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Properties of scalar cosmological perturbations
® Primordial perturbations (energy density, gravitational
potential): Gaussian (or nearly Gaussian) random field d(X)

® 0O(X) obeys Wick theorem

® This suggests the origin: enhanced vacuum fluctuations of
some free (linear) quantum field

® Flat or nearly flat power spectrum
(3(k)&*(K)) = K2 (k)3(k — k')
with

Z(K) (almost) independent of k =

o A3
(5%(X)) = / C:(—;< Z(K) (almost) scale invariant
0

# There must be some symmetry behind this property



Candidate theory for origin: inflation

(Almost) exponential expansion of the Universe,
ds® = dt® — e?'dx?, H ~ const

® Efficient enhancement of vacuum fluctuations of inflaton (or
curvaton) field

® Symmetry: spatial dilatations supplemented by time
translations

1
X—=AX, t—=t——IlogA
A% T e ool

Flat spectrum of field fluctuations for constant H — flat
spectrum of density perturbations (and also gravity waves)



Conformal plus global symmetry
instead of de Sitter symmetry

® Simple mechanism for producing flat primordial spectrum

® Requires long evolution before the hot stage

e But otherwise insensitive to regime
of cosmological expansion:

works at inflation, contracting (ekpyrotic) phase, “starting the
Universe” scenario, etc.

Model:

Conformal complex scalar field ¢ with negative quartic potential.

Conformal symmetry broken at large fields. To be discussed later on.
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Conformal symmetry in 4 dimensions. Global symmetry U (1).



Homogeneous and isotropic Universe,
ds? = &2(1)[dn? — b

In terms of the field x(n,X) =a(n)e((n,x) = x1+ixo,

evolution is Minkowskian,

a0, x — 2n?|x|x =0

Homogeneous background solution

Attractor (real without loss of generality)

nN. = constant of integration, end time of roll.

NB: Particular behavior ¢ 0 (N, —n)~1
dictated by conformal symmetry.






Fluctuations of Im X

automatically have flat spectrum

Linearized equation for fluctuation 0 x2> = Imy. Mode of
3-momentum K:

d2

WCSXz + k25X2 — thc 0x2=0

recall hxe = (1. — )]

Regimes of evolution:

® Early times, k> 1/(n. —n), sub-"horizon” regime,
Xc negligible, free Minkowskian field




® Late times, K< 1/(n,—n), super-"horizon” regime,
Xc dominates,

1 1
fo) .
X2= omaeyak K. —n) X
e Phase of the field @ freezes out:
560 — 5)(2 1 h A

Xe  (2m)¥2v/2k ko

e Power specrum of phase is flat:

d3k
k3

e This is automatic consequence of global U (1)

(562) O h?



Super-"horizon” regime:
K negligible,
equation for 0X» is equation for spatially homogeneous perturbation.

Xc is solution to full field equation, €'% xc also —
OX = 1d X is solution to perturbation equation —

1
k(n.—n)

dxz: e M1 = C(K)Xe(n) =
NB: 1/k on dimensional grounds.

NB: In fact, equation for O )2 is precisely the same as equation for
minimally coupled massless scalar field in inflating Universe



® Mechanism requires long cosmological evolution: need

(N«—n)>1/k

early times, sub-"horizon” regime,

well defined vacuum of the field 0 x>.

For k ~ Hp this is precisely the requirement that the horizon
problem is solved.

This is probably a pre-requisite for any mechanism that generates
density perturbations



Reprocessing field perturbations
into density perturbations

® Assume that conformal evolution ends up at late time.
Modulus of the field @ freezes out. Assume that energy density of @
is negligible at that time.

® Let the phase 6 be pseudo-Goldstone field
interacting with matter




® Generically, phase 6 ends up at a slope of its potential

® 0O serves as pseudo-Goldstone curvaton
K. Dimopoulos et.al.” 2003

If mass of 6 is small enough, it does not evolve until H ~ mg at
radiation domination

Then 0 rolls down its potential, oscillates near the minimum and in
the end delivers its energy to matter particles.

Perturbations in 6 become adiabatic density perturbations,

P { ~ QQ@ flat power spectrum
p 6o

Qg: relative energy density of 8 at the time its oscillations decay
Op: distance to minimum from landing point

Without fine tuning
h
~ O
{~Qgo



Work in progress: back to conformal evolution

Peculiarity: perturbations of modulus.

® Linear analysis of perturbations of X1 = Rey: in super-"horizon”
regime, K< 1/(n,—n)

1
0 X1= const

k2v/Kk(ns —n)?

e Red spectrum:

3
5X1 'O / d°k
e Large )1 at small (n, —
[Recall xc=1/[h(n, — ’7)”



® Again by symmetry: now translations of conformal time:
Xc 01/(n.—n) = spatially homogeneous solution to perturbation
equation 0= dp Xc.

® Interpretation: shift N, — N.+0n.(X)

e Background for perturbations dx2 = Imy (in other words,
for phase ) is no longer spatially homogeneous.

e Red spectrum of 1. (X):

3
617* D/dk

® Have to study perturbations of Imy in spatially inhomogeneous

background, slowly varying in space,

1
N«(X)—n)

Xc:h(



® Back to equation for perturbations of d)2 = Imy

d? 02 2
25X2_ A2
dn oX (N«(X)—n)

e Initial condition as n — —oo:

——50X2—

1
(27-[)3/2\/?(

e 11.(X): long ranged field

SXo = kI L he.

® Solution in approximation of small wavelength k=1

scale of spatial variation of n,:

- (2m)%/2\/2k A —n) K

with g=k—kdin..

Ox2=0

compared to

ko [ 1 Kot —n) | A



Interpretation: local time shift plus local Lorentz boost:
background is locally homogeneous and isotropic in a reference
frame other than cosmic frame.

® Modes of on, longer than present cosmological horizon:
global anisotropy, constant in space vector d;n,

Leading order effect cancels out nevertheless

Global anisotropy determined by constant in space tensor

0i0j N |Iong wavelengths

Induces correlators in CMB temperature anisotropy

(Aymdy o)



NB: Power spectrum is blue,

d3k
((8djn.)%) O 3

e Unclear how to disentangle long wavelengths (longer than
current horizon) and shorter wavelengths

e Unclear whether global anisotropy can beat cosmic variance:

On dimensional grounds, global anisotropy effect on perturbations
with present wave vector Kg is proportional to

Ho
ko

— effect on CMB suppressed by 1/I



Non-Gaussianity

® Perturbations of phase 06 frozen out at

1
(2m)3/2/2kq(x)

N.«(X) and q(x) = k—Kkidn, are random fields = Non-Gaussianity of
very special kind = non-Gaussianity of the same kind in density
perturbations.

56 (x)= K-+ hee,

® Density correlation functions involve
(e 1K1 () gk (¥)y — k*D(xY)~D(xX)
where
2 d°k IkX
D(x,y) —D(x,x) O —h / & (1—e")

NB: Infrared log. Probably cut oftf at the present horizon scale.



To summarize:

® Flat (or nearly flat) spectrum of density perturbations may be

consequence of conformal + global symmetry, rather than de Sitter
symmetry

e A simple model of this sort: conformally coupled
complex scalar field with negative quartic potential

e Evolution of scale factor arbitrary,
except that it must be long



® Peculiar property which hopetfully has potentially observable
consequences: strong fluctuations along roll down direction

e Perturbations of wavelengths exceeding the present
horizon: global anisotropy

(Amdy£2ny) # O

e Perturbations of wavelengths smaller than the present
horizon: non-Gaussianity of a special kind.

What if the world started out conformal indeed?
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