

QUARKS-2010 6 June 2010

T.Uglov (ITEP)

The Belle detector

T.Uglov (ITEP)

KEKb accelerator

QUARKS-2010

Charmonium: a long story

First cc state, J/Ψ , was discovered in 1974.

During next 6 years another 9 cc states were found: $_{4.75}$ 1s $\Psi(2S), \eta_{c}, \chi_{c0}, \chi_{c1}, \chi_{c2}, 4.50$ $\Psi(3770), \Psi(4040), 4.25 \Psi(4160), \Psi(4415)$

No new charmonium states was found during 1980-2002

XYZ: new 'zoo'

Many new particles (>10) were discovered during last few years:

Exotic (still no conventional explanation)

State	M (MeV)	Γ (MeV)	J ^{PC}
$Y_{s}(2175)$	2175 ± 8	58 ± 26	1
X(3872)	$\textbf{3871.4} \pm \textbf{0.6}$	< 2.3	1++
X(3915)	3914 ± 4	23 ± 9	$0/2^{++}$
Z(3930)	3929 ± 5	29 ± 10	2++
X(3940)	3942 ± 9	37 ± 17	0 ^{?+}
Y(3940)	3943 ± 17	87 ± 34	? ^{?+}
Y(4008)	4008_{-49}^{+82}	226^{+97}_{-80}	$1^{}$
X(4160)	4156 ± 29	$139\substack{+113\\-65}$	0 ^{?+}
Y(4260)	4264 ± 12	83 ± 22	$1^{}$
Y(4350)	4361 ± 13	74 ± 18	1
X(4630)	4634^{+9}_{-11}	92^{+41}_{-32}	1
Y(4660)	4664 ± 12	48 ± 15	1
Z(4050)	4051^{+24}_{-23}	82^{+51}_{-29}	?
Z(4250)	4248^{+185}_{-45}	177^{+320}_{-72}	?
Z(4430)	4433 ± 5	45^{+35}_{-18}	?
$Y_b(10890)$	$10,890\pm3$	55 ± 9	1

QUARKS-2010 6 June 2010

T.Uglov (ITEP)

Recent news form Belle

Belle

Charmonium production

There are several charmonium sources in the e⁺e⁻ physics

Belle

Direct indication of the New Spectroscopy in charmonium:

Observation of states with forbidden $J^{P C}$

Extremely narrow width of the charmonium state

Non-zero charge or strangeness (or both)

Indirect indication of the New Physics:

Mass and/or width which does not fit any model

X(3872): unexpected puzzle

Y(3940)

Double charm:X(3940) & X(4160)

J/Ψφ: Y(4140) & Y(4350)

Y in ISR: 4008,4260,4350 & 4660

QUARKS-2010 6 June 2010

T.Uglov (ITEP)

Z: charged charmonium?

QUARKS-2010 6 June 2010

T.Uglov (ITEP)

Y_s(2175)

QUARKS-2010 6 June 2010

T.Uglov (ITEP)

Y_b(10890)

energy scan

QUARKS-2010 6 June 2010

T.Uglov (ITEP)

New States: interpretation

Very well known model J^{PC:} J=L+S; P=(-1)^{L+1}; C=(-1)^{L+S}

Loosely bound two charm mesons quark/color or pion exchange

Tightly bound four-quark state

Excited gluonic degree of freedom

Charmonium coated by a cloud of excited hadronic matter

Threshold effects:

Virtual states near threshold

QUARKS-2010 6 June 2010

T.Uglov (ITEP)

Interpretation: Conventional (cc)

<u>Conventional</u> <u>charmonium:</u>		CC	Very well known model J ^{PC:} J=L+S; P=(-1) ^{L+1} ; C=(-1) ^{L+S}			
	χ _: Ε	Expecte	ed Γ(J/Ψγ)/ Γ(J/Ψππ)~30; measured <0.2			
X(3872):	~100MeV/c² heavier					
	$\eta_c(2S)$:	Expected large $\Gamma(gg)$ and tiny $\Gamma(J/\Psi\pi\pi)$			
	~50 MeV/c ² lighter					
Y(3940):	$\Gamma(J/\Psi\omega)$ is too large					
Y(4260):	$3^{3}D_{1}$? $Y \rightarrow D^{(*)}D^{(*)}$ not found					
X(3940):	$\eta_c(3S)=3^1S_o \sim 100 MeV/c^2 mass shift$					
X(4160):	$\eta_c(4S)=4^1S_0 \sim 250 \text{MeV/c}^2 \text{ mass shift (if }\psi(4415)=\psi(4S))$					
Y _s (2175):	q	o(2170)	$=3^{3}S_{1}(ss)$ predicted width 380MeV			
4360), Y(4660): no vacant 1 ; no open-charm production; too large Γ(charmonium)						

Y

Interpretation: Molecule

Interpretation: Tetraquark

Y(4360), Y(4660): (cq)(cq) tetraquark?

Y(4140), Y(4350): (ccss) diquark-antidiquark state ?

Z's: (ccq_1q_2) tetraquark ?

Interpretation:Hybrids etc

Charmonium coated by a cloud of excited hadronic matter

Y(4360), Y(4660): Hadrocharmonium: (cc)+ excited light meson

Z's: Hadrocharmonium: $\Psi(2S) / \chi_{c1}$ + excited charged light meson

Interpretation: summary

State	M (MeV)	Г (MeV)	J ^{PC}	Popular interpretations	
$Y_{s}(2175)$	2175 ± 8	58 ± 26	1	$\varphi(2170)=3^{3}S_{1}(ss)$	
X(3872)	$\textbf{3871.4} \pm \textbf{0.6}$	< 2.3	1++	Molecule, χ_{c1} ', η_{c2} , tetraquark etc	
X(3915)	3914 ± 4	23 ± 9	$0/2^{++}$	Y(3940)	
Z(3930)	3929 ± 5	29 ± 10	2++	$\chi_{c}(2P)$	
X(3940)	3942 ± 9	37 ± 17	0 ^{?+}	η _c (3S)	
Y(3940)	3943 ± 17	87 ± 34	? ^{?+}	Conventional (cc), hybrid	
Y(4008)	4008_{-49}^{+82}	226^{+97}_{-80}	1	non-res J/Ψππ	
X(4160)	4156 ± 29	139^{+113}_{-65}	0 ^{?+}	$\eta_{c}(4S)$	
Y(4260)	4264 ± 12	83 ± 22	1	3 ³ D ₁	
Y(4350)	4361 ± 13	74 ± 18	1	Molecule, tetraquark,hadrocharmonium, hybrid	
X(4630)	4634^{+9}_{-11}	92^{+41}_{-32}	1	Y(4660)	
Y(4660)	4664 ± 12	48 ± 15	1	Molecule, tetraquark, hadrocharmonium, hybrid	
Z(4050)	4051^{+24}_{-23}	82^{+51}_{-29}	?	Malagula tatroquark	
Z(4250)	4248_{-45}^{+185}	177^{+320}_{-72}	?	Molecule, letraquark,	
Z(4430)	4433 ± 5	45^{+35}_{-18}	?	hadrocharmonium, hybrid	
$Y_b(10890)$	$10,890\pm3$	55 ± 9	1	Y(5S) Y(6S)	

QUARKS-2010 6 June

6 June 2010

T.Uglov (ITEP)

Results of B-factories (Belle and BaBar) as well as Tevatron experiments (CDF, D0) and many others (BES etc) start a new exciting era in hadron spectroscopy.

A lot of new states are opened, many of them remains unexplained.

New 'zoo' is a challenge:

For theoreticians to explain the origin of these states

For experimentalists to measure characteristics at highest possible precision

New Super B-factories could solve a XYZ puzzle

