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To specify different types of cosmic fluids one uses a phe-
nomenological relation between the pressure p and the energy
density %

p = w%, p = Ek − V, % = Ek + V

where w is the state parameter.

w(t) = − 1− 2

3

Ḣ

H2
= − 1 +

2Ek

%
. (1)

Contemporary experiments give strong support that

wDE = −1± 0.2. (2)

We consider the case wDE < −1. Null energy condition (NEC)
is violated and there are problems of instability. A possible way
to evade the instability problem for models with wDE < −1 is
to yield a phantom model as an effective one, arising from a
more fundamental theory.
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In the SFT inspired cosmological models the non-local ”ki-
netic” term

φe−¤gφ, (3)
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Non-local action in the general form

Let us consider the following nonlocal action:

S =

∫
d4x

√−gα′
(

R

16πGN
+

1

2g2
o

(φF(¤g)φ− V (φ))− Λ

)
(4)

Here GN is the Newtonian constant: 8πGN = 1/M 2
P , α′ and go

are constants.
Function F is assumed to be an analytic function

F(¤g) =

∞∑
n=0

fn¤n
g , ¤g ≡ 1√−g

∂µ

√−ggµν∂ν. (5)

From the SFT after some approximations we obtained:

FSFT (¤g) = (ξ2¤g + 1)e−2¤g − c, (6)

where c and ξ2 are constants.
FSFT (¤g) has only simple and (for some values of c and ξ2)

double roots. We consider the case of an arbitrary analytic F ,
which has only simple and double roots.
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In an arbitrary metric the energy-momentum tensor

Tµν = − 2√−g

δS

δgµν
=

1

g2
o

(
Eµν + Eνµ − gµν (gρσEρσ + W )

)
, (7)

where

Eµν ≡ 1

2

∞∑
n=1

fn

n−1∑

l=0

∂µ¤l
gφ∂ν¤n−1−l

g φ, (8)

W ≡ 1

2

∞∑
n=2

fn

n−1∑

l=1

¤l
gφ¤n−l

g φ− f0

2
φ2 + V (φ). (9)

In the case of the zero potential V (φ) = 0, using the equation

F (¤g)φ = 0, ⇐⇒ f0φ = −
∞∑

n=1

fn¤ n
g φ, (10)

we obtain

W = W0 ≡ 1

2

∞∑
n=1

fn

n−1∑

l=0

¤l
gφ¤n−l

g φ. (11)
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From action (4) we obtain the following equations

Gµν = 8πGN (Tµν − Λgµν) , (12)

F (¤g)φ =
dV

dφ
, (13)

where Gµν is the Einstein tensor.
It is a system of nonlocal nonlinear equations !!!

HOW CAN WE FIND A SOLUTION?
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An algorithm of localization in the case of an arbi-
trary quadratic potential V (φ) = C2φ

2 + C1φ + C0.
We can change values of f0 and Λ such that the potential

takes the form V (φ) = C1φ. So, we put C2 = 0 and C0 = 0.
There exist 3 cases:

• C1 = 0

• C1 6= 0 and f0 6= 0

• C1 6= 0 and f0 = 0

Let us start with the case C1 = 0.
Let us consider the characteristic equation F(J) = 0 and de-

note simple roots as Ji and double roots as J̃k. A particular
solution of equation (13) we seek in the following form

φ0 =

N1∑
i=1

φi +

N2∑

k=1

φ̃k, (14)

where
(¤g − Ji)φi = 0, (¤g − J̃k)

2φ̃k = 0. (15)
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The fourth order differential equation (¤g − J̃k)(¤g − J̃k)φ̃k = 0
is equivalent to the following system:

(¤g − J̃k)φ̃k = ϕk, (¤g − J̃k)ϕk = 0. (16)

For any analytical function F(J), which has simple roots Ji

and double roots J̃k, the energy–momentum tensor

Tµν (φ0) = Tµν

(
N1∑
i=1

φi +

N2∑

k=1

φ̃k

)
=

N1∑
i=1

Tµν(φi) +

N2∑

k=1

Tµν(φ̃k), (17)

where

Tµν =
1

g2
o

(
Eµν + Eνµ − gµν (gρσEρσ + W )

)
, (18)

Eµν(φi) =
F ′(Ji)

2
∂µφi∂νφi, W (φi) =

JiF ′(Ji)

2
φ2

i , F ′ ≡ dF
dJ

(19)

Eµν(φ̃k) =
F ′′(J̃k)

4

(
∂µφ̃k∂νϕk + ∂νφ̃k∂µϕk

)
+
F ′′′(J̃k)

12
∂µϕk∂νϕk, (20)

W (φ̃k) =
J̃kF ′′(J̃k)

2
φ̃kϕk +

(
J̃kF ′′′(J̃k)

12
+
F ′′(J̃k)

4

)
ϕ2

k. (21)
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Consider the following local action

Sloc =

∫
d4x

√−g

(
R

16πGN
− Λ

)
+

N1∑
i=1

Si +

N2∑

k=1

S̃k, (22)

where

Si = − 1

g2
o

∫
d4x

√−g
F ′(Ji)

2

(
gµν∂µφi∂νφi + Jiφ

2
i

)
,

S̃k = − 1

g2
o

∫
d4x

√−g

(
gµν

(
F ′′(J̃k)

4

(
∂µφ̃k∂νϕk + ∂νφ̃k∂µϕk

)
+

+
F ′′′(J̃k)

12
∂µϕk∂νϕk

)
+

J̃kF ′′(J̃k)

2
φ̃kϕk +

(
J̃kF ′′′(J̃k)

12
+
F ′′(J̃k)

4

)
ϕ2

k

)
.

Remark 1. If F(J) has an infinity number of roots then one
nonlocal model corresponds to infinity number of different local
models. In this case the initial nonlocal action (4) generates
infinity number of local actions (22).
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Remark 2. We should prove that the way of localization
is self-consistent. To construct local action (22) we assume
that equations (15) are satisfied. Therefore, the method of
localization is correct only if these equations can be obtained
from the local action Sloc. The straightforward calculations
show that

δSloc

δφi
= 0 ⇔ ¤gφi = Jiφi;

δSloc

δφ̃k

= 0 ⇔ ¤gϕk = J̃kϕk. (23)

δSloc

δϕk
= 0 ⇔ ¤gφ̃k = J̃kφ̃k + ϕk. (24)

We obtain from Sloc the Einstein equations as well:

Gµν = 8πGN (Tµν(φ0)− Λgµν) , (25)

where φ0 is given by (14) and Tµν(φ0) can be calculated by (17).
We have obtained such systems of differential equa-

tions that any solutions of these systems are partic-
ular solutions of the initial nonlocal equations (12)
and (13).
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Let us consider the model with action (4) in the case C1 6= 0.
If f0 6= 0, then we indroduce a new scalar field

χ = φ− C1

f0
(26)

and get the energy–momentum tensor in the form (18) with

Eµν =
1

2

∞∑
n=1

fn

n−1∑

l=0

∂µ¤l
gχ∂ν¤n−1−l

g χ, (27)

W =
1

2

∞∑
n=1

fn

n−1∑

l=1

¤l
gχ¤n−l

g χ− f0

2
χ2 +

C2
1

2f0
. (28)

It is easy to see that

F(¤)φ = C1 ⇐⇒ F(¤)χ = 0. (29)

If f0 = 0, then J = 0 is a root of the characteristic equation
F(J) = 0. It is easy to show, that the function

χ̃ = φ0 + ψ, (30)
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where φ0 and ψ are solutions of the following equations

F(¤)φ0 = 0, ¤mψ =
C1

fm
, (31)

m is the order of the root J = 0, satisfies

F(¤)χ̃ = C1. (32)

The function φ0 is given by (14), but the sum do not include
φi0, which corresponds to the root J = 0, because this function
can not be separated from ψ. We consider the case m = 1 (J = 0
is a simple root).

It is easy to show:

Tµν(χ̃) = Tµν(ψ) + Tµν(φ0), (33)

W (ψ) = C1ψ +
f2C

2
1

2f 2
1

, Eµν(ψ) =
1

2
f1∂µψ∂νψ, (34)
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For an arbitrary quadratic potential V (φ) = C2φ
2 + C1φ + C0

there exists the following algorithm of localization:

• Find roots of the function F(J) and calculate orders of them.

• Select an finite number of simple and double roots.

• Change values of f0 and Λ such that the potential takes the
form V (φ) = C1φ.

• Construct the corresponding local action. In the case C1 = 0
one should use formula (22). In the case C1 6= 0 and f0 6= 0
one should use (22) with the replacement of the scalar field
φ by χ. In the case C1 6= 0 and f0 = 0 the local action is the
sum of (22) and (in the case of simple root J = 0)

Sψ = − 1

2g2
o

∫
d4x

√−g

(
f1g

µν∂µψ∂νψ + 2C1ψ +
f2C

2
1

f 2
1

)
.

• Vary the obtained local action and get a system of the Ein-
stein equations and equations of motion.

• Seek solutions of the obtained local system.
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Exact Solutions in the FRW metric
Let us consider the Friedmann equations, which corresponds

to a real simple root J1:



3H2 =
4πGF ′(J1)

g2
0

(
φ̇2 + J1φ

2
)

+ 8πGΛ,

Ḣ = − 4πGF ′(J1)

g2
0

φ̇2,

(35)

a dot denotes a time derivative. Exact real solutions of this
system are as follows:

At J1 > 0

φ(t) = ±
√

3J1g
2
0

6πGF ′(J1)
(t− t0), H(t) = − J1g

2
0

6πGF ′(J1)
(t− t0), (36)

where t0 is an arbitrary constant. These solutions exist only at

Λ = − J1g
2
0

24G2π2F ′(J1)
. (37)

At J1 = 0 the type of solution depends on sign of Λ:
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• Λ = 0

H(t) = − 1

3(t− t0)
, φ(t) = C1 ±

√
3g0√

πGF ′(0)
ln(t− t0), (38)

where t0 and C1 are arbitrary constants.

• If Λ > 0, then we obtain solutions:

H1(t) =
2
√

6πGΛ

3
tanh

(
2
√

6πGΛ (t− t0)
)

, (39)

φ1(t) = ±
√

− g2
0

12πGF ′(0)
arctan

(
sinh

(
2
√

6πGΛ (t− t0)
))

+ C2 (40)

Using tanh(t + iπ/2) = coth(t), one gets a new real solution.

• In the case Λ < 0

H2(t) = − 2
√−6πGΛ

3
tan

(
2
√
−6πGΛ(t− t0)

)
, (41)

φ2(t) = C2 ±
√

g2
0

12πGF ′(0)
arctanh

(
sin

(
2
√
−6πGΛ(t− t0)

))
. (42)

15



SOLUTIONS FOR EQUATIONS OF MOTION
Let us consider nonlocal Klein–Gordon equation in the case

of an arbitrary potential:

F(¤g)φ = V ′(φ), (43)

where prime is a derivative with respect to φ. A particular
solution of (43) is a solution of the following system:

N−1∑
n=0

fn¤ n
g φ = V ′(φ)− C, fN¤ N

g φ = C, (44)

where N − 1 is a natural number, C is an arbitrary constant.
In the case f1 6= 0 we can choose N = 2. In the spatially flat

FRW metric with the interval:

ds2 = − dt2 + a2(t)
(
dx2

1 + dx2
2 + dx2

3

)
, (45)

where a(t) is the scale factor, we obtain from (44) the following
system:

f1¤gφ = − f1

(
φ̈ + 3Hφ̇

)
= V ′(φ)− f0φ− C, f2¤ 2

g φ = C. (46)
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The Hubble parameter

H = − 1

3φ̇

(
φ̈ + Ṽ ′(φ)− C

f1

)
, (47)

where

Ṽ ′(φ) ≡ 1

f1
(V ′(φ)− f0φ) . (48)

Equation

(∂2
t + 3H∂t)

(
φ̈ + 3Hφ̇

)
=

C

f2
, (49)

is as follows

(∂2
t + 3H∂t)Ṽ

′ = Ṽ ′′′φ̇2 + Ṽ ′′(φ̈ + 3Hφ̇) = − C

f2
. (50)

We eliminate H and obtain

φ̇2 =
1

Ṽ ′′′

(
Ṽ ′′Ṽ ′ − C

f1
Ṽ ′′ − C

f2

)
. (51)

The obtained equation can be solved in quadratures. Its gen-
eral solution depend on two arbitrary parameters C and t0,
which corresponds to the time shift.
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CUBIC POTENTIAL
The case of cubic potential is is connected with the bosonic

string field theory. Let us find solutions (43) for

V (φ) = B3φ
3 + B2φ

2 + B1φ + B0, (52)

where B0, B1, B2, and B3 are arbitrary constants, but B3 6= 0.
For this potential we get (51) in the following form

φ̇2 = 4C3φ
3 + 6C2φ

2 + 4C1φ + C0, (53)

where

C0 =
(B1 − C)(2B2 − f0)

6f1B3
− Cf 2

1

6f1f2B3
, C2 =

2B2 − f0

4f1
, (54)

C1 =
6B3(B1 − C) + (2B2 − f0)

2

24f1B3
, C3 =

3B3

4f1
. (55)

Note, that C3 6= 0 since B3 6= 0. Using the transformation

φ =
1

2C3
(2ξ − C2), (56)
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we get the following equation

ξ̇2 = 4ξ3 − g2ξ − g3, (57)

where

g2 =
(2B2 − f0)

2 − 12B3(B1 − C)

16f 2
1

, g3 = 2C1C2C3−C3
2−C0C

2
3 = − 3B3C

32f2f1
.

A solution of equation (57) is either the Weierstrass elliptic
function

ξ(t) = ℘(t− t0, g2, g3), (58)

or a degenerate elliptic function.
Let us consider degenerated cases. At g2 = 0 and g3 = 0

φ1 =
1

C3(t− t0)2
− C2

2C3
=

4f1

3B3(t− t0)2
− 2B2 − f0

6B3
. (59)

H1 =
5

3(t− t0)
. (60)

We are of interest to obtain a bounded solution, which tends
to a finite limit at t → ∞. We have obtained such solutions in
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the following form

φ2 = D2 tanh(β(t− t0))
2 + D0, (61)

D2 =
4

3B3
f1β

2, D0 =
1

18B3

(
3(f0 − 2B2)− 16f1β

2
)
, (62)

where β is a root of the following equation

1024f2f1β
6 + 576f 2

1β
4 + 324B3B1 − 27(2B2 − f0)

2 = 0. (63)

Bounded real solutions for equation (53) correspond to real
root of equations (63). Pure image root of (63) correspond to
unbounded real solutions for equation (53), because tanh(βt)2 =
− tan(iβt)2. The solution φ2 exists at

C =
1

36B3

(
64f 2

1β
4 − 3(2B2 − f0)

2 + 36B3B1

)
. (64)

H2 =
β(2 cosh(βt)2 − 3)

3 cosh(βt) sinh(βt)
−

− 3B3(D2 tanh(βt)2 + D0)
2 + (2B2 − f0)(D2 tanh(βt)2 + D0) + B1

6f1D2β tanh(βt)(1− tanh(βt)2)
.
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Conclusions

We have studied the SFT inspired nonlocal models with quadratic
potentials and obtained:

Local and non-local Einstein equations have one
and the same solutions.
Nonlocality arises in the case of F(¤g) with an infi-
nite number of roots.
One system of non-local Einstein equations ⇔ Infin-
ity number of systems of local Einstein equations.
In the Friedmann–Robertson–Walker metric the pro-
posed method for the search of exact solutions for
field equation allows to get in quadratures solutions,
which depend on two arbitrary parameters. Exact
solutions have been found for a cubic potential.
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