

Asymptotic safety of gravity and the Higgs boson mass

Mikhail Shaposhnikov Quarks 2010, Kolomna, June 6 - 12, 2010 Based on: C. Wetterich, M. S., Phys. Lett. B683 (2010) 196

Outline

- Asymptotic safety versus renormalizability
- Asymptotically safe gravity
- Standard Model, observations, and asymptotic safety
- Higgs boson mass
- Conclusions

Asymptotic safety versus renormalizability

Generic quantum field theory

- Take some field theory and write the most general Lagrangian.
- Compute all amplitudes in all orders of perturbation theory.
- Require that the theory is unitary, Lorentz invariant, causal, etc infinite number of conditions for infinite number of processes.
- Solve these consistency equations. Hopefully, the theory will be characterised by a finite number of essential parameters coupling constants, making the predictions possible.

RG approach

Introduce dimensionless coupling constants g_i constants for all terms in the action:

 $g_i = \mu^D G_i$, G_i are dimensionfull in general

D is the dimension of coupling constant.

RG equations: from requirement that physical amplitudes are μ -independent,

$$\mu rac{\partial g_i}{\partial \mu} = eta_i(g)$$

Different possibilities

- Renormalizable asymptotically free theories Gaussian UV fixed point: essential couplings $g_i \rightarrow 0$ at $\mu \rightarrow \infty$. The number of these couplings is finite only operators with dimension ≤ 4 are allowed.
- Asymptotically safe theories non-Gaussian UV fixed point g* ≠ 0: β_i(g*) = 0. If the dimensionality of the critical surface in the space of coupling constants (which points are attracted to g*) is finite, the theory is predictable.

Known solutions

- Asymptotically free theories:
 - QCD
 - Certain GUTS
 - Renormalizable theories in 2d and 3d
- Asymptotically safe, but non-renormalizable theories
 - Scalar field theory in 3d at Wilson-Fischer fixed point (critical surface is 2-dimensional)
 - Non-linear σ model in 3d
 - Complete theory of pions and nucleons in 4d

The Standard Model is neither asymptotically free nor asymptotically safe!

Methods to study asymptotic safety

\bullet - expansion

- Lattice simulations
- Functional renormalisation group:

$$\mu\,\partial_\mu S_\mu = rac{1}{2}\,{
m STr}\left[\left(S^{(2)}_\mu + {\cal R}_\mu
ight)^{-1}\,\mu\,\partial_\mu {\cal R}_\mu
ight]\;.$$

where

 $egin{aligned} S_\mu &
ightarrow S_{class} ext{ for } \mu
ightarrow \infty, \ S_\mu &
ightarrow S_{eff} & ext{ for } \mu
ightarrow 0, \ \mathcal{R}_\mu & ext{ is the "window" function.} \end{aligned}$

Gravity

Conjecture Weinberg '79: Gravity may be asymptotically safe. ϵ -expansion argument -

$$S_G = -rac{1}{16\pi G_0}\int d^Dx \sqrt{g}R$$

$$G(\mu) = \mu^{D-2}G_0, \quad \mu rac{d}{d\mu}G(\mu) = (D-2)G(\mu) - bG^2(\mu) \;.$$

Fixed point:

$$G^*=rac{D-2}{b}, \ \ G^*_0(\mu)=rac{G^*}{\mu^{D-2}}
ightarrow 0 \ \ ext{if} \ \ \mu
ightarrow\infty$$

Computations give b > 0. Gastmans et al '77, Christensen and Duff '77, Kawaiand and Ninomiya '90, Percacci '06,...

Functional RG analysis - Reuter '96, Percacci et al, Niedermaier '09, ...

Reuter and Saueressig '02

Extra evidence

- Higher derivative gravity Stelle '77, Fradkin & Tseytlin '82, Avramidi& Barvinsky '85,...
- Large N (matter fields) expansion Tomboulis '77, '80, Smolin '82, Percacci '06,...
- Perturbation theory Niedermaier, '09

What if indeed gravity is asymptotically safe?

What if indeed gravity is asymptotically safe?

Any predictions for particle physics and LHC?

Possible consequence: Electroweak theory + Gravity is a final theory

Experimental evidence for physics beyond the SM

- i. Neutrino masses and oscillations
- ii. Dark matter
- iii. Baryon asymmetry of the Universe
- iv. Inflation

require only a modest extension of the SM (ν MSM) by 3 singlet right-handed fermions (needed for i-iii) with masses in keV - GeV area, and non-minimal coupling of the Standard Model Higgs field to Ricci scalar (needed for iv).

Realisation: ν **MSM**

Role of N_e with mass in keV region: dark matter Role of N_{μ} , N_{τ} with mass in 100 MeV – GeV region: "give" masses to neutrinos and produce baryon asymmetry of the Universe Role of the Higgs: give masses to quarks, leptons, Z and W and inflate the Universe.

To be true: all the couplings of the SM must be asymptotically safe or asymptotically free

Problem for:

- U(1) gauge coupling g_1 , $\mu \frac{dg_1}{d\mu} = \beta_1^{SM} = \frac{41}{96\pi^2} g_1^3$
- Scalar self-coupling λ , $\mu \frac{d\lambda}{d\mu} = \beta_{\lambda}^{SM} =$

$$=\frac{1}{16\pi^2}\left[(24\lambda+12h^2-9(g_2^2+\frac{1}{3}g_1^2))\lambda-6h^4+\frac{9}{8}g_2^4+\frac{3}{8}g_1^4+\frac{3}{4}g_2^2g_1^2\right]$$

Fermion Yukawa couplings, t-quark in particular h, $\mu \frac{dh}{d\mu} = \beta_h^{SM} =$

$$=rac{h}{16\pi^2}\left[rac{9}{2}h^2-8g_3^2-rac{9}{4}g_2^2-rac{17}{12}g_1^2
ight]$$

Landau pole behaviour

Gravity contribution to RG running

Let x_j is a SM coupling. Gravity contribution to RG:

$$\mu rac{dx_j}{d\mu} = eta_j^{ ext{SM}} + eta_j^{grav} \; .$$

On dimensional grounds

$$eta_{j}^{grav} = rac{a_{j}}{8\pi} rac{\mu^{2}}{M_{P}^{2}(\mu)} x_{j} \; .$$

where

$$M_P^2(\mu) = M_P^2 + 2\xi_0 \mu^2 \; ,$$

with $M_P = (8\pi G_N)^{-1/2} = 2.4 imes 10^{18}$ GeV, $\xi_0 pprox 0.024$

from a numerical solution of FRGE

Remarks

- The couplings are not in \overline{MS} scheme
- The couplings are not in MOM scheme
- Pretty vague definition based on physical scattering amplitudes at large momentum transfer - never actually worked out in details
- Thus, computations of a_j are ambiguous and controversial.

Still, even without exact knowledge of a_j a lot can be said about the Higgs mass

Robinson and Wilczek '05, Pietrykowski '06, Toms '07&'08, Ebert, Plefka and Rodigast '07, Narain and Percacci '09, Daum, Harst and Reuter '09, Zanusso et al '09, ...

- Most works get for gauge couplings a universal value
 a₁ = a₂ = a₃ < 0: U(1) gauge coupling get asymptotically free in asymptotically safe gravity</p>
- $a_{\lambda} \simeq 2.6 > 0$ according to Percacci and Narain '03 for scalar theory coupled to gravity
- $a_h > < 0$? The case $a_h > 0$ is not phenomenologically acceptable only massless fermions are admitted

Suppose that indeed $a_1 < 0$, $a_h < 0$, $a_{\lambda} > 0$. Then the Higgs mass is predicted with theoretical uncertainty $\simeq \pm 2.2$ GeV

$$m_{
m H} = [126.3 + rac{m_t - 171.2}{2.1} imes 4.1 - rac{lpha_s - 0.1176}{0.002} imes 1.5] ~{
m GeV} \ ,$$

Possible understanding of the amazing fact that $\lambda(M_P) = 0$ and $\beta_{\lambda}^{SM}(M_P) = 0$ simultaneously at the Planck scale.

To decrease uncertainty: (the LHC accuracy can be as small as 200 MeV!)

- Measure better t-quark mass (present error in m_H due to this uncertainty is $\simeq 4$ GeV)
- Measure better α_s (present error in m_H due to this uncertainty is $\simeq 1.5 \text{ GeV}$)
- Compute two-loop EW corrections to pole MS matching for the Higgs mass (has never been done)
- Compute 3-loop running of all couplings of the Standard Model (has never been done)

If done, the uncertainty will be reduced to ~ 0.5 GeV, due to unremovable non-perturbative contribution $\sim \Lambda_{QCD}$ to top quark mass.

Remarks

Prediction is quite model independent and may be valid for GUTs, higher dimensional theories, etc.

It stays approximately true provided:

- We have SM running of couplings up to the high energy scale
- **a** λ is relatively large and positive
- If there are other light particles, the number for $m_{\rm H}$ will be different.

Suppose that $a_1 < 0$, $a_h < 0$, $a_\lambda < 0$. Then the Higgs mass is predicted with theoretical uncertainty $\simeq 50$ GeV

 $126~{
m GeV} < m_{
m H} < 174~{
m GeV}$

Assumed: the Fermi scale is fixed to its experimental value. Gravity contribution to running of the mass parameter in the Higgs-potential $m^2(\mu)$:

$$\mu rac{\partial}{\partial \mu} m^2 = A_m m^2 \; ,$$

If: $A_m > 2$ the dimensionless ratio m^2/μ^2 is attracted to zero, leading, possibly, to understanding why $G_F \gg G_N$. Percacci '03, Narain '09: $A_m = 1.83 < 2$ for scalar-Gravity system.

SM+Gravity - not known

Conclusions

If gravity is asymptotically safe then the possible outcome of the LHC experiments is:

- Higgs and nothing else
- $m_H \simeq 126 \, \text{GeV}$ (for central values of m_t and α_s) if, as some computations show, $a_\lambda > 0$
- Waiting time \sim 6 years (?)
- Asymptotic safety may shed light to the smallness of the Fermi scale