5d Models of Mesons and Baryons

Andrea Wulzer

Andrea Wulzer 5d Models of Mesons and Baryons

・ロン ・回 と ・ ヨ と ・ ヨ と

Outline

Introduction A 5d model of mesons Skyrmions in 4 and 5d Conclusions

Introduction

A 5d model of mesons

Skyrmions in 4 and 5d

Conclusions

・ロン ・回 と ・ヨン ・ヨン

Can a weakly-coupled (dual) description of the hadrons exist?

Can a weakly-coupled (dual) description of the hadrons exist?

Yes, but only in the large-N_c expansion: ('t Hooft, Veneziano, Coleman, Witten ...)

- Meson couplings scale like $1/\sqrt{N_c}$
- Meson masses scale like N_c^0
- Mesons come in infinite towers

Weakly interacting theory of an ∞ number of mesons.

イロン イヨン イヨン イヨン

Can a weakly-coupled (dual) description of the hadrons exist?

Yes, but only in the large-N_c expansion: ('t Hooft, Veneziano, Coleman, Witten ...)

- Meson couplings scale like $1/\sqrt{N_c}$
- Meson masses scale like N_c^0
- Mesons come in infinite towers

Weakly interacting theory of an ∞ number of mesons.

Weak coupling: $g_{
ho} \simeq 4\pi/\sqrt{N_c} \rightarrow 0$

 $1/N_c$ is the only known candidate coupling for a dual theory

イロン イヨン イヨン イヨン

Extra-dimensions are the only tool we have to describe towers. Do simple field theories in 5d capture some features of large- N_c ?

<ロ> <同> <同> <同> < 同>

- < ≣ →

Extra-dimensions are the only tool we have to describe towers. Do simple field theories in 5d capture some features of large- N_c ?

Attractiveness of the 5d models:

- 1. "Holographic" implementation of χ_{SB} automatically leads to KK towers of vector (and scalar) mesons.
- 2. Extremely predictive framework (description of ρ , ω , a_1 , ρ' ...)
- 3. Easy bookkeping of $1/N_c$ factors:

 $1/\sqrt{N_c} \sim 5 d$ coupling

4. 5d models are valid effective theories:

 $\Lambda_5/m_
ho
ightarrow \infty$ for $N_c
ightarrow \infty$

イロン イ部ン イヨン イヨン 三日

Main Limitation:

Absence of high spin states and of Regge phenomenology Higher spins above the 5d cutoff, no known $large-N_c$ reason String models could do better, but we have no candidate

イロン イヨン イヨン イヨン

Main Limitation:

Absence of high spin states and of Regge phenomenology Higher spins above the 5d cutoff, no known large– N_c reason String models could do better, but we have no candidate

Where are the Baryons?

Baryons are solitons (skyrmions) at large– N_c (Witten)

- size ~ N_c^0/Λ_{QCD}
- ► mass ~ N_c Λ_{QCD}

Are there skyrmions in the 5d model?

・ロン ・回と ・ヨン ・ヨン

$$Z_{QCD} = \int \mathcal{D} \mathbf{L}_M \mathcal{D} \mathbf{R}_M e^{iS_5[\mathbf{L},\mathbf{R}]} \qquad \begin{matrix} UV & U(2)_L \times U(2)_R & IR \\ \downarrow & \downarrow & \downarrow \\ L = I & U(2)_V \\ R = r & L = R \end{matrix}$$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

 $Z_{QCD} = \int \mathcal{D} \mathbf{L}_M \mathcal{D} \mathbf{R}_M e^{iS_5[\mathbf{L},\mathbf{R}]} \qquad \begin{matrix} UV & U(2)_L \times U(2)_R & IR \\ \downarrow & \downarrow \\ L = I & U(2)_V \\ R = r & L = R \end{matrix}$

The 5d action is: $S_5 = S_{CS} + S_g$

$$\begin{split} S_{CS} &= -i \frac{N_c}{24\pi^2} \int \left[\omega_5(\mathbf{L}) - \omega_5(\mathbf{R}) \right] \,, \quad \text{reproduces the QCD Anomaly} \\ S_g &= -\int \frac{M_5}{2} \left\{ \text{Tr} \left[L_{MN} L^{MN} \right] \,+ \, \frac{\alpha^2}{2} \widehat{L}_{MN} \widehat{L}^{MN} \,+ \, \{L \,\leftrightarrow \, R\} \right\} + \dots \,. \end{split}$$

 $Z_{QCD} = \int \mathcal{D} \mathbf{L}_M \mathcal{D} \mathbf{R}_M e^{iS_5[\mathbf{L},\mathbf{R}]} \qquad \begin{matrix} \mathbf{U} \mathbf{V} & U(2)_L \times U(2)_R & IR \\ \mathbf{L} = I & U(2)_V \\ \mathbf{R} = r & \mathbf{L} = R \end{matrix}$

The 5d action is: $S_5 = S_{CS} + S_g$

 $S_{CS} = -i \frac{N_c}{24\pi^2} \int [\omega_5(\mathbf{L}) - \omega_5(\mathbf{R})], \text{ reproduces the QCD Anomaly}$ $S_g = -\int \frac{M_5}{2} \left\{ \text{Tr} \left[L_{MN} L^{MN} \right] + \frac{\alpha^2}{2} \widehat{L}_{MN} \widehat{L}^{MN} + \{L \leftrightarrow R\} \right\} + \dots.$ Metric: $ds^2 = a(z)^2 (\eta_{\mu\nu} dx^{\mu} dx^{\nu} - dz^2), a(z) = \frac{L}{z}, z \in [0, L]$ At two derivatives order we have 3 parameters: M_5, L, α .

イロト イポト イヨト イヨト

Some interesting features:

Vector Meson Dominance holds in our model.

・ロン ・回 と ・ヨン ・ヨン

Some interesting features:

- Vector Meson Dominance holds in our model.
- Decay constants and meson couplings all scale like:

 $F_i \sim \sqrt{M_5}, \quad g_i \sim 1/\sqrt{M_5}$

Correct N_c scalings if $\alpha, L \sim N_c^0$ and $M_5 \sim N_c$.

- Automatic Zweig Rule for $m_{\omega} = m_{\rho}$ only, $F_{\omega} = \alpha F_{\rho}$.
- "Modified" KSFR relation: $m_{\rho}^2 \simeq 3g_{\rho\pi\pi}^2 F_{\pi}^2$ (exp=2.1).

Relations valid at the leading $1/M_5~(1/N_c)$ order.

Though $N_c = 3$, what if we compare with real hadrons?

(ロ) (同) (E) (E) (E)

Comparison with experiments:

	Experiment	AdS_5	Deviation
$m_{ ho}$	775	824	+6%
m_{a_1}	1230	1347	+10%
m_ω	782	824	+5%
$F_{ ho}$	153	169	+11%
F_{ω}/F_{ρ}	0.88	0.94	+7%
F_{π}	87	88	+1%
$g_{\rho\pi\pi}$	6.0	5.4	-10%
L ₉	$6.9 \cdot 10^{-3}$	$6.2 \cdot 10^{-3}$	-10%
L ₁₀	$-5.2 \cdot 10^{-3}$	$-6.2 \cdot 10^{-3}$	-12%
$\Gamma(\omega ightarrow \pi \gamma)$	0.75	0.81	+8%
$\Gamma(\omega ightarrow 3\pi)$	7.5	6.7	-11%
$\Gamma(ho o \pi \gamma)$	0.068	0.077	+13%
$\Gamma(\omega ightarrow \pi \mu \mu)$	$8.2 \cdot 10^{-4}$	$7.3\cdot10^{-4}$	-10%
$\Gamma(\omega ightarrow \pi ee)$	$6.5 \cdot 10^{-3}$	$7.3 \cdot 10^{-3}$	+12%

Fit with 3 parameters to 14 observables, Total RMS Error of 11%. Observables selected to have < 10% experimental error.

Skyrmions in 4 and 5d

The Skyrme's Idea

Static Goldstones: $U(\mathbf{x}): S^3 \to SU(2) \sim S^3, \quad \Pi_3(S^3) = Z$ $B = \frac{1}{24\pi^2} \int d^3x \, \epsilon^{ijk} \mathrm{Tr} \left[U \partial_i U^{\dagger} \, U \partial_j U^{\dagger} \, U \partial_k U^{\dagger} \right] \in Z.$

・ロン ・回 と ・ ヨ と ・ ヨ と

2

Skyrmions in 4 and 5d

The Skyrme's Idea

Static Goldstones: $U(\mathbf{x}): S^3 \to SU(2) \sim S^3, \quad \Pi_3(S^3) = Z$ $B = \frac{1}{24\pi^2} \int d^3x \, \epsilon^{ijk} \mathrm{Tr} \left[U \partial_i U^{\dagger} \, U \partial_j U^{\dagger} \, U \partial_k U^{\dagger} \right] \in Z.$

B is exactly conserved topological charge:

イロン イ部ン イヨン イヨン 三日

Witten: Quantized Skyrmions have Spin/Isospin of the Baryons !!

Andrea Wulzer 5d Models of Mesons and Baryons

イロン イヨン イヨン イヨン

Witten: Quantized Skyrmions have Spin/Isospin of the Baryons !!

However, Skyrme's idea cannot be implemented in the σ -model: $S_2 = \int \frac{F_{\pi}^2}{4} \operatorname{Tr} \left\{ \partial_{\mu} U \partial^{\mu} U^{\dagger} \right\} \rightarrow E_2[\rho] \propto F_{\pi}^2 \rho$ $S_4 \supset \int \frac{F_{\pi}^2}{\Lambda^2} \operatorname{Tr} \left\{ \left[\partial_{\mu} U U^{\dagger}, \partial_{\nu} U U^{\dagger} \right]^2 \right\} \rightarrow E_4[\rho] \propto F_{\pi}^2 / \Lambda^2 1 / \rho$

Witten: Quantized Skyrmions have Spin/Isospin of the Baryons !!

However, Skyrme's idea cannot be implemented in the σ -model: $S_2 = \int \frac{F_{\pi}^2}{4} \operatorname{Tr} \left\{ \partial_{\mu} U \partial^{\mu} U^{\dagger} \right\} \rightarrow E_2[\rho] \propto F_{\pi}^2 \rho$ $S_4 \supset \int \frac{F_{\pi}^2}{\Lambda^2} \operatorname{Tr} \left\{ \left[\partial_{\mu} U U^{\dagger}, \partial_{\nu} U U^{\dagger} \right]^2 \right\} \rightarrow E_4[\rho] \propto F_{\pi}^2 / \Lambda^2 1 / \rho$

Skyrmion's size is $\rho_S \propto 1/\Lambda$. All operators contribute the same. Skyrmions are UV-dominated, crucially depend on resonances

(ロ) (同) (E) (E) (E)

The 5d Skyrmion (with A. Pomarol and G. Panico)

Topological charge: $B = \frac{1}{32\pi^2} \int_0^L d^4 x \, \epsilon_{\hat{\mu}\hat{\nu}\hat{\rho}\hat{\sigma}} \operatorname{Tr} \left[L^{\hat{\mu}\hat{\nu}} L^{\hat{\rho}\hat{\sigma}} - R^{\hat{\mu}\hat{\nu}} R^{\hat{\rho}\hat{\sigma}} \right]$

Can be shown equivalent to Skyrme's.

イロン イヨン イヨン イヨン

> The 5d Skyrmion (with A. Pomarol and G. Panico)

Topological charge:
$$B = \frac{1}{32\pi^2} \int_0^L d^4x \, \epsilon_{\hat{\mu}\hat{\nu}\hat{\rho}\hat{\sigma}} \operatorname{Tr} \left[L^{\hat{\mu}\hat{\nu}} L^{\hat{\rho}\hat{\sigma}} - R^{\hat{\mu}\hat{\nu}} R^{\hat{\rho}\hat{\sigma}} \right]$$

Can be shown equivalent to Skyrme's.

The energy is:
$$E = M_5 \int_0^L d^4 x \left[F^2 + \gamma L \epsilon^{...} \widehat{A} FF \right]$$

For $\gamma \ll 1$ expand around an instanton of size ρ : $E(\rho) = 8\pi^2 M_5 \left[1 + \frac{\rho}{2L} + \gamma^2 \frac{L^2}{\rho^2} \right]$

イロン 不同と 不同と 不同と

The Chern–Simons term stabilizes the skyrmion: $\rho_S \simeq \gamma^{2/3} L$

Andrea Wulzer 5d Models of Mesons and Baryons

<ロ> (四) (四) (三) (三) (三) (三)

The Chern–Simons term stabilizes the skyrmion: $\rho_S \simeq \gamma^{2/3} L$ Actually, $\gamma = \frac{N_c}{64\pi^2 M_5 L} = \mathcal{O}(N_c^0)$ is not small Solution must be found numerically and $\rho_S \simeq L \simeq 1/m_\rho$

・ロン ・四マ ・ヨマ ・ヨマ

2

The Chern–Simons term stabilizes the skyrmion: $\rho_S \simeq \gamma^{2/3} L$ Actually, $\gamma = \frac{N_c}{64\pi^2 M_5 L} = \mathcal{O}(N_c^0)$ is not small Solution must be found numerically and $\rho_S \simeq L \simeq 1/m_\rho$ Consistent with large– N_c : baryon's size must be finite In AdS/QCD, this comes because of the N_c in the global anomaly

・ロン ・回 と ・ ヨ と ・ ヨ と

What about the 5d cutoff?

From standard NDA considerations: $\Lambda_5 \simeq (16\pi^2) M_5 \left(\frac{4}{N_c}\right)^{2/3} = m_\rho \mathcal{O}(N_c^{1/3})$

The CS lowers the cutoff, but still well defined expansion

・ロン ・回と ・ヨン・

We have
$$\rho_S \sim L \sim 1/m_{\rho}$$
, expansion parameter:
 $\frac{1}{\rho_S \Lambda_5} \rightarrow 0 \quad \text{for} \quad N_c \rightarrow \infty$

5d models provide Calculable Implementation of Skyrme's idea!!

イロン イヨン イヨン イヨン

Static Properties of the Nucleons:

	Experiment	AdS ₅	Deviation
M _N	940 MeV	1130 MeV	+20%
μ_{S}	0.44	0.34	-30%
μ_V	2.35	1.79	-31%
ØА	1.25	0.70	-79%
$\sqrt{\langle r_{E,S}^2 \rangle}$	0.79 fm	0.88 fm	+11%
$\sqrt{\langle r_{E,V}^2 \rangle}$	0.93 fm	∞	
$\sqrt{\langle r_{M,S}^2 \rangle}$	0.82 fm	0.92 fm	+12%
$\sqrt{\langle r_{M,V}^2 \rangle}$	0.87 fm	∞	
$\sqrt{\langle r_A^2 \rangle}$	0.68 fm	0.76 fm	+12%
μ_p/μ_n	-1.461	-1.459	+0.1%

Significantly better agreement than original Skyrme model.

・ロン ・回 と ・ ヨ と ・ ヨ と

What changes with pion masses? in progress with O. Domenech, G. Panico

Holography forces to introduce 5d scalar

	Experiment (MEV)	AdS_5 (MEV)	Deviation
m_{π}	$135 \mathrm{MeV}$	$134 \mathrm{MeV}$	0.6%
$m_{\pi(1300)}$	$1300 { m MeV}$	$1230 { m MeV}$	5.6%
$m_{ ho}$	$775 \mathrm{MeV}$	$783 { m MeV}$	1.0%
m_ω	$782 \mathrm{MeV}$	$783 { m MeV}$	0.1%
$m_{a_1(1260)}$	$1230 { m MeV}$	$1320 { m MeV}$	7.6%
$m_{a_0(980)}$	$980 { m MeV}$	$1040 { m MeV}$	6.5%
$m_{f_0(980)}$	$980 { m MeV}$	$1040 { m MeV}$	6.5%
f_{π}	$92 { m MeV}$	$89 \mathrm{MeV}$	3.6%
$f_{ ho}$	$153 \mathrm{MeV}$	$149 \mathrm{MeV}$	2.7%
$\dot{f_\omega}$	$140 \mathrm{MeV}$	$149 \mathrm{MeV}$	6.4%
$g_{\rho\pi\pi}$	6.0	4.89	22.7%
$g_{\omega\pi\gamma}$	0.72	0.71	1.1%
$g_{\rho\pi\gamma}$	0.22	0.24	7.9%
$g_{\omega ho\pi}$	15.0	15.6	3.7%
RMSE			7.7%

イロン イヨン イヨン イヨン

Static Properties of the Nucleons (very preliminary)

	Experiment	AdS_5	Deviation
M _N	940 MeV	$\sim 1070~{ m MeV}$	$\sim 14\%$
μ_{S}	0.44	0.38	16%
μ_V	2.35	~ 1.2	$\sim 100\%$
ØА	1.25	\sim 0.6	$\sim 100\%$
$\sqrt{\langle r_{E,S}^2 \rangle}$	0.79 fm	0.82 fm	4%
$\sqrt{\langle r_{E,V}^2 \rangle}$	0.93 fm	0.97 fm	4%
$\sqrt{\langle r_{M,S}^2 \rangle}$	0.82 fm	0.84 fm	3%
$\sqrt{\langle r_{M,V}^2 \rangle}$	0.87 fm	0.87 fm	0.5%
$\sqrt{\langle r_A^2 \rangle}$	0.68 fm	$\sim 0.6~\text{fm}$	$\sim 13\%$

< □ > < @ > < 注 > < 注 > ... 注

- ► 5d models mimic several expected features of large-N_c QCD
- Provide a valid and "economic" description of QCD hadrons

イロト イヨト イヨト イヨト

- 5d models mimic several expected features of large-N_c QCD
- Provide a valid and "economic" description of QCD hadrons
- Motivated by Bottom–Up phenomenological considerations: A relation with AdS/CFT? (seems unlikely)

イロト イポト イヨト イヨト

- 5d models mimic several expected features of large-N_c QCD
- Provide a valid and "economic" description of QCD hadrons
- Motivated by Bottom–Up phenomenological considerations: A relation with AdS/CFT? (seems unlikely)
- Calculable Skryme model is automatically implemented

イロト イポト イヨト イヨト

In Progress

The 5d model should be improved in several aspects:

- Add quark masses to the 5d skyrmion (almost done with O. Domenech and Giuliano Panico)
- 2. Include $U(1)_A$ anomaly and η' mass (few literature, some ideas with G.Panico)

イロン 不同と 不同と 不同と

The Sakai–Sugimoto Model

Equivalent to ours in the meson sector.

Only differs by the shape of the warp factor.

Perturbative Field Theory regime for N_c , $\lambda \to \infty$ $(M_{St} \sim \sqrt{\lambda}/L)$.

イロン イヨン イヨン イヨン

The Sakai–Sugimoto Model

Equivalent to ours in the meson sector.

Only differs by the shape of the warp factor.

Perturbative Field Theory regime for $N_c, \lambda \to \infty$ $(M_{St} \sim \sqrt{\lambda}/L)$.

The CS is subleading in $1/\lambda$: $\gamma \sim 1/(M_{St}L)^2 \sim 1/\lambda$.

For $\gamma \ll 1$ the 5d skyrmion becomes small instanton:

$$E(
ho) \sim
ho^2/L^2 + \gamma^2 L^2/
ho^2 \quad \Rightarrow \quad
ho \sim \sqrt{\gamma} L \sim 1/M_{St}$$

Strong indication of non-calculability.

・ロン ・回と ・ヨン ・ヨン