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PHYSICAL CONSEQUENCES OF QUADRATIC

DIVERGENCIES

Wilson, 1971; Susskind, 1979; ’t Hooft, 1980
Scalar mass term does not brake any symmetry
M2 = M2

0 − Λ2P(g0) + . . .

Either P(g0) = 0 (technicolor, supersymmetry, etc.), or ...
M2

0
Λ2 ≈ P(g0), which means that
Parameters of the effective high-energy theory should be
fine tuned...
Are the dots in the second item important?

NATURALNESS PROBLEM

Scalar mass is oversensitive to tiny changes in the strength of
scalar self coupling measured at high energies
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HIGHER ORDER CORRECTIONS TO MASS AND

NATURALNESS

V. Kim & G.P., 2008
M2 = M2

0 − Λ2(P0(g0) + P1(g0) log( Λ2

M2 ) + . . . )

∂M2

∂g0
≈ M2 P′0(g0)

P1(g0)

New renormalization group equation should resum powers
of scale logarithms in the presence of powers of the scale

POSSIBLE SOLUTION TO NATURALNESS PROBLEM

Resummation of logarithmic quantum corrections to the scalar
mass
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MS SCHEME FOR SCALAR PROPAGATOR

Collins, 1974
Nothing "unnatural" in RG functions of scalar field withing
MS scheme
UV asymptotics of the scalar propagator:
1

Q2 → 1
(Q2)

1−γφµ
2γφ

anomalous dimension of scalar field within φ4

γφ = g2

12(16π2)2

MS SCHEME RENORMALIZATION GROUP

Naturalness problem is inexistent
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WHERE ARE THE QUADRATIC DIVERGENCIES WITHIN

DIMENSIONAL REGULARIZATION?

Veltman, 1981
For a diagram with m loops, quadratic divergence is related
to a pole near dimension 4− 2/m
Vanishing of the pole near dimension 2 is "Veltman
condition":
2M2

W + M2
Z + M2

H − 4M2
t = 0

Al-sarhi, Jack & Jones, 1992
Quadratic divergencies poles computed up to four loops

The quadratic divergence poles are accumulated towards the
physical dimension

DIMESIONAL REGULARISATION AND MINIMAL SUBTRACTIONS

Unable to treat naturalness problem conclusively
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THE RUNNING MASS

Quadratic part of the effective action for a field localized in
momentum space:
−R′(Q2)

2 (∂φ)2 + R(Q2)−R′(Q2)Q2

2 φ2

R(Q2) = 1
D(Q2)

Running mass
M2(Q2) ≡ R(Q2)−R′(Q2)Q2

R′(Q2)

Running mass in units of normalization point
m2(Q2) ≡ M2(Q2)

Q2 = R(Q2)
R′(Q2)Q2 − 1

BARE MASS AT CUTOFF Λ

is replaced with running mass at normalization point Λ2
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FOR FREE THEORY...

R(Q2) = Q2 + M2

M2(Q2) ≡ R(Q2)−R′(Q2)Q2

R′(Q2)
= M2

m2(Q2) ≡ M2(Q2)
Q2 = M2

Q2
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UNNATURALNESS IN TERMS OF THE PROPAGATOR

m2(Q2) ≈ F (g) at large Q2

We demonstrated that m2(Q2) ≈ γφ
This means that R(Q2)

R′(Q2)Q2 ≈ 1 + γφ

The range of applicability in Q2?

Unnaturlness of scalar fields is expressed as a relation for the
scalar propagator

TREATMENT OF NATURALNESS PROBLEM

requires an evolution equation for R(Q2) describing its
dependence on Q2
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RENORMALIZATION SCHEME

R′(Q2) has zero dimension (logarithmically divergent)
R(Q2) has dimension 2 (quadratically divergent)
Let us use rQ2 ≡ {R′(Q2),R(Q2),g} to parameterize our
theory

Any observable O is a function of rQ2 independent of the
normalization point Q2

FOR SCALAR FIELDS

Derivative of the propagator at a normalization point is a natural
parameter of the theory
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RG EQUATION FOR SCALAR PROPAGATOR

∂O(rQ2 )

∂Q2 = 0→
R′′(Q2) = F (R′(Q2),R(Q2),g)

QUADRATIC DIVERGENCIES

imply that RG equation for scalar propagator is second order in
derivatives over momentum squared
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INGREDIENTS OF THE DERIVATION

G.P., 2010
Dominicis-Englert theorem
Inaction equations for Green functions
Normalized action
Finite perturbation theory
Evolution equation for the normalized action

THE NEW RENORMALIZATION GROUP EQUATIONS

are derived for any renormalizable theory
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EVOLUTION OF THE SCALAR PROPAGATOR
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New

MS
DMS = 1

(aQ2+bM2)
1−γφ

DMS > DNew
DMS(Q2)
DF (Q2)

∼
(Q2

M2

)γφ
DNew (Q2)
DF (Q2)

∼
(Q2

M2

)
R′(Q2)→ 0

SCALAR PROPAGATOR

is a nonzero constant at
infinite momentum
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EVOLUTION OF THE SCALAR MASS
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m2
Free = M2

Q2

m2
MS ∼

γφ
1−γφ

m2
New shoots up when R′

becomes small
m2

New has a minimum
At the minimum
m2

New ≈ γφ

RUNNING MASS OF A SCALAR

FIELD

in units of the normalization
point has a minimum
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SECOND ORDER EQUATION

R′′ = − 8γφ
(R′)3Q2

∫∞
0 J3(x)[mK1(mx)]3xdx + . . .

m2 ≡ R/(Q2R′)− 1
Initial conditions
R(M2) = 2M2, R′(M2) = 1
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SYSTEM OF FIRST ORDER EQUATIONS

First order equations
d
dt m

2 = −m2 +
γφ
n (1 + m2)Φ(m),

d
dt n = −4γφΦ(m),
where n = (R′)4, t = log(Q2/M2)

Initial conditions
m2(0) = 1, n(0) = 1
Φ(m) ≈ 0.3609

6m2+0.3609
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THE RUNNING MASS

for M2/γφ < Q2 � M2 exp(1/(4γφ))

M2(Q2) ≈ γφQ2

1−4γφ log(Q2/M2)

For high normalization points, running mass is independent of
the physical mass

THE LANDAU POLE

in the running mass invalidates perturbation theory
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SUMMARY

Unnaturalness of scalar fields does not yield a criterion for
selecting consistent fundamental theories
Unnaturalness of scalar fields is an observable effect
New Computations for the evolution of the scalar
propagator should be performed for the standard model
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