Observing GW signature from supermassive BH mergings

Postnov K.

Sternberg Astronomical Institute
0909.0742, MNRAS 2010

Outline

- GW bursts with memory
- SMBH mergings
- Signatures in pulsar timing
- S/N ratio
- Expected event rate
- Conclusions

GW bursts with memory

- Generally think of GW's as oscillating functions w/ zero initial and final values:

- But some sources exhibit differences in the initial \& final values of $\boldsymbol{h}_{+, \times}$

$\Delta h_{+, \times}^{\mathrm{mem}}=\lim _{t \rightarrow+\infty} h_{+, \times}(t)-\lim _{t \rightarrow-\infty} h_{+, \times}(t)$
- Ideal GW detector ('free masses') would have permanent displacement ("memory")

- Biuld-up of the displacement is measurable (difficult by ground-based LIGO, but can be done from space by LISA)

GWM: linear effect

- Non-oscillatory change of quadrupole and higher multipole moments (Zeldovich \& Polnarev 74, Braginsky \& Grishchuk 78, Braginsky \& Thorne 87). For example, gravitational scattering (hyperbolic orbit)

- For any system of N gravitationally unbound bodies with velocities v_{A} before and after GW burst

$$
\Delta h_{j k}^{\mathrm{TT}}=\Delta \sum_{A=1}^{N} \frac{4 M_{A}}{R \sqrt{1-v_{A}^{2}}}\left[\frac{v_{A}^{j} v_{A}^{k}}{1-v_{A} \cdot N}\right]^{\mathrm{TT}}
$$ emission (Braginsky \& Thorne 87, Thorne 92)

- Examples: hyperbolic orbits (Turner 77), asymmetric neutrino emission (Epstein 78), asymmetric SN explosions (Burrows \& Hayes 96, Ott 08), GRB jets...

Nonlinear effect (Cristodoulou

memory) Cristodoulou 91, Blanchet \& Damour 92

- Contribution to the distant GW field sourced by the emission of GWs
- Recall previous form of the Einstein's equations:

$$
\square h_{\alpha \beta}=16 \pi \operatorname{det}\left(g_{\mu \nu}\right) T_{\alpha \beta}+\mathcal{F}[h, h]
$$

Grav'l wave stress-
energy tensor...

$$
\ddot{\mathcal{I}}_{j k} \rightarrow \ddot{\mathcal{I}}_{j k}+U_{j k}^{\mathrm{gw}} \quad \begin{aligned}
& \text {...contributes to the changing } \\
& \text { multipole moments... }
\end{aligned}
$$

(Favata 09)
$h_{j k}^{\mathrm{TT}} \approx \frac{\frac{2}{R} \ddot{\mathcal{I}}_{j k}^{\mathrm{TT}} \ldots \text { which dete }}{\Delta h^{(\mathrm{mem})}} \sim \frac{\Delta E^{\mathrm{gw}}}{R}$
...which has a slowly-growing, non-oscillatory piece related to the radiated GW energy.

- Hereditary nature: memory piece of the GW field depends on the entire history:
(T_{R} is retarded time)
- Similar to linear memory can be interpreted as arising from changes in the mass quadrupole moment of the system during emission of individual gravitons (Thorne 92) with energies $E_{A}=M_{A} /\left(1-v_{A}^{2}\right)^{1 / 2}$ and velocities $v_{a}{ }^{j}=\mathrm{Cn}_{a}{ }^{j}$

GWM in binary BH mergers

- Quasi-circular orbits: $h_{x}=0, h_{+} \neq 0$

$h_{+}^{\text {mem }}=\frac{\eta M h}{384 \pi R} \sin ^{2} \theta\left(17+\cos ^{2} \theta\right), \quad M=M_{1}+M_{2}, \quad \eta=\frac{M_{1} M_{2}}{M^{2}}$
θ - angle between orbital ang. momentum and line of sight
$h=\frac{16 \pi}{\eta}\left(\frac{\Delta E_{G W}}{M}\right)$
$\left\langle h_{+}^{\text {mem }}\right\rangle=\frac{69}{8}\left(\frac{\Delta E_{G W}}{24 R}\right) \approx \frac{\Delta E_{G W}}{3 R}$

From numerical simulations (Reisswig et al 09):
$\Delta E_{G W} \approx(3.6-10 \%) M \quad \Rightarrow$
$h^{\text {mem }} \approx 5 \times 10^{-16}\left(\frac{m}{10^{8} M_{\odot}}\right)\left(\frac{1 \mathrm{Gpc}}{R}\right)$

Detectability of the memory:

- will be difficult to observe w/ Advanced LIGO
- likely to be visible by LISA out to redshift $\mathbf{z} \leqslant 2$

Favata 2009, ApJL, 696, 159

Detection of GWM by pulsar timing

- GWM leaves unique signature in pulsar timing: linear growth of rms residuals with time

$$
\begin{aligned}
& s_{\text {mem }} \sim h_{+}^{\text {mem }} T_{\text {obs }} \\
& s_{\text {insp }} \sim h^{\text {insp }} / \omega_{\text {insp }} \\
& \\
& \omega_{\text {insp }}^{-1} \approx 7.5 \times 10^{3}\left(M / 10^{8} M_{\odot}\right) \mathrm{s} \\
& \mathrm{~T}_{\text {obs }} \approx 10 y r s
\end{aligned}
$$

$\frac{\mathrm{SNR}_{\mathrm{GWM}}}{\mathrm{SNR}_{\text {insp }}} \sim \frac{h_{+}^{\text {mem }} T_{\text {obs }} \omega_{\text {insp }}}{h^{\text {insp }}} \sim T_{\text {obs }} \omega_{\text {insp }} \sim 2 \times 10^{4} \quad \begin{aligned} & \text { Open prospects for } \\ & \text { detection! }\end{aligned}$

Pulsar frequency modulation (Sazhin 78, Detweiler 79)

$$
\frac{\Delta v}{v_{0}}=\left.\frac{1}{2} \int_{0}^{D} d \lambda\left(e^{i} e^{j} \frac{\partial h^{i j}}{\partial t}\right)\right|_{p a t h}
$$

Timing residuals
$s(t)=\int_{0}^{t} d \tau \frac{\Delta v(\tau)}{v_{0}}$
For plain gravitational wave

$$
\begin{aligned}
& h_{i j}\left(x^{i}, t\right)=h_{+}\left(t-n_{i} x^{i}\right) p_{i j}^{+}+h_{\times}\left(t-n_{i} x^{i}\right) p_{i j}^{\times} \\
& \frac{\Delta v(t)}{v_{0}}=\frac{1}{2}(1+\mu)\left\{\begin{array}{l}
{\left[h_{+}(t) \cos 2 \phi+h_{\times}(t) \sin 2 \phi\right]-} \\
{\left[h_{+}(t-D(1-\mu)) \cos 2 \phi+h_{\times}(t-D(1-\mu) \sin 2 \phi]\right.}
\end{array}\right\}
\end{aligned}
$$

Physical sense: frequency variation is determined by difference between the GW strength at the place and time of observations (first [.]) and its strength at the site and time of signal emission

For GWBM from SMBH $\quad h_{x}=0$,
$h_{+}(t-D(1-\mu))=0$ at the site of PSR
if $D(1-\mu)>T_{\text {obs }}$.

Typically $\mathrm{D} \sim \mathrm{kpc} \gg \mathrm{T}_{\text {obs }} \sim 10 \mathrm{yrs}$
$\mu=\cos \theta$

Net result:

$$
s(t)=\frac{1}{2}(1+\mu) \int_{0}^{t} d \tau h_{+}(\tau) \cos 2 \phi
$$

Timing residuals

Pshirkov, Baskaran, PK, 2010 MNRAS

- Calculate expected signal
- Extract quadratic fit to obtain postfit residuals
- Check whether they can be measured at a given SNR by pulsar timing array (PTA)

Detectability: 1. SNR

Residuals (t) = signal residuals (t) + noise (t)

Gaussian stationary noise uncorrelated for each pulsar
$\overline{n_{\alpha}\left(t_{i}\right) n_{\beta}\left(t_{j}\right)}=\sigma_{n}^{2} \delta_{i j} \delta_{\alpha \beta}$

PTA includes $\mathrm{N}_{\alpha}=20$ PSRs, $\mathrm{T}_{\text {obs }} \approx 10 \mathrm{yrs}$,
\# of individual observatins $N_{t}=250$
Expected sensitivity: $\sigma_{n}=100 \mathrm{~ns}$
$\mathrm{SNR}_{\mathrm{GWM}} \approx 1.6\left(\frac{h^{\text {mem }}}{10^{-15}}\right)\left(\frac{N_{t}}{250}\right)^{1 / 2}\left(\frac{N_{t}}{250}\right)^{1 / 2}\left(\frac{T_{\text {obs }}}{10 y r s}\right)\left(\frac{100 n s}{\sigma_{n}}\right)$

Interacting Galaxies

Detectability: 2. Rate of events

- Rough estimate: $\sim 10^{-3} \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$ as major galaxy mergers (Concelice et al 09) $\rightarrow \sim 0.5$ event per year up to $z \sim 0.5$. Consistent with numerical simulations
- More accurate analysis: from observed SMBH mass function $N(>M)=0.07\left(M / 10^{7}\right)^{-2}$ and galaxy merger rate evolution $n(z) \sim(1+z)^{(2 \ldots 3)}$

$$
N \approx 0.1\left(\frac{N_{t}}{250}\right)\left(\frac{N_{\alpha}}{20}\right)\left(\frac{T_{\text {obs }}}{10 y r s}\right)^{3}\left(\frac{100 n s}{\sigma_{n}}\right)^{2}\left(\frac{3}{S N R}\right)
$$

Conclusions

- GW bursts with memory leave unique imprint in pulsar timing residuals
- Gravitational bursts with memory and amplitude $\mathrm{h} \sim(1.5-$ 2) $\times 10^{-15}$ can be potentially detected in $10 y$ yrs of Pulsar Timing Array observations at the $\mathrm{SNR}=3$ at the current timing noise level 100 ns .
- With account for observed SMBH mass function and evolution of galaxy major mergers with redshift, PTA detection rate can be around 1 in a $10 y r s$ run
- For merging SMBH, this method is complimentary to LISA for $\mathrm{M}>10^{8} \mathrm{M}_{\odot}$ to which LISA sensitivity decreases

THANK YOU!
10.06.2010

