,
chiral symmetry broken

D8D8

D8D8
D8D8

(a) (b) (c)
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Phase Transitions

Curvature of D8 brane is an order parameter for the chiral symmetry transition in the
deconfined phase. At non-zero temperature there are two possible backgrounds. For
T < 1

2πR4
the dominant background is given by (a), wheer gluons are confinend and chiral

symmetry broken. For T > 1
2πR4

the dominant background is a cylinder, and the two

possible embeddings of the D8 branes are shown in fig. (b) and (c). For T < 0.154/L,
where L is asymptotic distance between D8-ends, a U-shaped (b) embedding dominates. At
larger temperatures, configuration (c) with noth chiral symmetry and confinement broken
dominates.

u

x
4

D4

uKK

Confined,
chiral symmetry broken

Deconfined,
chiral symmetry restored

Deconfined,
chiral symmetry broken

D8D8

D8D8
D8D8

(a) (b) (c)
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D3/D7 model

D7 brane does not change the metric in the quenched approximation. The dynamics of the

brane in an external electromagnetic field is described by a Dirac—Born—Infeld action

SD7 = µ7

∫

d8ξ

√

det
α,β

(

2πα′Bαβ + gµν
∂Xµ

∂ξα
∂Xν

∂ξβ

)

+

∫

d8ξC4 ∧ F ∧B

The D3/D7 model is advantageous for making it possible to introduce 〈ψψ〉 condensate
into the theory together with quark mass via brane embedding function w(ρ):

X8 + iX9 = w(ρ)eiφ,

where ρ is the holographic coordinate in the sense of the metric

ds2 = dr2

r2
+ r2dx24 +R2dΩ2

5, ρ
2 = r2 − (X8)2 − (X9)2, here

w(ρ)|ρ→∞ = a+
b

ρ2
,

where mass and condensate are respectively

m = a, 〈ψψ〉 = 2b
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D3-D7 Spectrum

Shown is the schematic geometry of D3/D7 model. The coordinates 8, 9 describe the chiral
dynamics of the model.

D7 D37-7

3-7

7-7

7-7  U(N ) theory

3-7 chiral multiplet
7-3 chiral multiplet Q
3-3 =4 vector multiplet

f

Q

N

0123

4567

89
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AdS/QCD 5D models

Will be used as main calculation tool in the talks by A.Krikun and P.Kopnin.

Basically there are two types of AdS/QCD models. They have the same action

S = SY M [L] + SY M [R] + SCS [L]− SCS [R] + Ssc[L−R]

SY M [A] = − 1
8g2

5

∫

e−φF ∧ ∗F,
SCS [A] = − ·Nc

24π2

∫

A ∧ F ∧ F − 1
2
A ∧A ∧A ∧ F + 1

10
A ∧A ∧A ∧A ∧A,

Ssc[L−R] =
∫

d4x dz
z3

∫

e−φ
[

(DµX)†DµX + 3
z5

|X|2
]

+

+ Nc

24π2 tr
∫

d4xdz∂µAν∂λAρ
∂απ
fπ

ǫµνλρα

Hard-wall model: in the IR a boundary is introduced at some z = zm, where Dirichlet
boundary conditions are imposed.

Soft-wall model: a non-trivial dilaton field φ = λz2 is switched on; at z → ∞ finiteness
of action is required.
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Liu-Tseytlin-Ghoroku Background

Consider now the following self-dual finite-temperature background: dilaton is

eφ = 1 +
q

π4T 4
log

(

1

1− r4π4T 4

)

,

axion is related to dilaton in the same way as in zero-temperature Liu-Tseytlin background

C = e−φ − 1,

and the metric is

ds2 = R2

(

1− r4π4T 4

r2
dt2 +

dx23
r2

+
dr2

r2(1− r4π4T 4)

)

+R2dΩ2
5,
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Physics Behind

This background is very interesting for modelling conformal N = 4 theory with condensates

〈trF+2〉 = q, 〈trF−2〉 = 0.

Thus this is “the softest possible” non-trivial symmetry breaking: we are just moved in a

different self-dual vacuum, yet the theory is still conformal, its coupling being constant in the

UV and β-function zero. Yet its IR properties are different from those of SYM over trivial

vacuum; the coupling constant has got an IR singularity. The bulk theory action is

S =

∫

d10x
√
g

(

R− 1

2
(∂µφ)

2 − 1

2
e2φ(∂µC)2 − 1

2
|F5|2

)

.

We shall calculate two-point correlation functions in this background, establish dilatation
Ward identities, and calculate some of the kinetic coefficients for a theory holographically

dual to this background.
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Field-operator correspondence

Fluctuations of the fields on the bulk couple to the operators trF 2, trFF̃ , Tµν on the
boundary. The gauge field part of the boundary action is normalized as

S4d =
1

2g2Y M

∫

d4x

(

trF 2 − iθ

16π2
trFF̃ ,

)

with non-trivial condensates switched on:

trF 2 = trFF̃ = Nc
q

π2

Fluctuation terms are defined as φ = φc + ϕ, C = C0 + ξ, g = g0µν + hµν . The

interaction term is

Sint =

∫

d4x

[

1

2
Tµν h̄

µν − e−φc

(

ϕ̄ trF 2 + ξ̄ trFF̃
)

]

,

which, after introduction of F± = F±F̃
2

, η± = η ± ξ, becomes

Sint =

∫

d4x

[

1

2
Tµν h̄

µν − e−φc
(

η̄+ trF+2 + η̄− trF−2
)

]

.
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Fluctuations of fields

Choose the gauge h5µ = 0, kµhµν = 0, uµhµν = 0, where
k = (ω, 0, 0, k), constant vector u is u = (1, 0, 0, 0). We work
with five fields:

Φ̄i = (η+, h̄11 + h̄22, h̄11 − h̄22, h̄12, η
−),

coupled to operators

Oi =

(

1

g2s
trF+2,

1

8
Tµ
µ ,

3

8
T11 −

1

8
T22 −

1

8
T33 −

1

8
T00, Txy,

1

g2s
trF−2

)

and what we calculate is the matrix of correlators

Mij = 〈OiOj〉|(p) =
δ2Sfull

δΦ̄i(p)δΦ̄j(−p)
.
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Additional action terms

The standard wisdom: take the action of the type

Sbulk =

∫

d4xdzφ′2gzz
√
g

and project onto the boundary as

Sboundary =

∫

d4xφφ′gzz
√
g|z→0.

In terms of bulk-to-boundary Green functions G(x, z) correlator is
〈O(x)O(0)〉 = G(x, z)∂zG(0, z)|z=0. In our case two difficulties arise:

The correct boundary term should be supplemented by the
Gibbons–Hawking term, which makes globally diffeomorphism
invariant the theory defined on manifold with boundary.

The bilinear action of fields’ fluctuations is non-diagonal, this means
that we shall be dealing with a matrix of Green functions rather than
with separately-treatable ones.
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Mixing of modes

Let us define Green function matrix. Namely, if field Φi has a bulk solution Φi(z), satisfying
zδiΦi(z)|z→0 = Φ̄i, (for our fields δi = (0, 0, 2, 2, 0)) then by definition

Kij(z) =
δΦj(z)

δΦ̄i

.

We establish the correct boundary term. The full action of our bulk theory is actually

Sfull = S10d + Sdiv + S4d,

where the Gibbons–Hawking term

S4d = −2∂z

∫

d4x
√−g4 − c

∫

d4x
√−g4,

here g4 = det(gij), i = 0, 1, 2, 3. Another piece is the full divergence term

Sdiv =
3

2
∂µW

µ,

the vector Wµ found in textbooks is Wµ =
√−g

(

gαβδΓµ
αβ

− gαµδΓβ
αβ

)

, where

δΓµ
αβ

= Γµ
αβ

(g + h)− Γµ
αβ

(g).
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Second variation of action

Consider now the second variation of these actions in fluctuation fields; denoted these
second-order expressions as S(2)

10d, S(2)
div

, S(2)
4d respectively. They contain both fields and

their derivatives. The two-point correlator is then

〈OiOj〉 = Kik

∂2L
∂Φ′

k
∂Φ′

m

∂zKjm +Kik

∂2S
(2)
4d

∂Φk∂Φ′
m

∂zKjm +Kik

∂2S
(2)
4d

∂Φk∂Φm

Kjm

here L is Lagrangian density of the bulk action:

Sbulk = S
(2)
10d + S

(2)
div

=

∫

dz L.

The above structure is obvious, since the bulk action is

δ2Sbulk =
δΦm(z)

δΦ̄j

δ2Sbulk

δΦmδΦk

δΦk(z)

δΦ̄i

, where

δ2Sbulk =

∫

dz

[

∂2L

∂Φ′
m∂Φ

′
k

∂zδΦm∂zδΦk +
∂2L

∂Φm∂Φ′
k

δΦm∂zδΦk +
∂2L

∂Φm∂Φk

δΦmδΦk

]

.
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How to vary the action

Taking into account that Green functions of field fluctuations by definition satisfy equations:

[

−∂z
∂2L

∂Φ′
m∂Φ

′
k

∂z +
∂2L

∂Φm∂Φ′
k

∂z +
∂2L

∂Φm∂Φk

]

δΦk(z) = 0,

one sees that the only contribution of Sbulk into the correlator will be:

δ2Sbulk = δΦm(z)
∂2L

∂Φ′
m∂Φ

′
k

∂zδΦk(z).

Now remembering the definition of Green function matrix Kmj =
δΦm(z)

δΦ̄j

, we arrive exactly

at previous slide. Hawking-Gibbons term contributes the following:

δ2S4d =
∂2S4d

∂Φ′
m∂Φk

∂zδΦmδΦk +
∂2S4d

∂Φm∂Φk

δΦmδΦk.

The action S4d contains no more than one derivative term, which is due to normal

differentiating of extrinsic curvature, thus ∂2L
∂Φ′2 = 0.
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Correlators at ω 6= 0

At finite frequency ω the matrix of correlators becomes after some algebra:



















−4q −2q 0 0 −2q + 1
8
log(2ǫω

−2q − 1
32

log(2ǫω)ω4 0 0 0

0 0 − 1
32

log(2ǫω)ω4 0 0

0 0 0 − 1
8
log(2ǫω)ω4 0

−2q 1
8
log(2ǫω)ω4 0 0 0 0

One of the most interesting physical implication of
this correlator matrix comes from the 〈TxyTxy〉
element. It is proportional to η

s
|T=0, and here we

observe its independence of q. This fact is not
trivial from dimensional considerations, since we do
possess another dimensionful parameter, ω.
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Summary of results atω 6= 0

We write out the most interesting elements of correlator matrix we can establish low-energy
theorems. After due normalization we have

∫

d4x

〈

trF+2

g2
T

〉

= −4
〈

trF+2

g2

〉

∫

d4x

〈

trF−2

g2
T

〉

= 0

∫

d4x

〈

trF 2

g2
trF 2

g2

〉

= − 1
2

1
4π2 〈 trF

2

g2
〉

∫

d4x

〈

trF 2

g2
trFF̃

g2

〉

= − 1
4

1
4π2

〈trF2〉
g2

∫

d4x

〈

trFF̃

g2
trFF̃

g2

〉

= 0
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Kubo formula

Shear viscosity is extracted from correlators according to
the Kubo formula:

η = lim
w→0

1

2ω

∫

dtd3xeiωt〈[Txy(t, x), Txy(0, 0)]〉.

Similar correlator – transport coefficient relations apply to
other correlators, e.g. bulk viscosity

ζ +
4

3
η = lim

w→0

1

2ω

∫

dtd3xeiωt〈[Txx(t, x), Txx(0, 0)]〉.
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Viscosity coefficient

from 〈TxyTxy〉, 〈TxxTxx〉 we thus establish:

η

s
(q, ω)|T=0 =

1

4π
, ζ = 0.

This result is very important, since apriori it isunclear
if condensate affects viscosity or not. Many people

nowadays are trying to experimentally and
theoretically establish the validity of 1

4π bound(which
by some is thought as general theorem in

holography); my contribution is that viscosity is
condensate-independent.
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Conclusions

Low energy theorems
∫

d4x〈Ô(x)T (0)〉 = −dim(Ô)〈Ô〉

work in holography with condensates.

Interesting “sum rules” established for gluon field
strength operators, e.g.
∫

d4x〈trF 2(x) trF 2(0)〉 ∼ 〈trF 2(0)〉
Relations η

s = 1
4π , ζ = 0 survive in theories with

temperature and condensate.
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