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Properties of s
alar 
osmologi
al perturbationsPrimordial perturbations (energy density, gravitationalpotential): Gaussian (or nearly Gaussian) random �eld δ (x)
δ (x) obeys Wi
k theoremThis suggests the origin: enhan
ed va
uum �u
tuations ofsome free (linear) quantum �eldFlat or nearly �at power spe
trum

〈δ (k)δ ∗(k′)〉= k3
P(k)δ (k−k′)with

P(k) (almost) independent of k =⇒

〈δ 2(x)〉=
∫ ∞

0

d3k
k3 P(k) (almost) s
ale invariantThere must be some symmetry behind this property



Candidate theory for origin: in�ation

(Almost) exponential expansion of the Universe,
ds2 = dt2− e2Htdx2 , H ≈ 
onstE�
ient enhan
ement of va
uum �u
tuations of in�aton (or
urvaton) �eldSymmetry: spatial dilatations supplemented by timetranslations

x → λx , t → t − 1
2H

logλFlat spe
trum of �eld �u
tuations for 
onstant H =⇒ �atspe
trum of density perturbations (and also gravity waves)



Conformal plus global symmetryinstead of de Sitter symmetry

Simple me
hanism for produ
ing �at primordial spe
trumRequires long evolution before the hot stageBut otherwise insensitive to regimeof 
osmologi
al expansion:works at in�ation, 
ontra
ting (ekpyroti
) phase, �starting theUniverse� s
enario, et
. Model:Conformal 
omplex s
alar �eld φ with negative quarti
 potential.Conformal symmetry broken at large �elds. To be dis
ussed later on.

S =

∫ √−g

[

gµν∂µφ ∗∂νφ +
R
6
|φ |2− (−h2|φ |4)

]

Conformal symmetry in 4 dimensions. Global symmetry U(1).



Homogeneous and isotropi
 Universe,

ds2 = a2(η)[dη2−dx2]In terms of the �eld χ(η ,x) = a(η)φ(η ,x) = χ1+ iχ2,evolution is Minkowskian,

ηµν∂µ∂ν χ −2h2|χ |χ = 0

Homogeneous ba
kground solutionAttra
tor (real without loss of generality)
χc(η) =

1
h(η∗−η)

η∗ = 
onstant of integration, end time of roll.NB: Parti
ular behavior χc ∝ (η∗−η)−1di
tated by 
onformal symmetry.





Flu
tuations of Im χautomati
ally have �at spe
trumLinearized equation for �u
tuation δ χ2 ≡ Imχ . Mode of3-momentum k:

d2

dη2 δ χ2+ k2δ χ2−2h2χ2
c δ χ2 = 0

[re
all hχc = (η∗−η)℄ Regimes of evolution:Early times, k ≫ 1/(η∗−η), sub-�horizon� regime,

χc negligible, free Minkowskian �eld

δ χ2 =
1

(2π)3/2
√

2k

e−ikηAk + h.c.



Late times, k ≪ 1/(η∗−η), super-�horizon� regime,
χc dominates,

δ χ2 =
1

(2π)3/2
√

2k
· 1

k(η∗−η)
·AkPhase of the �eld φ freezes out:

δθ =
δ χ2

χc
=

1

(2π)3/2
√

2k
· h

k
·AkPower spe
rum of phase is �at:

〈δθ 2〉 ∝ h2
∫

d3k
k3This is automati
 
onsequen
e of global U(1)



Super-�horizon� regime:

k negligible,equation for δ χ2 is equation for spatially homogeneous perturbation.
χc is solution to full �eld equation, eiα χc also =⇒

δ χ = iαχc is solution to perturbation equation =⇒

δ χ2 : e−ikη =⇒ C(k)χc(η) =
1

k(η∗−η)NB: 1/k on dimensional grounds.NB: In fa
t, equation for δ χ2 is pre
isely the same as equation forminimally 
oupled massless s
alar �eld in in�ating Universe



Me
hanism requires long 
osmologi
al evolution: need
(η∗−η)≫ 1/kearly times, sub-�horizon� regime,well de�ned va
uum of the �eld δ χ2.For k ∼ H0 this is pre
isely the requirement that the horizonproblem is solved.This is probably a pre-requisite for any me
hanism that generatesdensity perturbations



Repro
essing �eld perturbationsinto density perturbations

Assume that 
onformal evolution ends up at late time.Modulus of the �eld φ freezes out. Assume that energy density of φis negligible at that time.Let the phase θ be pseudo-Goldstone �eldintera
ting with matter



Generi
ally, phase θ ends up at a slope of its potential
θ serves as pseudo-Goldstone 
urvaton K. Dimopoulos et.al.' 2003If mass of θ is small enough, it does not evolve until H ∼ mθ atradiation dominationThen θ rolls down its potential, os
illates near the minimum and inthe end delivers its energy to matter parti
les.Perturbations in θ be
ome adiabati
 density perturbations,

δρ
ρ

∼ ζ ≃ Ωθ
δθ
θ0

flat power spectrum

Ωθ : relative energy density of θ at the time its os
illations de
ay

θ0: distan
e to minimum from landing pointWithout �ne tuning
ζ ∼ Ωθ

h
2π



Work in progress: ba
k to 
onformal evolution

Pe
uliarity: perturbations of modulus.Linear analysis of perturbations of χ1 = Reχ : in super-�horizon�regime, k ≪ 1/(η∗−η)

δ χ1= const
1

k2
√

k(η∗−η)2Red spe
trum:
〈δ χ2

1〉 ∝
∫

d3k
k5Large δ χ1 at small (η∗−η)[Re
all χc = 1/[h(η∗−η)]℄



Again by symmetry: now translations of 
onformal time:
χc ∝ 1/(η∗−η) =⇒ spatially homogeneous solution to perturbationequation δ χ= ∂η χc.Interpretation: shift η∗ −→ η∗+δη∗(x)Ba
kground for perturbations δ χ2 = Imχ (in other words,for phase θ ) is no longer spatially homogeneous.Red spe
trum of δη∗(x):

〈δη2
∗ 〉 ∝

∫

d3k
k5Have to study perturbations of Imχ in spatially inhomogeneousba
kground, slowly varying in spa
e,

χc =
1

h(η∗(x)−η)



Ba
k to equation for perturbations of δ χ2 = Imχ

d2

dη2δ χ2−
∂ 2

∂x2δ χ2−
2

(η∗(x)−η)
δ χ2 = 0Initial 
ondition as η →−∞:

δ χ2 =
1

(2π)3/2
√

2k

eikx−ikη Ak + h.c.

η∗(x): long ranged �eldSolution in approximation of small wavelength k−1 
ompared tos
ale of spatial variation of η∗:
δ χ2 =

1

(2π)3/2
√

2k

eikx−ikη
[

1− i
q(η∗(x)−η)

+
kik j

k3 ∂i∂ jη∗ · f (η∗−η)
]

Ak

with q = k− ki∂iη∗.



Interpretation: lo
al time shift plus lo
al Lorentz boost:ba
kground is lo
ally homogeneous and isotropi
 in a referen
eframe other than 
osmi
 frame.Modes of δη∗ longer than present 
osmologi
al horizon:global anisotropy, 
onstant in spa
e ve
tor ∂iη∗Leading order e�e
t 
an
els out neverthelessGlobal anisotropy determined by 
onstant in spa
e tensor

∂i∂ jη∗|long wavelengthsIndu
es 
orrelators in CMB temperature anisotropy

〈almal±2,m′〉



NB: Power spe
trum is blue,

〈(∂i∂ jη∗)
2〉 ∝ h2

∫

d3k
kUn
lear how to disentangle long wavelengths (longer than
urrent horizon) and shorter wavelengthsUn
lear whether global anisotropy 
an beat 
osmi
 varian
e:On dimensional grounds, global anisotropy e�e
t on perturbationswith present wave ve
tor k0 is proportional to

h
H0

k0

=⇒ e�e
t on CMB suppressed by 1/l



Non-Gaussianity

Perturbations of phase δθ frozen out at
δθ (x)=

1

(2π)3/2
√

2kq(x)

eikx−ikη∗(x)Ak + h.c.

η∗(x) and q(x) = k−ki∂iη∗ are random �elds =⇒ Non-Gaussianity ofvery spe
ial kind =⇒ non-Gaussianity of the same kind in densityperturbations.Density 
orrelation fun
tions involve
〈e−ikη∗(x)eikη∗(y)〉= ek2[D(x,y)−D(x,x)]where

D(x,y)−D(x,x) ∝ −h2
∫

d3k
k5

(

1− eikx)NB: Infrared log. Probably 
ut o� at the present horizon s
ale.



To summarize:

Flat (or nearly �at) spe
trum of density perturbations may be
onsequen
e of 
onformal + global symmetry, rather than de SittersymmetryA simple model of this sort: 
onformally 
oupled
omplex s
alar �eld with negative quarti
 potentialEvolution of s
ale fa
tor arbitrary,ex
ept that it must be long



Pe
uliar property whi
h hopefully has potentially observable
onsequen
es: strong �u
tuations along roll down dire
tionPerturbations of wavelengths ex
eeding the presenthorizon: global anisotropy
〈almal±2,m′〉 6= 0

Perturbations of wavelengths smaller than the presenthorizon: non-Gaussianity of a spe
ial kind.

What if the world started out 
onformal indeed?
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