The search for heavy neutrino in rare kaon decays

Artur Shaykhiev Institute for Nuclear Research Moscow

XVI International Seminar on High Energy Physics QUARKS-2010, Kolomna, Russia, 6-12 June, 2010

Outline

- Heavy neutrino
- Experiment BNL E949
- Trigger
- Background study
- Expected sensitivity to heavy neutrino mass
- Conclusions

SM neutrino

Three types of neutrino

$$V_{e} = V_{\mu} = V_{\tau} + 1 \quad L_{\mu} = +1 \quad L_{\tau} = +1 \quad M_{v} = 0 \quad q = 0 \quad S = 1/2$$

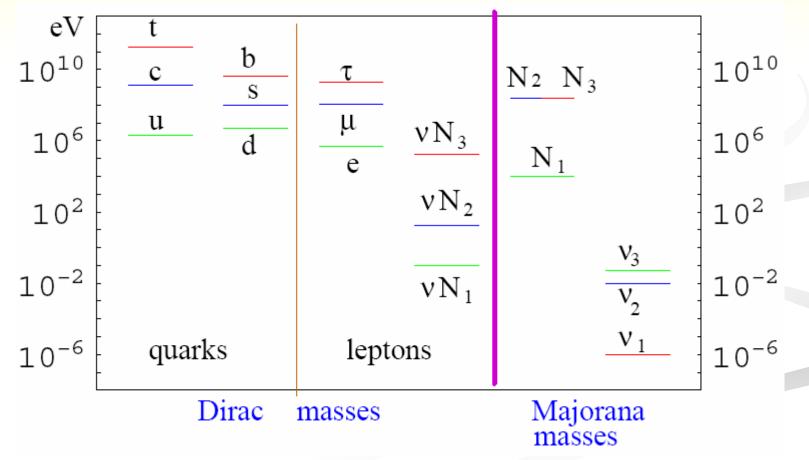
$$V_l = \sum U_{li} V_i, \ l = e, \mu, \tau; \ i = 1, 2, 3$$

There is new physics beyond the Standard Model, but we don't know exactly what is it

Neutrino Oscillation

Dominance of matter over antimatter

Dark matter and dark energy



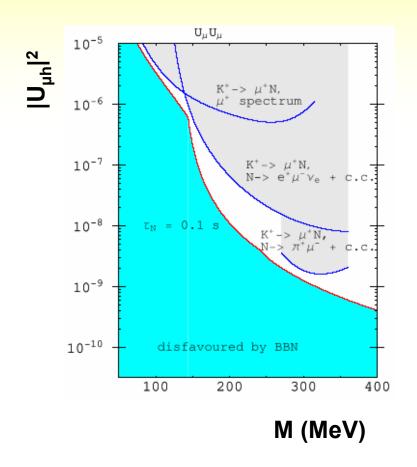
QUARKS-2010, 6-12 June

arXiv:0804.4542v2 [hep-ph] arXiv:0901.0011v2 [hep-ph]

SM + 3 neutral right-handed heavy leptons

How to find heavy neutrino?

<u>Mesons decays</u>


The search for additional peak

$$\Gamma(M^+ \to l^+ \nu_h) \sim \Gamma(M^+ \to l^+ \nu_l) |U_{lh}|^2$$

Heavy neutrino decays

"Nothing" \rightarrow leptons and hadrons $N \rightarrow e^+ e^- v_{\alpha}, N \rightarrow \mu^{\pm} e^{\mp} v_{\alpha}, N \rightarrow \mu^+ \mu^- v_{\alpha}$ $N \rightarrow \pi^0 v, \pi e, \pi \mu, K e, K \mu...$

Current limits

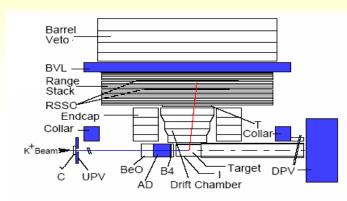
There was suggested to use E949 data to study heavy neutrino mass region from 150 MeV to 270 MeV in decay channel

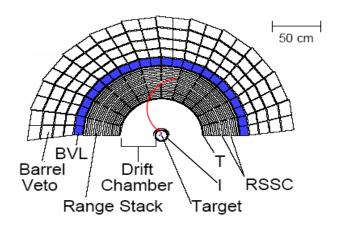
$$K^+ \rightarrow \mu^+ \nu_H$$

Experiment BNL E949

 $K^+ \to \pi^+ \nu \nu$ Phys. Rev. D 79, 092004 (2009)

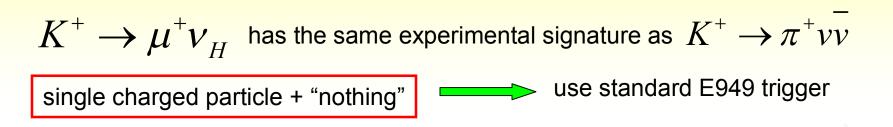
SM expectation

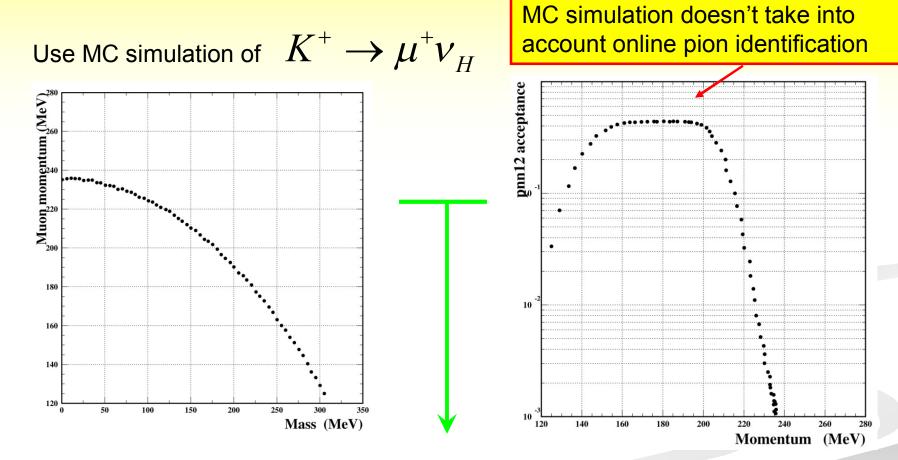

$$\mathcal{B}_{SM}(K^+ \to \pi^+ v \bar{v}) = (0.85 \pm 0.07) \times 10^{-10}$$



E949 + E787

4 + 3 (from E787) = 7 $\mathcal{B}(K^+ \to \pi^+ \nu \nu) = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$

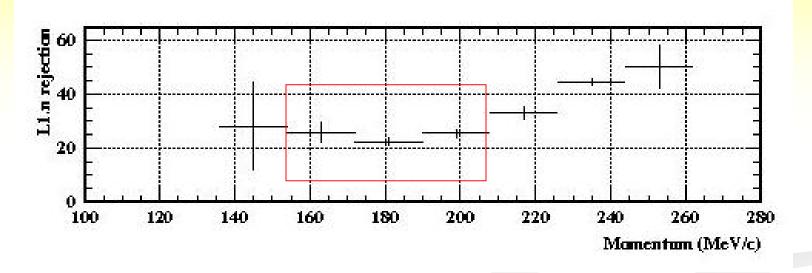

The Detector


- ~700 MeV/c kaon beam is slowed down by BeO и AD
- K⁺ stops and decays in scintillating fiber target
- Measure π^+ momentum in UTC, energy and range in target and Range Stack(RS)
- π^+ stops and decays in RS observe $\pi^+ \rightarrow \mu^+ \rightarrow e^+$ decay chain
- Veto photons: BV BVL, RS, EC, CO, USPV, DSPV

Heavy neutrino trigger

- Wait at least 2 ns for K⁺ decay
- Stopping layer in RS between 6 and 18
- Photon veto: no showers in RS, Barrel,...
- π^+ identification: online check $\pi^+ \rightarrow \mu^+$ decay chain in the stopping counter

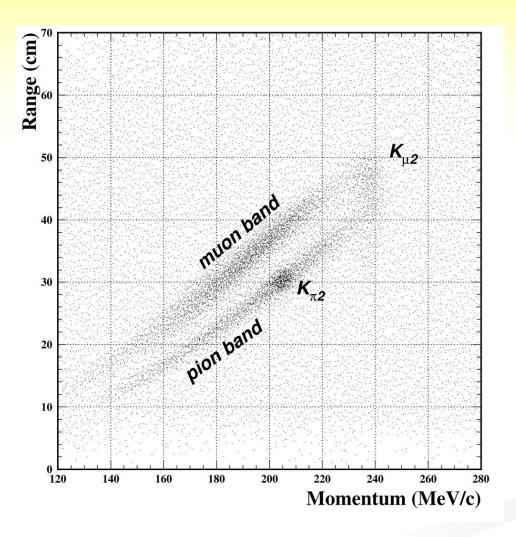
Trigger acceptance



Optimal mass region for analysis from 160 MeV to 260 MeV

QUARKS-2010, 6-12 June

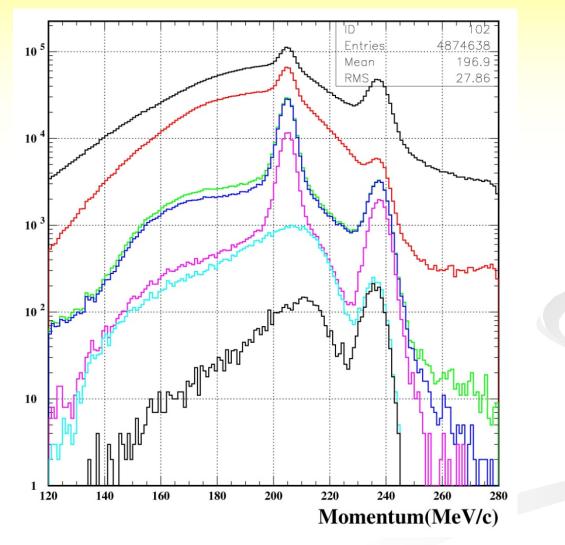
A. Shaykhiev, INR

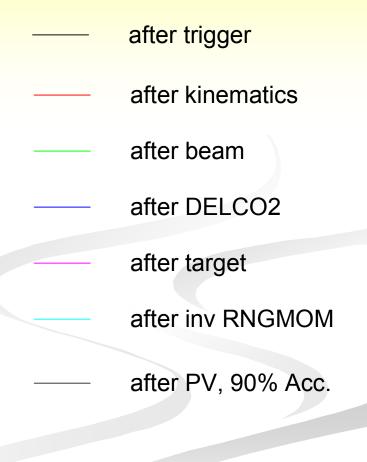

Online muon rejection

For signal region online muon rejection is almost constant and equals 24.82

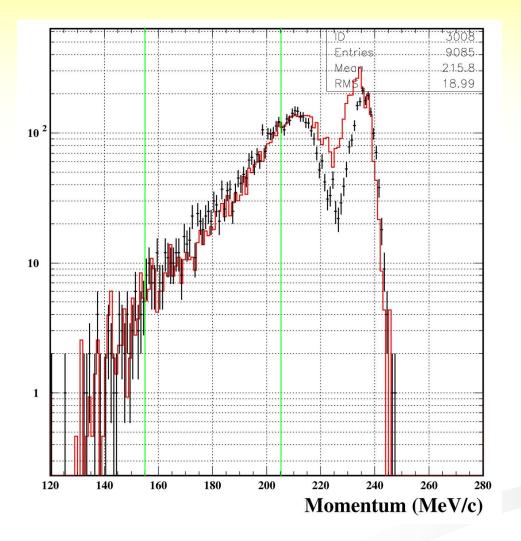
Total trigger acceptance for muons is equal to 1.73x10⁻²

Background sources


Muon band: generally $K_{\mu 2\gamma}$, $K_{\mu 3}$ decays Pion band: $K_{\pi 2\gamma}$, $K_{\pi 2}$ in which pion scattered in the target or RS and beam pion

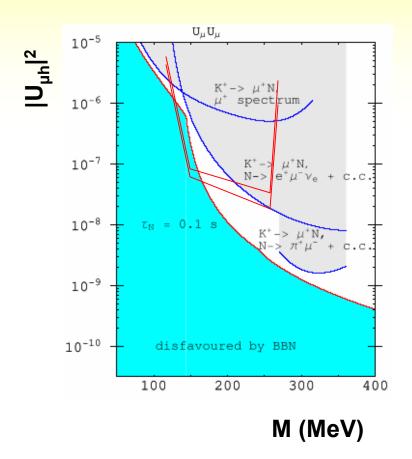

MC simulation of background sources

Process	Trigger+cuts rej	BR	Total rejection
$K_{\mu\nu\gamma}$	$\sim 10^4$	6.2×10^{-3}	$\sim 10^7$
$K_{\mu 3}$	$\sim 10^7$	3.35×10^{-2}	$\sim 10^9$
Only $\pi\nu\nu(1+2)$ trigger			
$K_{\pi 2\gamma}$	$\sim 5 \times 10^4$	2.75×10^{-4}	$\sim 2 \times 10^9$


 $K_{\pi 2\gamma}$ can be ignored due to 3 gamma in the final state and the strong range-momentum rejection of pions (~500). So the $K_{\mu 2\gamma}$ is the dominant background source for decay into heavy neutrino.

1/20 of real data

MC data vs Real data


1/20 E949 data after trigger and some offline cuts

Simulated K_{μ2γ} events after
trigger and some offline cuts

MC is consistent with real data in the region $P_{\mu} < 210 \text{ MeV/c}$

 P_{μ} > 210 MeV/c is under investigation

Expected sensitivity

Total stopped kaons ~1.6x10¹²

Total initial acceptance ~10⁻³

Conclusions

- According to vMSM there is a possibility of existence of heavy neutrino with mass above pion mass
- It was suggested to use E949 data to search for $K^+ \rightarrow \mu^+ v_H$ decay
- Expected sensitivity is about 10⁻⁷-2x10⁻⁸ and depends on heavy neutrino mass
- First result ~ end of 2010

Thank you!