
Grassmanians and N = 4 SYM
Dual theory for the S-matrix

Jaroslav Trnka†

†Department of Physics, Princeton University

Based on collaboration with
Nima Arkani-Hamed, Freddy Cachazo and Jacob Bourjaily

N. Arkani-Hamed, F. Cachazo, C. Cheung, J. Kaplan 0903.2110, 0907.5418, 0909.0483

N. Arkani-Hamed, J. Bourjaily, F. Cachazo, J. T. 0912.4912, 0912.5289

Presented at Quarks 2010, Kolomna, Russia

† Supported by Fulbright S&T award and GAUK no.6908 (114-10/258002)

Jaroslav Trnka Grassmanians and N = 4 SYM 1/31



Grassmanians and N = 4 SYM
Dual theory for the S-matrix

Jaroslav Trnka†

†Department of Physics, Princeton University

Also other people working in the same field:

A. Hodges, L. Mason, D. Skinner, L. Dolan, P. Goddard, M. Spradlin,
A. Volovich, C. Wen, D. Nandan, J. Drummond, J. Henn, L. Ferro,

G. Korchemsky, E. Sokatchev,. . .

Shortcuts for pictures taken from talks by: FC - F. Cachazo, JB - J. Bourjaily, CC - C. Cheung

Jaroslav Trnka Grassmanians and N = 4 SYM 2/31



Duality for the S-matrix

Lagrangian description
very intuitive
manifestly local

but
problems with quantum gravity
not all symmetries are manifest
computationally cumbersome

Dual formulation of quantum field theory
no reference to underlying space-time
exchange manifest locality for simplicity of the S-matrix
manifest all symmetries of the theory

Why we choose N = 4 SYM as a playground?
”simplest”quantum field theory
best choice for testing new ideas
tree level in N = 4 SYM is identical to tree level in QCD
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Preliminaries

Spinor-helicity formalism
for massless particles we can rewrite pα in terms of spinors λa, λ̃ȧ

pα = σaȧα λaλ̃ȧ

where in (2,2) signature, λ, λ̃ are real and independent
scalar products

(p1 − p2)2 = 〈12〉[12] 〈12〉 = εabλ1aλ2b, [12] = εȧḃλ̃1ȧλ̃2ḃ

mixed product:

〈i|P |j] =
∑

k∈P
〈ik〉[kj] e.g. 〈1|2 + 3|4] = 〈12〉[24] + 〈13〉[34]

they are covariant under the action of little group

λ→ tλ, λ̃→ t−1λ̃

leaving pα invariant.
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Preliminaries

Color ordering Berends, Giele, Mangano, Parke, Xu

Mn(pi) =
∑

Tr(T a1 . . . T an)M(pa1pa2 . . . pan)

Maximally-Helicity-Violating amplitudes, k = 2 Parke, Taylor [1985]

closed simple form for tree level amplitude: Parke-Taylor formula

Mn(a
−, b−) =

〈ab〉4
〈12〉〈23〉〈34〉 . . . 〈n1〉

not evident at all from Lagrangian formalism!

Let us denote the number of negative helicities k.

M(n, k) and M(n, n− k) are related by parity.

we denote Nk−2MHV amplitude M(n, k)
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Localization in twistor space

Twistor space: Penrose [1960s]
picture from FC

Remarkable properties: Tree-Level

• Twistor space localization. (Witten 2003)

Twistor space (Penrose 1960s)

Line ~ CP1

T wistor S paceT imeS pace

Point

Point

Light ray

Twistor variable W lives in CP 3, supersymmetric analogue W in CP 3|4.

W =

(
µ
λ

)
W =




µ̃

λ̃
η̃
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Localization in twistor space
Connection to usual momentum space

M(Wa) =

∫
d2λae

µ̃aλaM(λa, λ̃a, η̃a)

Tree level amplitude in twistor space
Witten [2003], Roiban, Spradlin, Volovich [2004]

picture from FC

Remarkable properties: Tree-Level

• Twistor space localization. (Witten 2003) (Connected vs. Disconnected)
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The degree of the map is related to the helicity of the gluons.
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CSW expansion
Cachazo, Svrcek, Witten [2004]

alternative to Feynman diagrams but manifestly local
light cone gauge chosen: non-Lorentz invariant
amplitude is a sum over curves:

picture from FC

Remarkable properties: Tree-Level

• Twistor space localization.

• CSW expansion. (F.C.,Svrcek, Witten 2004)
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= +

+ + six other terms

Degree of the map is determined by k.
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BCFW recursion relations
Britto, Cachazo, Feng [2004], Britto, Cachazo, Feng, Witten [2005]

BCFW shift:

λi → λi + zλj , λ̃j → λj − zλi

then the amplitude M(z) becomes complex

if the amplitude vanishes for z →∞ we can use Cauchy’s theorem

M(0) =

∮
dz

z
M(z) =

∑

zP

M(zP )

zP

where zP are value of z at poles, p2(zP ) = 0

Adjacent shift: j = i+ 1 → minimize the number of diagrams

Non-adjacent shift: connection to gravity?
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BCFW recursion relations
Britto, Cachazo, Feng [2004], Britto, Cachazo, Feng, Witten [2005]

picture from CC

BCFW
Summing over zP yields the BCFW reduction of M:

ML MR

h

1

P 2
L∑

L∪R,h

λi(zP ) λ̃j(zP )

−PL(zP ) PL(zP )

−h

where the pole is at zP = − P2
L

2[i |PL|j〉 .

With maximal SUSY, all h are smoothly labeled by η. For

BCFW, shift ηi(z) = ηi + zηj and replace
∑

h with
∫
dNη.

The amplitude is a sum over factorization channels

M =
∑

L,h

ML(zP , h)
1

P 2
L

MR(zP ,−h)

where the sub-amplitudes ML and MR are evaluated at z = zP while
the denominator is at z = 0
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BCFW recursion relations
Britto, Cachazo, Feng [2004], Britto, Cachazo, Feng, Witten [2005]

Example for 6pt NMHV (k = 3):

M(+−+−+−) = [13]4〈46〉4
[12][23]〈45〉〈56〉〈6|1 + 2|3] 〈4|2 + 3|1] s123

+ 2 other cyclically related terms

Spurious poles 〈6|1 + 2|3] and 〈4|2 + 3|1] cancel.

Much more compact form than in terms of Feynman diagrams and
computationally much faster!
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Leading singularities

At 1-loop amplitudes are IR divergent. However, they are completely
determined by leading singularities (in N = 4 just box diagrams):

Relation to BCFW expansion: sum over lead-
ing singularities of one-loop graphs. For ad-
jacent shifts (particles i, i + 1), sum over
following graphs:
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Grassmanian proposal
Arkani-Hamed, Cachazo, Cheung, Kaplan [2009]

Ln,k =
1

vol[GL(k)]

∫
dk×nCαa

∏k
α=1 δ

4|4(CαaWa)

(12 . . . k)(23 . . . k − 1) . . . (n . . . k − 1)

This is an object that knows about all leading singularities (and maybe
more) in N = 4 SYM

Grassmanian G(k, n): space ok k-planes containing origin in Cn




c11 c12 . . . c1k c1k+1 . . . c1n−1 c1n
c21 c22 . . . c2k c2k+1 . . . c2n−1 c2n

...
...

...
...

...
...

...
...

ck1 ck2 . . . ckk ckk+1 . . . ckn−1 ckn




GL(k) invariant
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Grassmanian proposal
Arkani-Hamed, Cachazo, Cheung, Kaplan [2009]

Ln,k =
1

vol[GL(k)]

∫
dk×nCαa

∏k
α=1 δ

4|4(CαaWa)

(12 . . . k)(23 . . . k − 1) . . . (n . . . k − 1)

Momentum conservation revisited:

δ4

(
n∑

a=1

pαa

)
→ δ4

(
n∑

a=1

λαaλ
α̇
a

)
→ δ4(λ · λ̃)

where we can think about λ, λ̃ as 2-planes in n-dimensions

λ =

(
λ11 λ12 . . . λ1n
λ21 λ22 . . . λ2n

)
λ̃ =

(
λ1̇1 λ1̇2 . . . λ1̇n
λ2̇1 λ2̇2 . . . λ2̇n

)

that are orthogonal.
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Grassmanian proposal
Arkani-Hamed, Cachazo, Cheung, Kaplan [2009]

Ln,k =
1

vol[GL(k)]

∫
dk×nCαa

∏k
α=1 δ

4|4(CαaWa)

(12 . . . k)(23 . . . k − 1) . . . (n . . . k − 1)

We consider a C-plane that is orthogonal to λ̃-plane and contains
λ-plane.

picture from JB
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The delta function exactly does this job:

k∏

α=1

δ4|4(CαaWa)→
k∏

α=1

δ0|4(Cαaη̃a) · δ2(Cαaλ̃a) ·
∫
d2ραδ

2(λa− ρβCβa)

In fact, C plane is orthogonal to full 2|4-plane.

Now we integrate over all these C planes with a natural cyclic measure of
minors

(12 . . . k) =

∣∣∣∣∣∣∣

c11 . . . c1k
...

...
...

ck1 . . . ckk

∣∣∣∣∣∣∣
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Grassmanian proposal
Arkani-Hamed, Cachazo, Cheung, Kaplan [2009]

Li1,...ikn,k =
1

vol[GL(k)]

∫
dk×nCαa

∏k
α=1 δ

4(CαaWa)(i1 . . . ik)
4

(12 . . . k)(23 . . . k − 1) . . . (n . . . k − 1)

picking some particular helicity configuration of external gluons

k∏

α=1

δ4(CαaWa)→
k∏

α=1

δ2(Cαaλ̃a) ·
∫
d2ραδ

2(λa − ρβCβa)

we get the result for QCD!

C-plane is orthogonal just to 2-plane λ̃.
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Grassmanian proposal
Arkani-Hamed, Cachazo, Cheung, Kaplan [2009]

Ln,k =
1

vol[GL(k)]

∫
dk×nCαa

∏k
α=1 δ

4|4(CαaWa)

(12 . . . k)(23 . . . k − 1) . . . (n . . . k − 1)

Leading singularities in twistor space Mason, Skinner [2009], Kaplan [2009] :

just corresponds to
∫
D3|4WI1 . . .D3|4WI4MA(WI1 ,WI2 , . . . ) . . .MD(WI4 ,WI1 , . . . )

→ leading singularities are manifestly superconformal invariant!
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Grassmanian proposal
Arkani-Hamed, Cachazo, Cheung, Kaplan [2009]

Ln,k =
1

vol[GL(k)]

∫
dk×nCαa

∏k
α=1 δ

4|4(CαaWa)

(12 . . . k)(23 . . . k − 1) . . . (n . . . k − 1)

The conjecture is that
all leading singularities of all loop graphs are residues of this integrals

there exists a contour which gives a tree level amplitude

locality is guaranteed by the residue theorem
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Grassmanian proposal
Arkani-Hamed, Cachazo, Cheung, Kaplan [2009]

Ln,k =
1

vol[GL(k)]

∫
dk×nCαa

∏k
α=1 δ

4|4(CαaWa)

(12 . . . k)(23 . . . k − 1) . . . (n . . . k − 1)

Counting:
we start with n · k variables in Cαa
GL(k) removes k2 degrees of freedom

delta functions remove 2n− 4 variables

we are left with (k − 2)(n− k − 2) variables and Ln,k can be
interpreted as multi-dimensional contour integral in C(k−2)(n−k−2)

We also see that that there is no solution for constraints for
k = 0, 1, n− 1, n which makes perfect sense!

MHV amplitude: no integration, the result is determined just by Jacobian
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Example: 6pt NMHV
For n = 6, k = 3 we have just one integral left. Therefore, Ln,k is a
1-dimensional contour integral.

L6,3 =
∫

(i1i2i3)
4 dτ

(123)(τ)(234)(τ)(345)(τ)(456)(τ)(561)(τ)(612)(τ)

There are six poles in the complex plane
picture from FC

Example III:

Consider k = 3 and n = 6. Therefore (k − 2)(n− k − 2) = 1.

L6,3 =

∫
(135)4dτ

(123)(234)(345)(456)(561)(612)

τ

(234)

(456)

(612)

(561)

(123)

(345)
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Example: 6pt NMHV
For n = 6, k = 3 we have just one integral left. Therefore, Ln,k is a
1-dimensional contour integral.

L6,3 =
∫

(i1i2i3)
4 dτ

(123)(τ)(234)(τ)(345)(τ)(456)(τ)(561)(τ)(612)(τ)

Tree level contour (BCFW form)
picture from FC

Example III:

Consider k = 3 and n = 6. Therefore (k − 2)(n− k − 2) = 1.

L6,3 =

∫
(135)4dτ

(123)(234)(345)(456)(561)(612)

τ

(234)

(456)

(612)

(561)

(123)

(345)

Atree
6,3

BCFW Form

Tree level amplitude has a remarkable simple form in comparison with
Feynman diagrams form!
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1-dimensional contour integral.

L6,3 =
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(i1i2i3)
4 dτ

(123)(τ)(234)(τ)(345)(τ)(456)(τ)(561)(τ)(612)(τ)

Physical poles
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Example: 6pt NMHV
For n = 6, k = 3 we have just one integral left. Therefore, Ln,k is a
1-dimensional contour integral.

L6,3 =
∫

(i1i2i3)
4 dτ

(123)(τ)(234)(τ)(345)(τ)(456)(τ)(561)(τ)(612)(τ)

Spurious poles
picture from FC

Example III:

Consider k = 3 and n = 6. Therefore (k − 2)(n− k − 2) = 1.

L6,3 =

∫
(135)4dτ

(123)(234)(345)(456)(561)(612)

τ

(234)
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(561)
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(345)
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Atree
6,3

BCFW Form

Jaroslav Trnka Grassmanians and N = 4 SYM 24/31



Dual Super-Conformal invariance
We can introduce Zi momentum twistors associated with momenta
xi = pi − pi−1 in dual space. Hodges [2009]

picture from FC
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Dual Super-Conformal invariance
Momentum twistors Hodges [2009]

Z =




λ
µ
η




We can rewrite Grassmanians using momentum twistors:
Mason, Skinner [2009], Arkani-Hamed, Cachazo, Kaplan [2009]

Ln,k ∼
1

vol[GL(k− 2)]

∫
d(k−2)×nDαa

∏k−2
α=1 δ

4|4(DαaZa)
(12 . . . k − 2)(23 . . . k − 1) . . . (n . . . k − 3)

is Grassmanian G(k − 2, n) which is invariant under second (dual)
conformal symmetry (acting on xi = pi − pi−1).
In fact, all residues are then invariant under both conformal and dual
conformal symmetries → Yangian invariant!
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Yangian invariance

It was proven that ∫
dk×nC f(C) δ4|4(C · W)

under the action of Yangian generators, transforms into total derivative
only if

f(C) =
1

(12 . . . k) . . . (n1 . . . k − 1)

Then, the residues are Yangian invariant.

There is also a claim that every super-conformal invariant is of this form.
If this is true, then L(n, k) is the unique way how to write Yangian
invariants!

Jaroslav Trnka Grassmanians and N = 4 SYM 27/31



Yangian invariance
It was proven that ∫

dk×nC f(C) δ4|4(C · W)

under the action of Yangian generators, transforms into total derivative
only if

f(C) =
1

(12 . . . k) . . . (n1 . . . k − 1)

Then, the residues are Yangian invariant.

There is also a claim that every super-conformal invariant is of this form.
If this is true, then L(n, k) is the unique way how to write Yangian
invariants!

Jaroslav Trnka Grassmanians and N = 4 SYM 27/31



Yangian invariance
It was proven that ∫

dk×nC f(C) δ4|4(C · W)

under the action of Yangian generators, transforms into total derivative
only if

f(C) =
1

(12 . . . k) . . . (n1 . . . k − 1)

Then, the residues are Yangian invariant.

There is also a claim that every super-conformal invariant is of this form.
If this is true, then L(n, k) is the unique way how to write Yangian
invariants!

Jaroslav Trnka Grassmanians and N = 4 SYM 27/31



Relation to twistor strings
Arkani-Hamed, Bourjaily, Cachazo, JT [2009]

We want to write the integral in the form (for NMHV)

A =

∫
d(n−5)τ

h(τ)

f1(τ) . . . fn−5(τ)

where
h

f1 . . . fn−5
=

1

(123) . . . (n12)

Construction of this map for NMHV, (also Nandan, Volovich, Wen [2009])
e.g. for 7pt we have

A7 =

∫

f6=f7=0
dτ1dτ2

(612)(235)

(671)(123)(345)
· 1

[(234)(456)(612)]

1

[(235)(567)(712)]

where

h =
(612)(235)

(671)(123)(345)
, f6 = (234)(456)(612), f7 = (235)(567)(712)
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Relation to twistor strings
Recently, extension to general k Bourjaily, JT, Volovich, Wen [2010]

This is also a connection with Witten’s twistor string theory.

There exists a continuous deformation of f ’s which does not affect
the result but can be shown to come from twistor string formulation
of the amplitude.

It nicely manifests cyclic symmetry and U(1) decoupling identity.

Residues corresponding to tree-level amplitude are glued together into
one object:

Unification
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Local physics from Grassmanian
Arkani-Hamed, Bourjaily, Cachazo, JT [2009]

Let us consider our 6pt NMHV example and relax one of the delta
functions (think about it as a pole)

L6,3 =
∫

d2τ

(123)(234)(345)(456)(561)(612)(A)(ξ)

where ξ is a null direction that breaks Lorentz invariance
the former tree level amplitude is a residue at (A) = 0 which has
now form A6,3 = (123)(A) + (345)(A) + (561)(A)

residue theorem, e.g.

(123)[(A) + (234) + (345) + (456) + (561) + (612)] = 0

We use them to rewrite (123)(A), (345)(A) and (561)(A).
Finally, all residues cancel in pairs except nine which are exactly
CSW diagrams!
CSW diagrams are generated from Lagrangian in the light-cone
gauge → space-time is reintroduced!
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the former tree level amplitude is a residue at (A) = 0 which has
now form A6,3 = (123)(A) + (345)(A) + (561)(A)

residue theorem, e.g.

(123)[(A) + (234) + (345) + (456) + (561) + (612)] = 0

We use them to rewrite (123)(A), (345)(A) and (561)(A).
Finally, all residues cancel in pairs except nine which are exactly
CSW diagrams!
CSW diagrams are generated from Lagrangian in the light-cone
gauge → space-time is reintroduced!
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In fact, we rewrote each (non-local) residue as a sum of
local pieces which are CSW diagrams and correspond to Feynman
diagrams!

non-local terms that cancel in pairs when summing over all residues
in tree-level amplitude

Scattering amplitudes want to be written in terms of non-local objects, it
is the most compact and natural way how to write them!

Emergent space-time
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