
~1

'

&

$

%

QUARKS-2010
16th International Seminar on High Energy Physics

Kolomna, Russia, June 6 – 12, 2010.

K.V.Stepanyantz

Moscow State University
Department of Theoretical Physics

Quantum corrections in supersymmetric

theories with the higher covariant

derivative regularization



~2

'

&

$

%

Regularization for the supersymmetric theories

Quantum corrections in supersymmetric theories are investigated for a long

time, for example in the papers

L.V.Avdeev, O.V.Tarasov, Phys.Lett. 112B, (1982),356;

A.Parkes, P.West, Phys.Lett. 138B, (1983), 99;

I.Jack, D.R.T.Jones, C.G.North, Phys.Lett B386, (1996), 138;

Nucl.Phys. B486 (1997), 479;

I.Jack, D.R.T.Jones, A.Pickering, Phys.Lett. B435, (1998), 61.

Most calculations were made with the dimensional reduction

W.Siegel, Phys.Lett. 84B, (1979), 193; 94B, (1980), 37.

(The dimensional regularization breaks the supersymmetry.) With the

dimensional reduction the β-function was calculated even in the four-loop

approximation. However, the dimensional reduction is inconsistent from the

mathematical poit of view and can lead to some problems in higher loops.
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The higher covariant derivatives

A consistent regularization, which does not break the supersummetry is the

higher covariant derivative regularization, proposed by A.A.Slavnov:

A.A.Slavnov, Nucl.Phys., B31, (1971), 301; Theor.Math.Phys. 13, (1972), 1064.

It was generalized to the supersymmetric case in the papers

V.K.Krivoshchekov, Theor.Math.Phys. 36, (1978), 745; P.West, Nucl.Phys. B268, (1986), 113.

The first (one-loop) calculation with the higher derivative regularization was

made for the (nonsupersymmetric) Yang–Mills theory in

C.Martin, F.Ruiz Ruiz, Nucl.Phys. B 436, (1995), 645.

Taking into account correction, made in

M.Asorey, F.Falceto, Phys.Rev D 54, (1996), 5290;

T.Bakeyev, A.Slavnov, Mod.Phys.Lett. A11, (1996), 1539.

the result coincided with the usual β-function of the Yang–Mills theory.
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N = 1 supersymmetric theories

N=1 supersymmetric Yang-Mills theory with matter in the massless case is

described by the action

S =
1

2e2
Re tr

∫
d4x d2θ WaCabWb +

1
4

∫
d4x d4θ (φ∗)i(e2V )i

jφj +

+
(1

6

∫
d4x d2θ λijkφiφjφk + h.c.

)
,

where φi are chiral scalar matter superfields, V is a real scalar gauge

superfield, and the supersymmetric gauge field stress tensor is given by

Wa =
1
8
D̄2
[
e−2V Dae2V

]
.

The action is invariant under the gauge transformations

e2V → eiΛ+
e2V e−iΛ; φ→ eiΛφ

if (TA)m
iλmjk + (TA)m

jλimk + (TA)m
kλijm = 0.
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Background field method

We use the background field method: e2V → e2V ′ ≡ eΩ+
e2V eΩ, where Ω is a

background field. Background covariant derivatives are given by

D ≡ e−Ω+ 1
2
(1 + γ5)DeΩ+

; D̄ ≡ eΩ 1
2
(1− γ5)De−Ω;

Dµ ≡ −
i

4
(Cγµ)ab

{
Da, D̄b

}
.

The background gauge invariance

φ→ eiΛφ; V → eiKV e−iK ; eΩ → eiKeΩe−iΛ; eΩ+
→ eiΛ+

eΩ+
e−iK ,

where K is an arbitrary real superfield, and Λ is a background-chiral superfield.

This invariance allows to choose Ω = Ω+ = V.

It is desirable to fix a gauge and to introduce a regularization in such a way,

that the background gauge invariance will be unbroken.
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Quantization

The gauge is fixed by adding the following term:

Sgf = − 1
32e2

tr

∫
d4x d4θ

(
V D2D̄

2
V + V D̄

2
D2V

)
.

(Then the terms, quadratic in the quantum field, have the simplest form.)

The corresponding ghost Lagrangian is

Sc = i tr

∫
d4x d4θ

{
(c̄ + c̄+)V

[
(c + c+) + cth V (c− c+)

]}
.

Also it is necessary to add the Nielsen-Kallosh ghosts

SB =
1

4e2
tr

∫
d4x d4θ B+eΩ+

eΩ B.
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Higher derivative regularization

To regularize the theory we use the higher covariant derivative regularization.

For a theory with the nontrivial cubic superpotential it is also necessary to

introduce the higher covariant derivative term for the matter superfields. We

add to the action the term

SΛ =
1

2e2
tr Re

∫
d4x d4θ V

(D2
µ)n+1

Λ2n
V +

1
4

∫
d4x d4θ

(
(φ∗)i ×

×
[
eΩ+ (D2

α)m

Λ2m
eΩ
]

i
jφj

)
.

Presence of the higher derivatives in the matter kinetic terms makes the

calculations much more complicated.

After adding of the term with the higher derivatives divergences remain only in

the one-loop approximation.
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Higher derivative regularization

In order to regularize the remaining one-loop divergences, it is necessary to

introduce Pauli-Villars determinants into the generating functional

L.D.Faddeev, A.A.Slavnov, Gauge fields, introduction to quantum theory, Benjamin, Reading, 1990.

Z[J,Ω] =
∫

Dµ
∏
I

(
detPV (V,V,MI)

)cI

×

× exp
{

iS + iSΛ + iSgf + iSB + iSgh + Sources
}

,

where the coefficients satisfy the conditions
∑
I

cI = 1;
∑
I

cIM
2
I = 0.

It is convenient to write the Pauli–Villars determinants as

detPV (V,V,M) =
(∫

DΦ∗DΦeiSP V

)−1

.

In order to cancel the remaining one-loop divergences of the theory with the

higher derivative term the Pauli–Villars action SPV should contain the higher

derivatives.
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Pauli–Villars fields

We considered the following form of the Pauli–Villars action:

SPV =
1
4

∫
d4x d4θ (Φ∗)i

[
eΩ+

(
1 +

(D2
α)m

Λ2m

)
eΩ
]

i
jΦj

+
(1

4

∫
d4x d2θ M ijΦiΦj + h.c.

)
.

(A regularized one-loop diagram with cubic matter vertex is finite.)

In order to obtain the gauge invariance the mass should satisfy

(TA)k
iMkj + (TA)k

jMki = 0.

Also we assume that

M ijM∗
jk = M2δi

k M ij = aijΛ,

where aij are constants. (There is the only dimensionful parameter Λ.)
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Two-loop β-function for N = 1 supersymmetric Yang-Mills
theory

Two-loop calculation gives the following result:

β(α) = −3α2

2π
C2 + α2T (R)I0 + α3C2

2I1 +
α3

r
C(R)i

jC(R)j
iI2 +

+α3T (R)C2I3 + α2C(R)i
j
λ∗jklλ

ikl

4πr
I4 + . . . ,

where we do not write the integral for the one-loop ghost contribution and the

integrals I0–I4 are given below, and the following notation is used:

tr (TATB) ≡ T (R) δAB ; (TA)i
k(TA)k

j ≡ C(R)i
j ;

fACDfBCD ≡ C2δ
AB ; r ≡ δAA.

Taking into account Pauli–Villars contributions,

Ii = Ii(0)−
∑

I

Ii(MI), i = 0, 2, 3

where Ii are given by
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Factorization of integrands into total derivatives

I0(M) = 8π

∫
d4q

(2π)4
d

d ln Λ

1

q2

d

dq2

{
1

2
ln

(
q2(1 + q2m/Λ2m)2 + M2) +

+
M2

2(q2(1 + q2m/Λ2m)2 + M2)
− mq2m/Λ2mq2(1 + q2m/Λ2m)

q2(1 + q2m/Λ2m)2 + M2

}
;

I1 = 96π2

∫
d4q

(2π)4
d4k

(2π)4
d

d lnΛ

1

k2

d

dk2

{
1

q2(q + k)2(1 + q2n/Λ2n)
×

× 1

(1 + (q + k)2n/Λ2n)

(
n + 1

(1 + k2n/Λ2n)
− n

(1 + k2n/Λ2n)2

)}
;

I2(M) = −64π2

∫
d4q

(2π)4
d4k

(2π)4
d

d lnΛ

1

q2

d

dq2

{
q2

k2(1 + k2n/Λ2n)
×

× (1 + (q + k)2m/Λ2m)

((q + k)2(1 + (q + k)2m/Λ2m) + M2)

[
q2(1 + q2m/Λ2m)3

(q2(1 + q2m/Λ2m)2 + M2)2
+

+
mq2m/Λ2m

q2(1 + q2m/Λ2m)2 + M2
− 2mq2m/Λ2mM2

(q2(1 + q2m/Λ2m)2 + M2)2

]}
;
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Factorization of integrands into total derivatives

I3(M) = 16π2

∫
d4q

(2π)4
d4k

(2π)4
d

d lnΛ

{
∂

∂qα

[
kα(1 + q2m/Λ2m)

(q2(1 + q2m/Λ2m)2 + M2)
×

× 1

(k + q)2(1 + (q + k)2n/Λ2n)

(
− (1 + k2m/Λ2m)3

(k2(1 + k2m/Λ2m)2 + M2)2
+

+
mk2m/Λ2m

k2(1 + k2m/Λ2m)2 + M2
− 2mk2m/Λ2mM2

(k2(1 + k2m/Λ2m)2 + M2)2

)]
−

− 1

k2

d

dk2

[
2(1 + q2m/Λ2m)(1 + (q + k)2m/Λ2m)

(q2(1 + q2m/Λ2m)2 + M2) ((q + k)2(1 + (q + k)2m/Λ2m)2 + M2)
×

×
(

1

(1 + k2n/Λ2n)
+

nk2n/Λ2n

(1 + k2n/Λ2n)2

)]}
;

I4 = 64π2

∫
d4q

(2π)4
d4k

(2π)4
d

d lnΛ

1

q2

d

dq2

[
1

k2(q + k)2(1 + k2m/Λ2m)
×

× 1

(1 + (q + k)2m/Λ2m)

(
1

(1 + q2m/Λ2m)
+

mq2m/Λ2m

(1 + q2m/Λ2m)2

)]
.
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Two-loop β-function for N = 1 supersymmetric Yang-Mills
theory

The integrals can be calculated using the identity∫
d4k

(2π)4
1
k2

d

dk2
f(k2) =

1
16π2

(
f(k2 =∞)− f(k2 = 0)

)
.

(This is a total derivative in the four-dimensional spherical coordinates.)

The result for the two-loop β-function is given by

β(α) = −α2

2π

(
3C2 − T (R)

)
+

α3

(2π)2
(
− 3C2

2 + T (R)C2 +

+
2
r
C(R)i

jC(R)j
i
)
−

α2C(R)i
jλ∗jklλ

ikl

8π3r
+ . . . .
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Two-loop β-function for N = 1 supersymmetric Yang-Mills
theory

Comparing the result with the one-loop anomalous dimension

γi
j(α) = −αC(R)i

j

π
+

λ∗iklλ
jkl

4π2
+ . . . ,

gives the exact NSVZ β-function in the considered approximation.

β(α) = −
α2
[
3C2 − T (R) + C(R)i

jγj
i(α)/r

)]
2π(1− C2α/2π)

.

V.Novikov, M.A.Shifman, A.Vainstein, V.Zakharov, Nucl.Phys. B 229, (1983), 381;

Phys.Lett. 166B, (1985), 329; M.Shifman, A.Vainshtein, Nucl.Phys. B 277, (1986), 456.

(The result also agrees with the DRED calculations.)
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Three-loop calculation for SQED

The notation is

Γ(2) =
∫

d4p

(2π)4
d4θ

(
− 1

16π
V(−p) ∂2Π1/2V(p) d−1(α, µ/p) +

+
1
4
(φ∗)i(−p, θ) φj(p, θ) (ZG)i

j(α, µ/p)
)
.

The main result: (It was obtained as the equality of some well defined

integrals)

d

d lnΛ

(
d−1(α0,Λ/p)− α−1

0

)∣∣∣
p=0

= − d

d lnΛ
α−1

0 (α, µ/Λ)=

=
1
π

(
1− d

d lnΛ
lnG(α0,Λ/q)

∣∣∣
q=0

)
=

1
π

+
1
π

d

d lnΛ

(
lnZG(α, µ/q)−

− lnZ(α, Λ/µ)
)∣∣∣

q=0
=

1
π

(
1− γ

(
α0(α, Λ/µ)

))
.

The reason is that the integrands are again total derivatives.
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Factorization into total derivatives in N = 1 SUSY QED for
some classes of diagrams.

Let us consider the Abelian case (SUSY QED) formally (without contributions

of the Pauli–Villars fields).

S =
1

4e2
Re

∫
d4x d2θ WaCabf(∂2/Λ2)Wb+

1
4

∫
d4x d4θ

(
φ∗e2V φ+φ̃∗e−2V φ̃

)
where f(∂2/Λ2) is a regulator, for example

f = 1 +
∂2n

Λ2n
.

It seems that the corresponding proof for contributions of the Pauli–Villars

fields can be made similarly.

1. One-loop result

We can use results of explicit calculation, presented above. Here the

contribution of the Pauli–Villars field are important.
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2. Some technical simplifications

a. (This step can be omitted, but it simplifies the calculations) Due to the

Ward identity the two-point Green function is proportional to∫
d4θV∂2Π1/2V × (Momentum integral),

where ∂2Π1/2 ∼ DaD̄2Da. Therefore, in order to find β-function it is possible

to substitute

V→ θ̄aθ̄aθbθb

(Note that we consider the limit p→ 0)

b. Integral of a total derivative in the coordinate representation is given by

Tr
(
[xµ,Something]

)
= 0.

We will try to reduce the sum of diagrams to such commutators.
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3. Summation of subdiagrams

Let us consider the following sum of subdiagrams, substituting V→ θ̄aθ̄aθbθb:

+ = −θaθaθ̄b D̄bD
2

4∂2
+ θaθa

D2

4∂2

−iθ̄b(γµ)b
aθa

D̄2D2∂µ

∂4
+ iθa(γµ)a

b D̄bD
2∂µ

4∂4
+

D̄2D2

16∂4

Only the terms, written by the blue color, give nontrivial contributions to the

two-point function of the gauge superfield, because finally it is necessary to

obtain ∫
d4θ θaθaθ̄bθ̄b,

and calculating the θ-part of the graph can not produce powers of θ or θ̄.

For investigation of the Pauli–Villars contribution it is necessary to consider

the massive case. This is made similarly, but all expressions become more

complicated.
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4. External V-lines are attached to different loops of the matter superfields

Let us denote by ∗ a chain of propagators, connecting vertexes with quantum

gauge field. Then each loop will be proportional to

Tr
(
− iθ̄c(γν)c

dθd
D̄2D2∂ν

8∂4
∗ −θcθcθ̄

d D̄dD
2

4∂2
∗
)

= Tr
(
− θcθcθ̄

d ∗ D̄dD
2

4∂2
∗ −θ̄dθc ∗ D̄2Dc

4∂2
∗ D̄dD

2

4∂2
∗

−iθ̄c(γν)c
dθd ∗

D̄2D2∂ν

8∂4
∗+θ2,θ̄1,θ1,θ0 terms

)
After some simple algebra the first three terms can be written as

Tr
(
− 2θcθcθ̄

d[θ̄d, ∗]− iθ̄c(γν)c
dθd[y∗ν , ∗]+ . . .

)
= 0+ . . .

where y∗ν = xν − iθ̄a(γν)a
bθb/2 + iθa(γν)a

bθ̄b/2.

Multiplication of the other terms gives 0 after the integration over d4θ.

Therefore, the sum of all such diagrams is given by an integral of a total

derivative and is equal to 0.
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5. External V-lines are attached to a single loop of the matter superfields

a. Calculation of Feynman diagrams

Since calculating θ-integrals can not increase a degree of θ, it is possible to

shift θ-s to an arbitrary point of the loop, commuting them with matter

propagators. This gives

θaθ̄b θcθ̄d
∼ − 1

128
Tr
(
θaθaθ̄bθ̄b

D̄2D2∂µ

∂4
∗ D̄2D2∂µ

∂4
∗
)

θaθ̄b θcθcθ̄
d
∼ −i(γµ)c

dTr
(
θaθaθ̄bθ̄b

D̄2D2∂µ

16∂4
∗ D̄2Dc

16∂2
∗ D̄dD2

∂2
∗

+
D̄2Dc∂µ

16∂4
∗ D̄dD2

∂2
∗
)

θaθaθ̄b θcθcθ̄
d
∼ Tr

(
θaθaθ̄bθ̄b

D̄dD
2

4∂2
∗ D̄2Dc

8∂2
∗ D̄2Dc

8∂2
∗ D̄dD2

4∂2
∗

−D̄dD
2

4∂2
∗ D̄2

4∂2
∗ D̄dD2

4∂2
∗ − D̄d

2∂2
∗ D̄dD2

4∂2
∗+

D̄dD
c

2∂2
∗ D̄2Dc

8∂2
∗ D̄dD2

4∂2
∗
)
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b. Extracting NSVZ β-function

First we calculate

θaθ̄b θcθ̄d
+

1
2 θaθ̄b θcθcθ̄

d

Using

[xµ,
∂µ

∂4
] = [i

∂

∂pµ
,− ipµ

p4
] = 2π2δ4(p)

after some algebra we obtain

Tr
(
θaθaθ̄bθ̄b

( π2

128
∗ D̄2D2δ4(∂α) +

[
y∗µ,

D̄2D2∂µ

162∂4
∗
]

+i(γµ)c
d
{

θc, ∗D̄dD
2

8∂2
∗ D̄2D2∂µ

16∂4

}
+ i(γµ)c

d
{

θ̄d, ∗D̄
2Dc∂µ

8∂4

}))
= Tr

( π2

128
θaθaθ̄bθ̄b ∗ D̄2D2δ4(∂α)

)
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δ-function allow to perform integration over the momentum, corresponding to

the considered matter loop. This corresponds to cutting the diagram, which

gives diagrams for the two-point Green function of the matter superfield.

A. Smilga, A. Vainstein, Nucl. Phys. B 704, (2005), 445.

- + + . . .

Comparing the coefficients it is possible to obtain

β(α)← −α2

π
γ(α).

Therefore, the sum of all such diagrams is an integral of a total derivative and

gives the exact NSVZ β-function.

Alternatively, this result can be obtained substituting solution of the Ward

identity into one of the effective diagrams in the Schwinger–Dyson equation.



~23

'

&

$

%

c. Remaining diagrams

Now let us calculate

θaθaθ̄b θcθcθ̄
d
+

1
2 θaθ̄b θcθcθ̄

d

In this case the method, based on the substituting solution of the Ward

identity into Schwinger–Dyson equation does not work. (Here contributions of

the transversal parts of the Green functions are essential.)

The considered sum is given by

Tr

(
− i

32
(γµ)d

c
(D̄2D2∂µ

∂4
∗ D̄2Dc

16∂2
∗ D̄dD2

∂2
∗+

D̄2Dc∂µ

∂4
∗ D̄dD2

∂2
∗
)

− D̄d

2∂2
∗ D̄dD2

4∂2
∗ −D̄dD

2

4∂2
∗ D̄2

4∂2
∗ D̄dD2

4∂2
∗+

D̄dD
c

2∂2
∗ D̄2Dc

8∂2
∗ D̄dD2

4∂2
∗

+
D̄dD

2

4∂2
∗ D̄2Dc

8∂2
∗ D̄2Dc

8∂2
∗ D̄dD2

4∂2
∗

)
θaθaθ̄bθ̄b
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This expression can not be factorized into a total derivative by the method,

described above. However, for planar diagrams with a single loop of the

matter superfield the factorization can be proven in all orders:

Let us assume that the diagram contain a line, which cut it:

Then there are the following possibilities:

I. There is ∗D̄
aD2

8∂2
∗ = [∗, θ̄a] = 0 or ∗D

2Da

8∂2
∗ = [∗, θa] = 0 on the left (right)

side, because θ1δ
4(θ1 − θ2) = θ2δ

4(θ1 − θ2).

II. There is ∗D̄
aD2

16∂2
∗ D̄aD2

16∂2
∗ on the left (right) side. Then on the other side

we have

∼ {θb[θb, ∗]} = 0

III. There is ∗D̄
aD2

16∂2
∗ D̄2Db

16∂2
∗ on the left (right) side. Then on the other side

we have

∼ (γµ)a
b[y∗µ, ∗]θcθcθ̄

dθ̄d

IV. All modified propagators are on the same side of the diagram.



~25

'

&

$

%

The considered diagrams can be cut into parts with no more than two matter

propagators. Then

Tr
(
− i

32
(γµ)d

c D̄2Dc∂µ

∂4
· D̄

dD2

∂2
− D̄d

2∂2
· D̄

dD2

4∂2

)
θaθaθ̄bθ̄b

∼ (γµ)c
dTr
([

y∗µ,
D̄2Dd

∂2
· D̄

cD2

∂2

]
θaθaθ̄bθ̄b

)
= 0

Note that all expressions become well defined after adding contributions of the

Pauli–Villars fields.

Therefore, planar diagrams with a single loop of matter superfields are given

by an integral of a total derivative and are equal to 0.

Using this method it is possible to prove factorization for some non-planar

diagrams, for example, for

In particular this explains the result of the three loop calculation in N = 1
SUSY QED.
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Conclusion

X Possibly, with the higher derivative regularization integrals, defining the

β-function, are the integrals of total derivatives. This allows to calculate

at least one of the integrals analytically.

X For N = 1 supersymmetric electrodynamics, regularized by higher

derivatives, it is possible to prove factorization of integrals into total

derivative for some classes of diagrams, for example, for planar diagrams

with a single matter loop. (Here we present the proof without PV

contributions. It seems that they can be analyzed in a similar manner.)

X So far it is not clear, if it is possible to prove the factorization for all

Feynman diagrams.

X Factorization of integrands into total derivatives is related with the NSVZ

exact β-function.
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Thank you for the attention!


