Grassmanians and $\mathcal{N}=4$ SYM

Dual theory for the S-matrix

Jaroslav Trnka ${ }^{\dagger}$
${ }^{\dagger}$ Department of Physics, Princeton University

Based on collaboration with
Nima Arkani-Hamed, Freddy Cachazo and Jacob Bourjaily
N. Arkani-Hamed, F. Cachazo, C. Cheung, J. Kaplan 0903.2110, 0907.5418, 0909.0483
N. Arkani-Hamed, J. Bourjaily, F. Cachazo, J. T. 0912.4912, 0912.5289

Presented at Quarks 2010, Kolomna, Russia
\dagger Supported by Fulbright S\&T award and GAUK no. 6908 (114-10/258002)

Grassmanians and $\mathcal{N}=4$ SYM

Dual theory for the S-matrix

Jaroslav Trnka ${ }^{\dagger}$

${ }^{\dagger}$ Department of Physics, Princeton University

Also other people working in the same field:
A. Hodges, L. Mason, D. Skinner, L. Dolan, P. Goddard, M. Spradlin, A. Volovich, C. Wen, D. Nandan, J. Drummond, J. Henn, L. Ferro, G. Korchemsky, E. Sokatchev,...

Duality for the S-matrix

Duality for the S-matrix

Lagrangian description

- very intuitive
- manifestly local

Duality for the S-matrix

Lagrangian description

- very intuitive
- manifestly local
but
- problems with quantum gravity
- not all symmetries are manifest
- computationally cumbersome

Duality for the S-matrix

Lagrangian description

- very intuitive
- manifestly local
but
- problems with quantum gravity
- not all symmetries are manifest
- computationally cumbersome

Dual formulation of quantum field theory

- no reference to underlying space-time
- exchange manifest locality for simplicity of the S-matrix
- manifest all symmetries of the theory

Duality for the S-matrix

Lagrangian description

- very intuitive
- manifestly local
but
- problems with quantum gravity
- not all symmetries are manifest
- computationally cumbersome

Dual formulation of quantum field theory

- no reference to underlying space-time
- exchange manifest locality for simplicity of the S-matrix
- manifest all symmetries of the theory

Why we choose $\mathcal{N}=4 \mathrm{SYM}$ as a playground?

- "simplest" quantum field theory
- best choice for testing new ideas
- tree level in $\mathcal{N}=4$ SYM is identical to tree level in QCD

Preliminaries

Preliminaries

Spinor-helicity formalism

- for massless particles we can rewrite p_{α} in terms of spinors $\lambda_{a}, \tilde{\lambda}_{\dot{a}}$

$$
p_{\alpha}=\sigma_{\alpha}^{a \dot{a}} \lambda_{a} \tilde{\lambda}_{\dot{a}}
$$

where in $(2,2)$ signature, $\lambda, \tilde{\lambda}$ are real and independent

Preliminaries

Spinor-helicity formalism

- for massless particles we can rewrite p_{α} in terms of spinors $\lambda_{a}, \tilde{\lambda}_{\dot{a}}$

$$
p_{\alpha}=\sigma_{\alpha}^{a \dot{a}} \lambda_{a} \tilde{\lambda}_{\dot{a}}
$$

where in $(2,2)$ signature, $\lambda, \tilde{\lambda}$ are real and independent

- scalar products

$$
\left(p_{1}-p_{2}\right)^{2}=\langle 12\rangle[12] \quad\langle 12\rangle=\epsilon^{a b} \lambda_{1 a} \lambda_{2 b}, \quad[12]=\epsilon^{\dot{a} \dot{b}} \tilde{\lambda}_{1 \dot{a}} \tilde{\lambda}_{2 \dot{b}}
$$

- mixed product:

$$
\left.\langle i| P \mid j]=\sum_{k \in P}\langle i k\rangle[k j] \quad \text { e.g. } \quad\langle 1| 2+3 \mid 4\right]=\langle 12\rangle[24]+\langle 13\rangle[34]
$$

Preliminaries

Spinor-helicity formalism

- for massless particles we can rewrite p_{α} in terms of spinors $\lambda_{a}, \tilde{\lambda}_{\dot{a}}$

$$
p_{\alpha}=\sigma_{\alpha}^{a \dot{a}} \lambda_{a} \tilde{\lambda}_{\dot{a}}
$$

where in $(2,2)$ signature, $\lambda, \tilde{\lambda}$ are real and independent

- scalar products

$$
\left(p_{1}-p_{2}\right)^{2}=\langle 12\rangle[12] \quad\langle 12\rangle=\epsilon^{a b} \lambda_{1 a} \lambda_{2 b}, \quad[12]=\epsilon^{\dot{a} \dot{b}} \tilde{\lambda}_{1 \dot{a}} \tilde{\lambda}_{2 \dot{b}}
$$

- mixed product:

$$
\left.\langle i| P \mid j]=\sum_{k \in P}\langle i k\rangle[k j] \quad \text { e.g. } \quad\langle 1| 2+3 \mid 4\right]=\langle 12\rangle[24]+\langle 13\rangle[34]
$$

- they are covariant under the action of little group

$$
\lambda \rightarrow t \lambda, \quad \tilde{\lambda} \rightarrow t^{-1} \tilde{\lambda}
$$

leaving p_{α} invariant.

Preliminaries

Preliminaries

Color ordering Berends, Giele, Mangano, Parke, Xu

$$
\mathcal{M}_{n}\left(p_{i}\right)=\sum \operatorname{Tr}\left(T^{a_{1}} \ldots T^{a_{n}}\right) \mathcal{M}\left(p_{a_{1}} p_{a_{2}} \ldots p_{a_{n}}\right)
$$

Preliminaries

Color ordering Berends, Giele, Mangano, Parke, Xu

$$
\mathcal{M}_{n}\left(p_{i}\right)=\sum \operatorname{Tr}\left(T^{a_{1}} \ldots T^{a_{n}}\right) \mathcal{M}\left(p_{a_{1}} p_{a_{2}} \ldots p_{a_{n}}\right)
$$

Maximally-Helicity-Violating amplitudes, $k=2$ Parke, Taylor [1985]

- closed simple form for tree level amplitude: Parke-Taylor formula

$$
\mathcal{M}_{n}\left(a^{-}, b^{-}\right)=\frac{\langle a b\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle \ldots\langle n 1\rangle}
$$

- not evident at all from Lagrangian formalism!

Preliminaries

Color ordering Berends, Giele, Mangano, Parke, Xu

$$
\mathcal{M}_{n}\left(p_{i}\right)=\sum \operatorname{Tr}\left(T^{a_{1}} \ldots T^{a_{n}}\right) \mathcal{M}\left(p_{a_{1}} p_{a_{2}} \ldots p_{a_{n}}\right)
$$

Maximally-Helicity-Violating amplitudes, $k=2$ Parke, Taylor [1985]

- closed simple form for tree level amplitude: Parke-Taylor formula

$$
\mathcal{M}_{n}\left(a^{-}, b^{-}\right)=\frac{\langle a b\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle \ldots\langle n 1\rangle}
$$

- not evident at all from Lagrangian formalism!

Let us denote the number of negative helicities k.

- $\mathcal{M}(n, k)$ and $\mathcal{M}(n, n-k)$ are related by parity.
- we denote $N^{k-2} \mathrm{MHV}$ amplitude $\mathcal{M}(n, k)$

Localization in twistor space

Localization in twistor space

Twistor space: Penrose [1960s]

Localization in twistor space

Twistor space: Penrose [1960s]

Twistor variable W lives in $\mathbb{C} P^{3}$, supersymmetric analogue \mathcal{W} in $\mathbb{C} P^{3 \mid 4}$.

$$
W=\binom{\mu}{\lambda} \quad \mathcal{W}=\left(\begin{array}{c}
\tilde{\mu} \\
\tilde{\lambda} \\
\tilde{\eta}
\end{array}\right)
$$

Localization in twistor space

Connection to usual momentum space

$$
\mathcal{M}\left(\mathcal{W}_{a}\right)=\int d^{2} \lambda_{a} e^{\tilde{\mu}_{a} \lambda_{a}} \mathcal{M}\left(\lambda_{a}, \tilde{\lambda}_{a}, \tilde{\eta}_{a}\right)
$$

Localization in twistor space

Connection to usual momentum space

$$
\mathcal{M}\left(\mathcal{W}_{a}\right)=\int d^{2} \lambda_{a} e^{\tilde{\mu}_{a} \lambda_{a}} \mathcal{M}\left(\lambda_{a}, \tilde{\lambda}_{a}, \tilde{\eta}_{a}\right)
$$

Tree level amplitude in twistor space Witten [2003], Roiban, Spradlin, Volovich [2004]

CSW expansion

Cachazo, Svrcek, Witten [2004]

CSW expansion

Cachazo, Svrcek, Witten [2004]

- alternative to Feynman diagrams but manifestly local
- light cone gauge chosen: non-Lorentz invariant

CSW expansion

Cachazo, Svrcek, Witten [2004]

- alternative to Feynman diagrams but manifestly local
- light cone gauge chosen: non-Lorentz invariant
- amplitude is a sum over curves:

picture from FC
+ six other terms

Degree of the map is determined by k.

BCFW recursion relations

Britto, Cachazo, Feng [2004], Britto, Cachazo, Feng, Witten [2005]

BCFW recursion relations

Britto, Cachazo, Feng [2004], Britto, Cachazo, Feng, Witten [2005]

BCFW shift:

$$
\lambda_{i} \rightarrow \lambda_{i}+z \lambda_{j}, \quad \tilde{\lambda}_{j} \rightarrow \lambda_{j}-z \lambda_{i}
$$

BCFW recursion relations

Britto, Cachazo, Feng [2004], Britto, Cachazo, Feng, Witten [2005]
BCFW shift:

$$
\lambda_{i} \rightarrow \lambda_{i}+z \lambda_{j}, \quad \tilde{\lambda}_{j} \rightarrow \lambda_{j}-z \lambda_{i}
$$

- then the amplitude $\mathcal{M}(z)$ becomes complex
- if the amplitude vanishes for $z \rightarrow \infty$ we can use Cauchy's theorem

$$
\mathcal{M}(0)=\oint \frac{d z}{z} \mathcal{M}(z)=\sum_{z_{P}} \frac{\mathcal{M}\left(z_{P}\right)}{z_{P}}
$$

where z_{P} are value of z at poles, $p^{2}\left(z_{P}\right)=0$

BCFW recursion relations

Britto, Cachazo, Feng [2004], Britto, Cachazo, Feng, Witten [2005]

BCFW shift:

$$
\lambda_{i} \rightarrow \lambda_{i}+z \lambda_{j}, \quad \tilde{\lambda}_{j} \rightarrow \lambda_{j}-z \lambda_{i}
$$

- then the amplitude $\mathcal{M}(z)$ becomes complex
- if the amplitude vanishes for $z \rightarrow \infty$ we can use Cauchy's theorem

$$
\mathcal{M}(0)=\oint \frac{d z}{z} \mathcal{M}(z)=\sum_{z_{P}} \frac{\mathcal{M}\left(z_{P}\right)}{z_{P}}
$$

where z_{P} are value of z at poles, $p^{2}\left(z_{P}\right)=0$
Adjacent shift: $j=i+1 \quad \rightarrow \quad$ minimize the number of diagrams Non-adjacent shift: connection to gravity?

BCFW recursion relations

Britto, Cachazo, Feng [2004], Britto, Cachazo, Feng, Witten [2005]

BCFW recursion relations

Britto, Cachazo, Feng [2004], Britto, Cachazo, Feng, Witten [2005]

The amplitude is a sum over factorization channels

$$
\mathcal{M}=\sum_{L, h} \mathcal{M}_{L}\left(z_{P}, h\right) \frac{1}{P_{L}^{2}} \mathcal{M}_{R}\left(z_{P},-h\right)
$$

where the sub-amplitudes \mathcal{M}_{L} and \mathcal{M}_{R} are evaluated at $z=z_{P}$ while the denominator is at $z=0$

BCFW recursion relations

Britto, Cachazo, Feng [2004], Britto, Cachazo, Feng, Witten [2005]
Example for 6 pt NMHV $(k=3)$:

$$
\mathcal{M}(+-+-+-)=\frac{[13]^{4}\langle 46\rangle^{4}}{[12][23]\langle 45\rangle\langle 56\rangle\langle 6| 1+2 \mid 3]\langle 4| 2+3 \mid 1] s_{123}}
$$

+2 other cyclically related terms

BCFW recursion relations

Britto, Cachazo, Feng [2004], Britto, Cachazo, Feng, Witten [2005]

Example for 6 pt NMHV $(k=3)$:

$$
\mathcal{M}(+-+-+-)=\frac{[13]^{4}\langle 46\rangle^{4}}{[12][23]\langle 45\rangle\langle 56\rangle\langle 6| 1+2 \mid 3]\langle 4| 2+3 \mid 1] s_{123}}
$$

+2 other cyclically related terms
Spurious poles $\langle 6| 1+2 \mid 3]$ and $\langle 4| 2+3 \mid 1]$ cancel.
Much more compact form than in terms of Feynman diagrams and computationally much faster!

Leading singularities

Leading singularities

At 1-loop amplitudes are IR divergent. However, they are completely determined by leading singularities (in $\mathcal{N}=4$ just box diagrams):

Leading singularities

At 1-loop amplitudes are IR divergent. However, they are completely determined by leading singularities (in $\mathcal{N}=4$ just box diagrams):

LS

scalar integral

Leading singularities

At 1-loop amplitudes are IR divergent. However, they are completely determined by leading singularities (in $\mathcal{N}=4$ just box diagrams):

Relation to BCFW expansion: sum over leading singularities of one-loop graphs. For adjacent shifts (particles $i, i+1$), sum over following graphs:

Grassmanian proposal

Arkani-Hamed, Cachazo, Cheung, Kaplan [2009]

Grassmanian proposal

Arkani-Hamed, Cachazo, Cheung, Kaplan [2009]

$$
\mathcal{L}_{n, k}=\frac{1}{\operatorname{vol}[\mathrm{GL}(\mathrm{k})]} \int \frac{d^{k \times n} C_{\alpha a} \prod_{\alpha=1}^{k} \delta^{4 \mid 4}\left(C_{\alpha a} \mathcal{W}_{a}\right)}{(12 \ldots k)(23 \ldots k-1) \ldots(n \ldots k-1)}
$$

Grassmanian proposal

$$
\begin{aligned}
\text { Arkani-Hamed, Cachazo, Cheung, Kaplan [2009] } \\
\mathcal{L}_{n, k}=\frac{1}{\operatorname{vol}[\mathrm{GL}(\mathrm{k})]} \int \frac{d^{k \times n} C_{\alpha a} \prod_{\alpha=1}^{k} \delta^{4 \mid 4}\left(C_{\alpha a} \mathcal{W}_{a}\right)}{(12 \ldots k)(23 \ldots k-1) \ldots(n \ldots k-1)}
\end{aligned}
$$

This is an object that knows about all leading singularities (and maybe more) in $\mathcal{N}=4$ SYM

Grassmanian proposal

$$
\begin{aligned}
& \text { Arkani-Hamed, Cachazo, Cheung, Kaplan [2009] } \\
& \mathcal{L}_{n, k}=\frac{1}{\operatorname{vol}[\mathrm{GL}(\mathrm{k})]} \int \frac{d^{k \times n} C_{\alpha a} \prod_{\alpha=1}^{k} \delta^{4 \mid 4}\left(C_{\alpha a} \mathcal{W}_{a}\right)}{(12 \ldots k)(23 \ldots k-1) \ldots(n \ldots k-1)}
\end{aligned}
$$

This is an object that knows about all leading singularities (and maybe more) in $\mathcal{N}=4$ SYM

Grassmanian $G(k, n)$: space ok k-planes containing origin in \mathbb{C}^{n}

$$
\left(\begin{array}{cccccccc}
c_{11} & c_{12} & \ldots & c_{1 k} & c_{1 k+1} & \ldots & c_{1 n-1} & c_{1 n} \\
c_{21} & c_{22} & \ldots & c_{2 k} & c_{2 k+1} & \ldots & c_{2 n-1} & c_{2 n} \\
\vdots & \vdots \\
c_{k 1} & c_{k 2} & \ldots & c_{k k} & c_{k k+1} & \ldots & c_{k n-1} & c_{k n}
\end{array}\right)
$$

GL(k) invariant

Grassmanian proposal

Arkani-Hamed, Cachazo, Cheung, Kaplan [2009]

$$
\mathcal{L}_{n, k}=\frac{1}{\operatorname{vol}[\mathrm{GL}(\mathrm{k})]} \int \frac{d^{k \times n} C_{\alpha a} \prod_{\alpha=1}^{k} \delta^{44}\left(C_{\alpha a} \mathcal{W}_{a}\right)}{(12 \ldots k)(23 \ldots k-1) \ldots(n \ldots k-1)}
$$

Momentum conservation revisited:

$$
\delta^{4}\left(\sum_{a=1}^{n} p_{a}^{\alpha}\right) \rightarrow \delta^{4}\left(\sum_{a=1}^{n} \lambda_{a}^{\alpha} \lambda_{a}^{\dot{\alpha}}\right) \rightarrow \delta^{4}(\lambda \cdot \tilde{\lambda})
$$

where we can think about $\lambda, \tilde{\lambda}$ as 2 -planes in n-dimensions

$$
\lambda=\left(\begin{array}{cccc}
\lambda_{1}^{1} & \lambda_{2}^{1} & \ldots & \lambda_{n}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \ldots & \lambda_{n}^{2}
\end{array}\right) \quad \tilde{\lambda}=\left(\begin{array}{cccc}
\lambda_{1}^{i} & \lambda_{2}^{i} & \ldots & \lambda_{n}^{i} \\
\lambda_{1}^{2} & \lambda_{2}^{i} & \ldots & \lambda_{n}^{2}
\end{array}\right)
$$

that are orthogonal.

Grassmanian proposal

Arkani-Hamed, Cachazo, Cheung, Kaplan [2009]

$$
\mathcal{L}_{n, k}=\frac{1}{\operatorname{vol}[\mathrm{GL}(\mathrm{k})]} \int \frac{d^{k \times n} C_{\alpha a} \prod_{\alpha=1}^{k} \delta^{4 \mid 4}\left(C_{\alpha a} \mathcal{W}_{a}\right)}{(12 \ldots k)(23 \ldots k-1) \ldots(n \ldots k-1)}
$$

We consider a C-plane that is orthogonal to $\tilde{\lambda}$-plane and contains λ-plane.

Grassmanian proposal

Arkani-Hamed, Cachazo, Cheung, Kaplan [2009]

$$
\mathcal{L}_{n, k}=\frac{1}{\operatorname{vol}[\mathrm{GL}(\mathrm{k})]} \int \frac{d^{k \times n} C_{\alpha a} \prod_{\alpha=1}^{k} \delta^{4 \mid 4}\left(C_{\alpha a} \mathcal{W}_{a}\right)}{(12 \ldots k)(23 \ldots k-1) \ldots(n \ldots k-1)}
$$

The delta function exactly does this job:

$$
\prod_{\alpha=1}^{k} \delta^{4 \mid 4}\left(C_{\alpha a} \mathcal{W}_{a}\right) \rightarrow \prod_{\alpha=1}^{k} \delta^{0 \mid 4}\left(C_{\alpha a} \tilde{\eta}_{a}\right) \cdot \delta^{2}\left(C_{\alpha a} \tilde{\lambda}_{a}\right) \cdot \int d^{2} \rho_{\alpha} \delta^{2}\left(\lambda_{a}-\rho_{\beta} C_{\beta a}\right)
$$

Grassmanian proposal

Arkani-Hamed, Cachazo, Cheung, Kaplan [2009]

$$
\mathcal{L}_{n, k}=\frac{1}{\operatorname{vol}[\mathrm{GL}(\mathrm{k})]} \int \frac{d^{k \times n} C_{\alpha a} \prod_{\alpha=1}^{k} \delta^{4 \mid 4}\left(C_{\alpha a} \mathcal{W}_{a}\right)}{(12 \ldots k)(23 \ldots k-1) \ldots(n \ldots k-1)}
$$

The delta function exactly does this job:

$$
\prod_{\alpha=1}^{k} \delta^{4 \mid 4}\left(C_{\alpha a} \mathcal{W}_{a}\right) \rightarrow \prod_{\alpha=1}^{k} \delta^{0 \mid 4}\left(C_{\alpha a} \tilde{\eta}_{a}\right) \cdot \delta^{2}\left(C_{\alpha a} \tilde{\lambda}_{a}\right) \cdot \int d^{2} \rho_{\alpha} \delta^{2}\left(\lambda_{a}-\rho_{\beta} C_{\beta a}\right)
$$

In fact, C plane is orthogonal to full $2 \mid 4$-plane.

Grassmanian proposal

Arkani-Hamed, Cachazo, Cheung, Kaplan [2009]

$$
\mathcal{L}_{n, k}=\frac{1}{\operatorname{vol}[\mathrm{GL}(\mathrm{k})]} \int \frac{d^{k \times n} C_{\alpha a} \prod_{\alpha=1}^{k} \delta^{4 \mid 4}\left(C_{\alpha a} \mathcal{W}_{a}\right)}{(12 \ldots k)(23 \ldots k-1) \ldots(n \ldots k-1)}
$$

The delta function exactly does this job:
$\prod_{\alpha=1}^{k} \delta^{4 \mid 4}\left(C_{\alpha a} \mathcal{W}_{a}\right) \rightarrow \prod_{\alpha=1}^{k} \delta^{0 \mid 4}\left(C_{\alpha a} \tilde{\eta}_{a}\right) \cdot \delta^{2}\left(C_{\alpha a} \tilde{\lambda}_{a}\right) \cdot \int d^{2} \rho_{\alpha} \delta^{2}\left(\lambda_{a}-\rho_{\beta} C_{\beta a}\right)$
In fact, C plane is orthogonal to full $2 \mid 4$-plane.
Now we integrate over all these C planes with a natural cyclic measure of minors

$$
(12 \ldots k)=\left|\begin{array}{ccc}
c_{11} & \ldots & c_{1 k} \\
\vdots & \vdots & \vdots \\
c_{k 1} & \ldots & c_{k k}
\end{array}\right|
$$

Grassmanian proposal

Arkani-Hamed, Cachazo, Cheung, Kaplan [2009]

$$
\mathcal{L}_{n, k}^{i_{1}, \ldots i_{k}}=\frac{1}{\operatorname{vol}[\mathrm{GL}(\mathrm{k})]} \int \frac{d^{k \times n} C_{\alpha a} \prod_{\alpha=1}^{k} \delta^{4}\left(C_{\alpha a} W_{a}\right)\left(i_{1} \ldots i_{k}\right)^{4}}{(12 \ldots k)(23 \ldots k-1) \ldots(n \ldots k-1)}
$$

Grassmanian proposal

Arkani-Hamed, Cachazo, Cheung, Kaplan [2009]

$$
\mathcal{L}_{n, k}^{i_{1}, \ldots i_{k}}=\frac{1}{\operatorname{vol}[\mathrm{GL}(\mathrm{k})]} \int \frac{d^{k \times n} C_{\alpha a} \prod_{\alpha=1}^{k} \delta^{4}\left(C_{\alpha a} W_{a}\right)\left(i_{1} \ldots i_{k}\right)^{4}}{(12 \ldots k)(23 \ldots k-1) \ldots(n \ldots k-1)}
$$

picking some particular helicity configuration of external gluons

$$
\prod_{\alpha=1}^{k} \delta^{4}\left(C_{\alpha a} W_{a}\right) \rightarrow \prod_{\alpha=1}^{k} \delta^{2}\left(C_{\alpha a} \tilde{\lambda}_{a}\right) \cdot \int d^{2} \rho_{\alpha} \delta^{2}\left(\lambda_{a}-\rho_{\beta} C_{\beta a}\right)
$$

we get the result for QCD!
C-plane is orthogonal just to 2-plane $\tilde{\lambda}$.

Grassmanian proposal

Arkani-Hamed, Cachazo, Cheung, Kaplan [2009]

$$
\mathcal{L}_{n, k}=\frac{1}{\operatorname{vol}[\mathrm{GL}(\mathrm{k})]} \int \frac{d^{k \times n} C_{\alpha a} \prod_{\alpha=1}^{k} \delta^{4 \mid 4}\left(C_{\alpha a} \mathcal{W}_{a}\right)}{(12 \ldots k)(23 \ldots k-1) \ldots(n \ldots k-1)}
$$

Leading singularities in twistor space Mason, Skinner [2009], Kaplan [2009] :

Grassmanian proposal

Arkani-Hamed, Cachazo, Cheung, Kaplan [2009]

$$
\mathcal{L}_{n, k}=\frac{1}{\operatorname{vol}[\mathrm{GL}(\mathrm{k})]} \int \frac{d^{k \times n} C_{\alpha a} \prod_{\alpha=1}^{k} \delta^{4 \mid 4}\left(C_{\alpha a} \mathcal{W}_{a}\right)}{(12 \ldots k)(23 \ldots k-1) \ldots(n \ldots k-1)}
$$

Leading singularities in twistor space Mason, Skinner [2009], Kaplan [2009] :
just corresponds to

$$
\int \mathcal{D}^{3 \mid 4} \mathcal{W}_{I_{1}} \ldots \mathcal{D}^{3 \mid 4} \mathcal{W}_{I_{4}} \mathcal{M}_{A}\left(\mathcal{W}_{I_{1}}, \mathcal{W}_{I_{2}}, \ldots\right) \ldots \mathcal{M}_{D}\left(\mathcal{W}_{I_{4}}, \mathcal{W}_{I_{1}}, \ldots\right)
$$

\rightarrow leading singularities are manifestly superconformal invariant!

Grassmanian proposal

Arkani-Hamed, Cachazo, Cheung, Kaplan [2009]

$$
\mathcal{L}_{n, k}=\frac{1}{\operatorname{vol}[\mathrm{GL}(\mathrm{k})]} \int \frac{d^{k \times n} C_{\alpha a} \prod_{\alpha=1}^{k} \delta^{4 \mid 4}\left(C_{\alpha a} \mathcal{W}_{a}\right)}{(12 \ldots k)(23 \ldots k-1) \ldots(n \ldots k-1)}
$$

The conjecture is that

- all leading singularities of all loop graphs are residues of this integrals

- there exists a contour which gives a tree level amplitude
- locality is guaranteed by the residue theorem

Grassmanian proposal

Arkani-Hamed, Cachazo, Cheung, Kaplan [2009]

$$
\mathcal{L}_{n, k}=\frac{1}{\operatorname{vol}[\mathrm{GL}(\mathrm{k})]} \int \frac{d^{k \times n} C_{\alpha a} \prod_{\alpha=1}^{k} \delta^{4 \mid 4}\left(C_{\alpha a} \mathcal{W}_{a}\right)}{(12 \ldots k)(23 \ldots k-1) \ldots(n \ldots k-1)}
$$

Grassmanian proposal

$$
\begin{aligned}
& \text { Arkani-Hamed, Cachazo, Cheung, Kaplan [2009] } \\
& \mathcal{L}_{n, k}=\frac{1}{\operatorname{vol}[\mathrm{GL}(\mathrm{k})]} \int \frac{d^{k \times n} C_{\alpha a} \prod_{\alpha=1}^{k} \delta^{4 \mid 4}\left(C_{\alpha a} \mathcal{W}_{a}\right)}{(12 \ldots k)(23 \ldots k-1) \ldots(n \ldots k-1)}
\end{aligned}
$$

Counting:

- we start with $n \cdot k$ variables in $C_{\alpha a}$
- $G L(k)$ removes k^{2} degrees of freedom
- delta functions remove $2 n-4$ variables
- we are left with $(k-2)(n-k-2)$ variables and $\mathcal{L}_{n, k}$ can be interpreted as multi-dimensional contour integral in $\mathbb{C}^{(k-2)(n-k-2)}$

We also see that that there is no solution for constraints for $k=0,1, n-1, n$ which makes perfect sense!

Grassmanian proposal

$$
\begin{aligned}
& \text { Arkani-Hamed, Cachazo, Cheung, Kaplan [2009] } \\
& \mathcal{L}_{n, k}=\frac{1}{\operatorname{vol}[\mathrm{GL}(\mathrm{k})]} \int \frac{d^{k \times n} C_{\alpha a} \prod_{\alpha=1}^{k} \delta^{4 \mid 4}\left(C_{\alpha a} \mathcal{W}_{a}\right)}{(12 \ldots k)(23 \ldots k-1) \ldots(n \ldots k-1)}
\end{aligned}
$$

Counting:

- we start with $n \cdot k$ variables in $C_{\alpha a}$
- $G L(k)$ removes k^{2} degrees of freedom
- delta functions remove $2 n-4$ variables
- we are left with $(k-2)(n-k-2)$ variables and $\mathcal{L}_{n, k}$ can be interpreted as multi-dimensional contour integral in $\mathbb{C}^{(k-2)(n-k-2)}$

We also see that that there is no solution for constraints for $k=0,1, n-1, n$ which makes perfect sense!

MHV amplitude: no integration, the result is determined just by Jacobian

Example: 6 pt NMHV

For $n=6, k=3$ we have just one integral left. Therefore, $\mathcal{L}_{n, k}$ is a 1-dimensional contour integral.

$$
\mathcal{L}_{6,3}=\int \frac{\left(i_{1} i_{2} i_{3}\right)^{4} d \tau}{(123)(\tau)(234)(\tau)(345)(\tau)(456)(\tau)(561)(\tau)(612)(\tau)}
$$

Example: 6 pt NMHV

For $n=6, k=3$ we have just one integral left. Therefore, $\mathcal{L}_{n, k}$ is a 1-dimensional contour integral.

$$
\mathcal{L}_{6,3}=\int \frac{\left(i_{1} i_{2} i_{3}\right)^{4} d \tau}{(123)(\tau)(234)(\tau)(345)(\tau)(456)(\tau)(561)(\tau)(612)(\tau)}
$$

There are six poles in the complex plane

picture from FC
(123)
(561)

Example: 6 pt NMHV

For $n=6, k=3$ we have just one integral left. Therefore, $\mathcal{L}_{n, k}$ is a 1-dimensional contour integral.

$$
\mathcal{L}_{6,3}=\int \frac{\left(i_{1} i_{2} i_{3}\right)^{4} d \tau}{(123)(\tau)(234)(\tau)(345)(\tau)(456)(\tau)(561)(\tau)(612)(\tau)}
$$

Tree level contour (BCFW form)

Example: 6 pt NMHV

For $n=6, k=3$ we have just one integral left. Therefore, $\mathcal{L}_{n, k}$ is a 1-dimensional contour integral.

$$
\mathcal{L}_{6,3}=\int \frac{\left(i_{1} i_{2} i_{3}\right)^{4} d \tau}{(123)(\tau)(234)(\tau)(345)(\tau)(456)(\tau)(561)(\tau)(612)(\tau)}
$$

Physical poles

picture from FC

Example: 6 pt NMHV

For $n=6, k=3$ we have just one integral left. Therefore, $\mathcal{L}_{n, k}$ is a 1-dimensional contour integral.

$$
\mathcal{L}_{6,3}=\int \frac{\left(i_{1} i_{2} i_{3}\right)^{4} d \tau}{(123)(\tau)(234)(\tau)(345)(\tau)(456)(\tau)(561)(\tau)(612)(\tau)}
$$

Spurious poles

Dual Super-Conformal invariance

We can introduce \mathcal{Z}_{i} momentum twistors associated with momenta $x_{i}=p_{i}-p_{i-1}$ in dual space. Hodges [2009]

Dual Super-Conformal invariance

We can introduce \mathcal{Z}_{i} momentum twistors associated with momenta $x_{i}=p_{i}-p_{i-1}$ in dual space. Hodges [2009]
picture from FC

Dual Space-Time Momentum Twistor Space

Dual Super-Conformal invariance

Momentum twistors Hodges [2009]

$$
\mathcal{Z}=\left(\begin{array}{l}
\lambda \\
\mu \\
\eta
\end{array}\right)
$$

Dual Super-Conformal invariance

Momentum twistors Hodges [2009]

$$
\mathcal{Z}=\left(\begin{array}{l}
\lambda \\
\mu \\
\eta
\end{array}\right)
$$

We can rewrite Grassmanians using momentum twistors:
Mason, Skinner [2009], Arkani-Hamed, Cachazo, Kaplan [2009]

$$
\mathcal{L}_{n, k} \sim \frac{1}{\operatorname{vol}[\mathrm{GL}(\mathrm{k}-2)]} \int \frac{d^{(k-2) \times n} D_{\alpha a} \prod_{\alpha=1}^{k-2} \delta^{4 \mid 4}\left(D_{\alpha a} \mathcal{Z}_{a}\right)}{(12 \ldots k-2)(23 \ldots k-1) \ldots(n \ldots k-3)}
$$

is Grassmanian $G(k-2, n)$ which is invariant under second (dual) conformal symmetry (acting on $x_{i}=p_{i}-p_{i-1}$).

Dual Super-Conformal invariance

Momentum twistors Hodges [2009]

$$
\mathcal{Z}=\left(\begin{array}{l}
\lambda \\
\mu \\
\eta
\end{array}\right)
$$

We can rewrite Grassmanians using momentum twistors:
Mason, Skinner [2009], Arkani-Hamed, Cachazo, Kaplan [2009]

$$
\mathcal{L}_{n, k} \sim \frac{1}{\operatorname{vol}[\mathrm{GL}(\mathrm{k}-2)]} \int \frac{d^{(k-2) \times n} D_{\alpha a} \prod_{\alpha=1}^{k-2} \delta^{4 \mid 4}\left(D_{\alpha a} \mathcal{Z}_{a}\right)}{(12 \ldots k-2)(23 \ldots k-1) \ldots(n \ldots k-3)}
$$

is Grassmanian $G(k-2, n)$ which is invariant under second (dual) conformal symmetry (acting on $x_{i}=p_{i}-p_{i-1}$).

In fact, all residues are then invariant under both conformal and dual conformal symmetries \rightarrow Yangian invariant!

Yangian invariance

Yangian invariance

It was proven that

$$
\int d^{k \times n} C f(C) \delta^{4 \mid 4}(C \cdot \mathcal{W})
$$

under the action of Yangian generators, transforms into total derivative only if

$$
f(C)=\frac{1}{(12 \ldots k) \ldots(n 1 \ldots k-1)}
$$

Then, the residues are Yangian invariant.

Yangian invariance

It was proven that

$$
\int d^{k \times n} C f(C) \delta^{4 \mid 4}(C \cdot \mathcal{W})
$$

under the action of Yangian generators, transforms into total derivative only if

$$
f(C)=\frac{1}{(12 \ldots k) \ldots(n 1 \ldots k-1)}
$$

Then, the residues are Yangian invariant.
There is also a claim that every super-conformal invariant is of this form. If this is true, then $\mathcal{L}(n, k)$ is the unique way how to write Yangian invariants!

Relation to twistor strings

Arkani-Hamed, Bourjaily, Cachazo, JT [2009]

Relation to twistor strings

Arkani-Hamed, Bourjaily, Cachazo, JT [2009]
We want to write the integral in the form (for NMHV)

$$
A=\int d^{(n-5)} \tau \frac{h(\tau)}{f_{1}(\tau) \ldots f_{n-5}(\tau)}
$$

where

$$
\frac{h}{f_{1} \ldots f_{n-5}}=\frac{1}{(123) \ldots(n 12)}
$$

Relation to twistor strings

> Arkani-Hamed, Bourjaily, Cachazo, JT [2009]

We want to write the integral in the form (for NMHV)

$$
A=\int d^{(n-5)} \tau \frac{h(\tau)}{f_{1}(\tau) \ldots f_{n-5}(\tau)}
$$

where

$$
\frac{h}{f_{1} \ldots f_{n-5}}=\frac{1}{(123) \ldots(n 12)}
$$

Construction of this map for NMHV, (also Nandan, Volovich, Wen [2009]) e.g. for 7 pt we have

$$
A_{7}=\int_{f_{6}=f_{7}=0} d \tau_{1} d \tau_{2} \frac{(612)(235)}{(671)(123)(345)} \cdot \frac{1}{[(234)(456)(612)]} \frac{1}{[(235)(567)(712)]}
$$

Relation to twistor strings

Arkani-Hamed, Bourjaily, Cachazo, JT [2009]

We want to write the integral in the form (for NMHV)

$$
A=\int d^{(n-5)} \tau \frac{h(\tau)}{f_{1}(\tau) \ldots f_{n-5}(\tau)}
$$

where

$$
\frac{h}{f_{1} \ldots f_{n-5}}=\frac{1}{(123) \ldots(n 12)}
$$

Construction of this map for NMHV, (also Nandan, Volovich, Wen [2009]) e.g. for 7 pt we have

$$
A_{7}=\int_{f_{6}=f_{7}=0} d \tau_{1} d \tau_{2} \frac{(612)(235)}{(671)(123)(345)} \cdot \frac{1}{[(234)(456)(612)]} \frac{1}{[(235)(567)(712)]}
$$

where

$$
h=\frac{(612)(235)}{(671)(123)(345)}, \quad f_{6}=(234)(456)(612), \quad f_{7}=(235)(567)(712)
$$

Relation to twistor strings

Recently, extension to general $k \quad$ Bourjaily, JT, Volovich, Wen [2010]

Relation to twistor strings

Recently, extension to general $k \quad$ Bourjaily, JT, Volovich, Wen [2010]
This is also a connection with Witten's twistor string theory.

- There exists a continuous deformation of f 's which does not affect the result but can be shown to come from twistor string formulation of the amplitude.
- It nicely manifests cyclic symmetry and $U(1)$ decoupling identity.

Relation to twistor strings

Recently, extension to general $k \quad$ Bourjaily, JT, Volovich, Wen [2010]
This is also a connection with Witten's twistor string theory.

- There exists a continuous deformation of f 's which does not affect the result but can be shown to come from twistor string formulation of the amplitude.
- It nicely manifests cyclic symmetry and $U(1)$ decoupling identity.

Residues corresponding to tree-level amplitude are glued together into one object:

Relation to twistor strings

Recently, extension to general $k \quad$ Bourjaily, JT, Volovich, Wen [2010]
This is also a connection with Witten's twistor string theory.

- There exists a continuous deformation of f 's which does not affect the result but can be shown to come from twistor string formulation of the amplitude.
- It nicely manifests cyclic symmetry and $U(1)$ decoupling identity.

Residues corresponding to tree-level amplitude are glued together into one object:

Unification

Local physics from Grassmanian
 Arkani-Hamed, Bourjaily, Cachazo, JT [2009]

Local physics from Grassmanian

Arkani-Hamed, Bourjaily, Cachazo, JT [2009]

Let us consider our 6 pt NMHV example and relax one of the delta functions (think about it as a pole)

$$
\mathcal{L}_{6,3}=\int \frac{d^{2} \tau}{(123)(234)(345)(456)(561)(612)(A)(\xi)}
$$

where ξ is a null direction that breaks Lorentz invariance

Local physics from Grassmanian

Arkani-Hamed, Bourjaily, Cachazo, JT [2009]

Let us consider our 6 pt NMHV example and relax one of the delta functions (think about it as a pole)

$$
\mathcal{L}_{6,3}=\int \frac{d^{2} \tau}{(123)(234)(345)(456)(561)(612)(A)(\xi)}
$$

where ξ is a null direction that breaks Lorentz invariance

- the former tree level amplitude is a residue at $(A)=0$ which has now form $A_{6,3}=(123)(A)+(345)(A)+(561)(A)$

Local physics from Grassmanian

Arkani-Hamed, Bourjaily, Cachazo, JT [2009]
Let us consider our 6 pt NMHV example and relax one of the delta functions (think about it as a pole)

$$
\mathcal{L}_{6,3}=\int \frac{d^{2} \tau}{(123)(234)(345)(456)(561)(612)(A)(\xi)}
$$

where ξ is a null direction that breaks Lorentz invariance

- the former tree level amplitude is a residue at $(A)=0$ which has now form $A_{6,3}=(123)(A)+(345)(A)+(561)(A)$
- residue theorem, e.g.

$$
(123)[(A)+(234)+(345)+(456)+(561)+(612)]=0
$$

We use them to rewrite $(123)(A),(345)(A)$ and $(561)(A)$.

Local physics from Grassmanian

Arkani-Hamed, Bourjaily, Cachazo, JT [2009]
Let us consider our 6 pt NMHV example and relax one of the delta functions (think about it as a pole)

$$
\mathcal{L}_{6,3}=\int \frac{d^{2} \tau}{(123)(234)(345)(456)(561)(612)(A)(\xi)}
$$

where ξ is a null direction that breaks Lorentz invariance

- the former tree level amplitude is a residue at $(A)=0$ which has now form $A_{6,3}=(123)(A)+(345)(A)+(561)(A)$
- residue theorem, e.g.

$$
(123)[(A)+(234)+(345)+(456)+(561)+(612)]=0
$$

We use them to rewrite $(123)(A),(345)(A)$ and $(561)(A)$.

- Finally, all residues cancel in pairs except nine which are exactly CSW diagrams!

Local physics from Grassmanian

Arkani-Hamed, Bourjaily, Cachazo, JT [2009]
Let us consider our 6 pt NMHV example and relax one of the delta functions (think about it as a pole)

$$
\mathcal{L}_{6,3}=\int \frac{d^{2} \tau}{(123)(234)(345)(456)(561)(612)(A)(\xi)}
$$

where ξ is a null direction that breaks Lorentz invariance

- the former tree level amplitude is a residue at $(A)=0$ which has now form $A_{6,3}=(123)(A)+(345)(A)+(561)(A)$
- residue theorem, e.g.

$$
(123)[(A)+(234)+(345)+(456)+(561)+(612)]=0
$$

We use them to rewrite $(123)(A),(345)(A)$ and $(561)(A)$.

- Finally, all residues cancel in pairs except nine which are exactly CSW diagrams!
- CSW diagrams are generated from Lagrangian in the light-cone gauge \rightarrow space-time is reintroduced!

Local physics from Grassmanian

> Arkani-Hamed, Bourjaily, Cachazo, JT [2009]

In fact, we rewrote each (non-local) residue as a sum of

- local pieces which are CSW diagrams and correspond to Feynman diagrams!
- non-local terms that cancel in pairs when summing over all residues in tree-level amplitude

Local physics from Grassmanian

> Arkani-Hamed, Bourjaily, Cachazo, JT [2009]

In fact, we rewrote each (non-local) residue as a sum of

- local pieces which are CSW diagrams and correspond to Feynman diagrams!
- non-local terms that cancel in pairs when summing over all residues in tree-level amplitude

Scattering amplitudes want to be written in terms of non-local objects, it is the most compact and natural way how to write them!

Local physics from Grassmanian

> Arkani-Hamed, Bourjaily, Cachazo, JT [2009]

In fact, we rewrote each (non-local) residue as a sum of

- local pieces which are CSW diagrams and correspond to Feynman diagrams!
- non-local terms that cancel in pairs when summing over all residues in tree-level amplitude

Scattering amplitudes want to be written in terms of non-local objects, it is the most compact and natural way how to write them!

Emergent space-time

