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Problem of quantum gravity: 
Einstein-Hilbert action is non-renormalizable
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∫
R
√
−g d4x M2
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∫ (
(∂h)2 + h(∂h)2 + . . .

)
d4x

Quadratic part is invariant under the scaling:
x !→ b−1x , t !→ b−1t ,

h !→ b h scaling dimension of h is 1
∫

h(∂h)2 d4x !→ b

∫
h(∂h)2 d4x

irrelevant interaction

We need to reduce dim h to 0

{



Can be achieved by including terms with 
higher derivatives: R2, RµνRµν , RµνλρR

µνλρ

∫ (
R2 + M2

P R
)√
−g d4x

sets dim h 
in UV

∫ (
(!h)2 + h(!h)2 + M2

P (∂h)2 + M2
P h(∂h)2 + . . .

)
d4x

IR dynamics is determined by terms with 2 derivatives

marginal 
interaction

relevant deformations

{
But higher time derivatives             ghosts           
           loss of unitarity

Scaling: x !→ b−1x , t !→ b−1t , h !→ h dim h = 0

Stelle (1978)



Gravity with anisotropic scaling I 

Split coordinates in space and time:  
ADM decomposition of the metric (in GR -- a gauge 
choice)

ds2 = (N2 −NiN
i)dt2 − 2Nidtdxi − γijdxidxj

Think of the splitting as physical 
       equip space-time with foliation by spacelike surfaces

4d Diffs are broken down to foliation preserving 
subgroup (FDiffs)

x !→ x̃(x, t) , t !→ t̃(t)

Horava (2009)



Gravity with anisotropic scaling II

Kij =
γ̇ij −∇iNj −∇jNi

2N

S =
M2
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∗
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A1∆R + A2RijR

ij + . . .
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+ M−4
∗

(
B1∆2R + B2RijR

jkRi
k + . . .

)

difference 
from GR

Variations

• projectable:                 (compatible with FDiffs)

• non-projectable:

• with/without detailed balance

Rij -- 3d Ricci tensor

N = N(t)
N = N(t,x)



• collection of marginal and relevant operators 
under scaling:

x !→ b−1x , t !→ b−3t

N, γij !→ N, γij

Ni !→ b2Ni

Theory is power-counting renormalizable

• higher-derivative terms are unimportant in IR
             recovery of GR provided      flows to 1λ



• collection of marginal and relevant operators 
under scaling:

x !→ b−1x , t !→ b−3t

N, γij !→ N, γij

Ni !→ b2Ni

Theory is power-counting renormalizable

• higher-derivative terms are unimportant in IR
             recovery of GR provided      flows to 1λ

Too quick !!



To make long story short ...

• explicit breaking of Diffs (gauge group of GR) 
down to FDiffs

extra light degree of freedom --
“scalar graviton”

• ill-behaved in both models explicitly proposed by 
Horava (ghost / gradient instability / strong 
coupling)

Charmousis, Niz, Padilla, Saffin (2009)
Blas, Pujolas, S.S. (2009)



A failure of the program ?

or of the specific realizations ?

• Foliation is physical           extra scalar is 
unavoidable 

• Can we make it well-behaved by adjusting 
the action ?



The third attempt



A healthy model
Blas, Pujolas, S.S. (2009)

is obtained by a straightforward (and natural) 
generalization of the non-projectable case

ai ≡ N−1∂iN

dim ai = 1

-- covariant under FDiffs

VII =VI − αaia
i

+ M−2
∗

(
C1ai∆ai + C2(aia

i)2 + C3aiajR
ij + . . .

)

+ M−4
∗

(
D1ai∆2a1 + D2(aia

i)3 + D3aia
iajakRjk + . . .

)



Scalar mode dispersion relation:

P [x] =(g2
2 − g1g3)x4 − (g1f3 + g3f1 − 2g2f2)x3

+ (f2
2 − 4g2 − f1f3 − 2g3 − g1α)x2

− (2f3 + f1α + 4f2)x + (4− 2α)

Q[x] =g3x
2 + f3x + α

ω2 =
λ− 1

2(3λ− 1)
P [−p2/M2

∗ ]
Q[−p2/M2

∗ ]
p2

• stable throughout the momentum range

• right scaling in IR: 

• and in UV:

ω2 ∝ p2

ω2 ∝ p6



TOWARDS PHENOMENOLOGY



Stueckelberg formalism I 

To identify the effect of the new d.o.f.: restore 
gauge invariance by introducing Stueckelberg field 

In case of gravity equivalent to covariantization

• parametrize foliation surfaces with scalar field:

ADM frame = gauge fixing 

 

sets global time

σ(x) = const

σ

t = σ
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• Time reparameterizations in ADM frame

         symmetry 

Invariant object -- unit normal to the foliation surfaces:

• identify covariant geometric structures in ADM frame

uµ = ∂µσ√
(∂σ)2

Stueckelberg formalism II

σ !→ σ̃ = f(σ)

• obtain the covariant (low-energy) action:

compare with Einstein-aether model

N.B. In our case there are no transverse vector modes

S = −M2
P

2

∫
d4x
√
−g

{
(4)R + (λ− 1)(∇µuµ)2 + αuµuν∇µuρ∇νuρ

}

Jacobson, Mattingly (2001)



Chronon dynamics: low-energy perspective

Λ ∼MαMα ∼Mλ

M∗ ! Mα,Mλ

Sχ =
∫

d4x

[
M2

α

2
(∂iχ̇)2 − M2

λ

2
(∆χ)2−M2

λ χ̇(∆χ)2

+M2
α

(
χ̇∂iχ̈∂iχ− ∂iχ̇∂jχ∂i∂jχ

)
+ . . .

]

∆(M2
αχ̈−M2

λ∆χ) = 0• linear order

Mα ≡
√

αMP

Mλ ≡
√

λ− 1 MP

• derivative self-interaction
for                    would-be strong coupling at 
resolved by higher derivatives

N.B.      goes down in case of hierarchy between        andΛ Mα Mλ

expand σ = t + χ



Coupling to matter I

uµSM fields couple to



Coupling to matter I

uµ

• with additional derivatives

derivative interaction via 

suppressed by

aµψ̄γµψ Kµνψ̄γµ∂νψ

χ

M∗

SM fields couple to



Coupling to matter I

uµ

• with additional derivatives

derivative interaction via 

suppressed by

aµψ̄γµψ Kµνψ̄γµ∂νψ

χ

M∗

SM fields couple to

uµψ̄γµψ uµuνψ̄γµ∂νψ uµuνψ̄∂µ∂νψ

• without derivatives

lead to violation of Lorentz symmetry within the SM 



Coupling to matter II

operators of dim           (                      )

UV modification of dispersion relations

timing of AGN’s and GRB’s

N.B.                may be different from 

uµuνψ̄∂µ∂νψ

M (mat)
∗ ! 1010 ÷ 1011GeV

E2 = m2 + p2 +
p4

(
M (mat)

∗
)2 + . . .

> 4

M (mat)
∗ M∗

MAGIC (2008)
Fermi GMB/LAT (2009)



Coupling to matter III

operators of dim           (             ,                       )
tightly constrained 

e.g. dim 4 correct “speed of light” for different species

experimental bound:

                                                               !

A mechanism for suppression of Lorentz 
breaking at dim up to 4 is required

≤ 4 uµψ̄γµψ uµuνψ̄γµ∂νψ

E2 = m2 + c2p2

|cγ − cp,e| ≤ 6× 10−22

Lamoreaux et al. (1986)
Coleman, Glashow (1999)



Universal coupling

g̃µν = gµν + βuµuν

Minimal coupling to effective metric

• trade         for

• exploit connection to Einstein-aether

gµν g̃µν

S = −M2
P

2

∫
d4x
√
−g

{
(4)R− β∇µuν∇νuµ

+ λ′(∇µuµ)2 + αuµuν∇µuρ∇νuρ

}

λ− 1 + β



PPN parameters I

Spherically symmetric solutions the same as in 
Einstein-aether

all PPN parameters the same as in GR 

except              ,  αPPN
1 αPPN

2 }
measure preferred 

frame effects



PPN parameters I

Spherically symmetric solutions the same as in 
Einstein-aether

all PPN parameters the same as in GR 

except              ,  αPPN
1 αPPN

2 }
measure preferred 

frame effects

Solar system bounds:

|αPPN
1 | ! 10−4 , |αPPN

2 | ! 10−7



PPN parameters II

h00 = −2GN
m

r

(
1− αPPN

2

2
(xivi)2

r2

)

h0i =
αPPN

1

2
GN

m

r
vi

Solar system bounds

!v

r



PPN parameters III
αPPN

1 = −4(α + 2β)

αPPN
2 =

(α + 2β)(α− λ′ + 3β)
2(λ′ − β)

• vanish if

•           vanishes when          ,             (          )

• barring cancellations

+ Absence of strong coupling           upper bound 
on the scale of quantum gravity

α + 2β = 0
αPPN

2 β = 0 λ′ = α cχ = 1

α , β , λ′ ! 10−7 ÷ 10−6

M∗ ! 1015 ÷ 1016GeV



To get back LI in IR
use the supertool

SUPERSYMMETRY !!



Lorentz invariance from supersymmetry 
Nibbelink, Pospelov (2004)

Bolokhov, Nibbelink, Pospelov (2005)
Given SUSY,  Lorentz invariance emerges as 
accidental symmetry at low energies

It is impossible to write any LV operator in MSSM of
dim < 5

SUSY breaking generates dim 4 LV operators 
suppressed by (

msoft/M∗
)2

Dim 5 operators are CPT odd         may be forbidden
        LV starts from dim 6



• A consistent power counting renormalizable model of 
gravity with anisotropic scaling exists

• It does not reduce to GR in the infrared: light scalar 
mode, violation of LI

• Compatible with experimental data for the scale of LV 
between           and          GeV

• Open issues: proof of renormalizability, UV completeness, 
singularities, cosmology, black holes, emergence of LI, 
instantaneous interaction, binary pulsars, ........

• Beyond 4d: higher and lower dims, lattice models, 
condensed matter, causal dynamical triangulation, .........

Conclusions and Outlook

1010 1016

Calcagni (2009), Kiritsis & Kofinas(2009), Brandenberger (2009), Kiritsis 
(2009), Kobayashi et al. (2010), Armendariz-Picon et al. (2010), ....

Iengo & Serone (2010), Horava (2009), Xu & Horava (2010), 
Ambjorn et al. (2010), .....
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