$B^{0}-\bar{B}^{0}$ mixing at NLO of $1 / m_{b}$ expansion

Alexei A. Pivovarov
Institute for Nuclear Research
Moscow

Quarks-2010 - Kolomna, June 6-12

Outline

- Quark flavors in Standard Model
- Phenomenology of $B^{0}-\bar{B}^{0}$ system
- Theory of $B^{0}-\bar{B}^{0}$ mixing in SM: expansions, operators, bag parameters B_{B}
- Matrix elements in sum rules approach
- Summary

Quark flavors in SM

SM gauge sector

$$
\mathcal{L}_{\text {gauge }}=\bar{Q}_{L}^{\prime} i D Q_{L}^{\prime}+\bar{U}_{R}^{\prime} i \not D U_{R}^{\prime}+\bar{D}_{R}^{\prime} i \not D D_{R}^{\prime}
$$

Flavor group:

$$
F=S U(3)_{Q_{L}} \otimes S U(3)_{U_{R}} \otimes S U(3)_{D_{R}}
$$

Yukawa couplings Y_{D}, Y_{\cup} with Higgs boson H

$$
-\mathcal{L}_{\text {Yuk }}=\bar{Q}_{L}^{\prime} H Y_{D} D_{R}^{\prime}+\bar{Q}_{L}^{\prime} H Y_{U} U_{R}^{\prime}+\text { h.c. }
$$

Diagonalisation by a transformation from F

$$
U_{L}^{\prime}=V_{u_{L}} U_{L}, \quad U_{R}^{\prime}=V_{u_{R}} U_{R}, \quad D_{L}^{\prime}=V_{d_{L}} D_{L}, \quad D_{D}^{\prime}=V_{d_{D}} D_{D}
$$

defines masses $\left(\langle H\rangle=\left\langle\phi_{0}\right\rangle=v \neq 0\right)$

$$
V_{u_{L}}^{\dagger} Y_{U} V_{U_{R}}=m_{U}^{\text {diag }} / v, \quad V_{d_{L}}^{\dagger} Y_{D} V_{d_{R}}=m_{D}^{\text {diag }} / v
$$

Then a mass term emerges

$$
-\mathcal{L}_{\text {Yuk }} \rightarrow-\mathcal{L}_{\mathrm{m}}=\bar{Q}_{L} m_{D} D_{R}+\bar{Q}_{L} m_{U} U_{R}+\text { h.c. }
$$

while

$$
\mathcal{L}_{\text {gauge }}=\operatorname{diag}+\left(\bar{u}_{L} V_{\text {СKM }} W d_{L}\right)+\text { h.c. }
$$

with the mismatch given by CKM matrix

$$
V_{U_{L}}^{\dagger} V_{d_{L}}=V_{\mathrm{CKM}}
$$

that induces charged flavor transitions:

$$
b \rightarrow c, \quad t \leftarrow b, \quad s \rightarrow u, \quad c \leftrightarrow d,
$$

CKM parameters $V_{\mathrm{CKM}}^{i j}$ and quark masses m_{f} are (Yukawa) coupling constants to be found from data.

Hierarchies:

- CKM is driven by $\lambda=V_{u s}=\sin \theta_{c} \approx 0.22$. In Wolfenstein parameterization

$$
V_{\text {СKM }}=\left(\begin{array}{ccc}
1-\frac{1}{2} \lambda^{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda\left(1+i A^{2} \lambda^{4} \eta\right) & 1-\frac{1}{2} \lambda^{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)
$$

- Masses - no pattern for numerical values

$$
\begin{array}{c|c|c}
m_{u}=0.005 \mathrm{GeV} & m_{c}=1.30 \mathrm{GeV} & m_{t}=175 \mathrm{GeV} \\
m_{d}=0.010 \mathrm{GeV} & m_{s}=0.13 \mathrm{GeV} & m_{b}=4.2 \mathrm{GeV}
\end{array}
$$

A variety of flavor changing processes are allowed.

Quark transitions = hadron transitions

In contrast to leptons - neutrino mixing, no "free" quarks detected in experiments.
Flavor transitions are between flavored hadrons:
$b \rightarrow s$ means $B \rightarrow K$ or $B \rightarrow X_{s}$.
QCD enters the game: most difficult part of the analysis of EW flavor structure of quark sector in SM.
$\Delta F=2$ transitions: mixing of different flavor mesons

$$
\text { sd : } K^{0}-\bar{K}^{0} ; \quad c u: D^{0}-\bar{D}^{0} ; \quad b d, b s: B^{0}-\bar{B}^{0}
$$

is a primary source of CP violation studies

$\left(B^{0}, \bar{B}^{0}\right)$ phenomenology

Time evolution

$$
i \frac{d}{d t}\binom{B^{0}(t)}{\bar{B}^{0}(t)}=\left(M-\frac{i}{2} \Gamma\right)\binom{B^{0}(t)}{\bar{B}^{0}(t)}
$$

M－mass matrix，\ulcorner－decay matrix
Observables（or physics）：
－$\Delta m=M_{\text {heavy }}-M_{\text {light }}=2\left|M_{12}\right|$
－CP phase：$\phi=\arg \left(-M_{12} / \Gamma_{12}\right)$
－$\Delta \Gamma=\Gamma_{L}-\Gamma_{H}=2\left|\Gamma_{12}\right| \cos \phi$

Experiment

B_{d}-meson

$$
\begin{gathered}
\Delta m_{d}=0.508 \pm 0.004 \mathrm{ps}^{-1} \\
(\Delta \Gamma / \Gamma)_{d}=(9 \pm 37) \cdot 10^{-3}
\end{gathered}
$$

$\mathrm{D} \varnothing$ and CDF results for B_{s}

$$
\begin{gathered}
17 \mathrm{ps}^{-1} \leq \Delta m_{s} \leq 21 \mathrm{ps}^{-1} \quad 90 \% \mathrm{CL} \quad \mathrm{D} \emptyset \\
\Delta m_{s}=17.77 \pm 0.10_{\text {syst }} \pm 0.07_{\text {stat }} \mathrm{ps}^{-1} \quad \mathrm{CDF}
\end{gathered}
$$

Theory prediction: $(\Delta \Gamma / \Gamma)_{s}=0.158 \pm 0.050$ (large).
This data is used to extract CKM parameters. What is theory in SM?

Theory in SM

Box diagram for $\Delta B=2$ processes gives non-local transition operator (eff Hamiltonian).
Simplifications due to mass and CKM hierarchies: shrinks to a point reducing eff Hamiltonian to local operators.
Mechanisms are different for Δm and $\Delta \Gamma$.

Δm

$m_{W}, m_{t} \gg m_{b}, m_{c}$ are integrated out, loop localizes with NLO QCD result

$$
\begin{aligned}
M_{12} & =\frac{G_{F}^{2} M_{W}^{2}}{4 \pi^{2}}\left(V_{t b}^{*} V_{t d}\right)^{2} \eta_{B} S_{0}\left(x_{t}\right) \\
& \times\left[\alpha_{s}^{(5)}(\mu)\right]^{-6 / 23}\left[1+\frac{\alpha_{s}^{(5)}(\mu)}{4 \pi} J_{5}\right]\left\langle\bar{B}^{0}\right| Q(\mu)\left|B^{0}\right\rangle
\end{aligned}
$$

$\eta_{B}=0.55 \pm 0.1, J_{5}=1.627$ in the NDR scheme, $S_{0}\left(x_{t}\right)$ is the short distance function, $x_{t}=m_{t}^{2} / m_{W}^{2}$ $Q(\mu)=\left(\bar{b}_{L} \gamma_{\sigma} s_{L}\right)\left(\bar{b}_{L} \gamma_{\sigma} s_{L}\right)(\mu)$ - local operator

Width difference

$$
\Delta \Gamma \sim \Gamma_{12}=\left\langle\bar{B}_{s}\right| \mathcal{T}\left|B_{s}\right\rangle / 2 M_{B_{s}}
$$

Final states are (c, u) "quarks", $m_{b} \gg m_{c}, m_{u}$ Heavy Quark Expansion in $1 / m_{b}$ is used

$$
\left\langle\bar{B}_{s}\right| \mathcal{T}\left|B_{s}\right\rangle=\sum_{n} \frac{C_{n}}{m_{b}^{n}}\left\langle\bar{B}_{s}\right| \mathcal{O}_{n}^{\Delta B=2}\left|B_{s}\right\rangle
$$

C_{n} are calculable in PT. nonPT physics is contained in ME of local operators $\mathcal{O}_{n}^{\Delta B=2}$. At LO in $1 / m_{b}$ there are two operators

$$
Q=\left(\bar{b}_{i} s_{i}\right)_{v-A}\left(\bar{b}_{j} s_{j}\right)_{V-A}, \quad Q_{S}=\left(\bar{b}_{i} s_{i}\right)_{S-P}\left(\bar{b}_{j} s_{j}\right)_{S-P}
$$

At NLO in $1 / m_{b}$ there are more. Two important ones

$$
\begin{aligned}
& R_{2}=\frac{1}{m_{b}^{2}}\left(\bar{b}_{i} \overleftarrow{D}_{\mu} D^{\mu} s_{i}\right)_{V-A}\left(\bar{b}_{i} s_{i}\right)_{V-A} \\
& R_{3}=\frac{1}{m_{b}^{2}}\left(\bar{b}_{i} \overleftarrow{D}_{\mu} D^{\mu} s_{i}\right)_{S-P}\left(\bar{b}_{i} s_{i}\right)_{S-P}
\end{aligned}
$$

Thus M_{12} and Γ_{12} reduce to evaluation of $\langle\bar{B}| Q_{i}|B\rangle$ in QCD that is a genuine nonPT task.

No direct techniques at present (lattice?).

Since $Q_{i} \sim J . J$ with $J \sim \bar{s} b$ and $\left\langle\left.\bar{B}\right|^{\prime \prime}=\prime s \bar{b}\right.$ it is prompting "to factorize"

$$
\langle\bar{B}| Q_{i}|B\rangle=\langle\bar{B}| J \cdot J|B\rangle=C_{\text {comb }}\langle\bar{B}| J|0\rangle\langle 0| J|B\rangle
$$

$$
\text { For } J \sim \bar{b}_{L} \gamma_{\mu} d_{L}, \quad\langle 0| \bar{b}_{L} \gamma_{\mu} d_{L}\left|B^{0}(\mathbf{p})\right\rangle=i p_{\mu} f_{B} / 2 .
$$

Main problem: accuracy of such factorization In general one parameterises

$$
\left\langle\bar{B}_{s}\right| \mathcal{O}_{i}\left|B_{s}\right\rangle=B_{i}\left\langle\bar{B}_{s}\right| \mathcal{O}_{i}\left|B_{s}\right\rangle^{\text {tac }}
$$

with B_{i} - genuine dynamical QCD quantities with normalization $B_{i}=1$ in factorization approxmation

For relevant operators

$$
\begin{aligned}
\langle\bar{B}| Q|B\rangle & =f_{B}^{2} M_{B}^{2} 2\left(1+\frac{1}{N_{c}}\right) B \\
\langle\bar{B}| Q_{S}|B\rangle & =-f_{B}^{2} M_{B}^{2} \frac{M_{B}^{2}}{\left(m_{b}+m_{s}\right)^{2}}\left(2-\frac{1}{N_{c}}\right) B_{S} \\
\langle\bar{B}| R_{2}|B\rangle & =-f_{B}^{2} M_{B}^{2}\left(\frac{M_{B}^{2}}{m_{b}^{2}}-1\right)\left(1-\frac{1}{N_{c}}\right) B_{2} \\
\langle\bar{B}| R_{3}|B\rangle & =f_{B}^{2} M_{B}^{2}\left(\frac{M_{B}^{2}}{m_{b}^{2}}-1\right)\left(1+\frac{1}{2 N_{c}}\right) B_{3},
\end{aligned}
$$

Main theoretical uncertainties of the analysis are related to the ME of the local operators $\mathcal{O}_{i} \in\left\{Q, Q_{S}, R_{2}, R_{3}\right\}$, or equivalently, the bag parameters B_{i}.

OPE and QCD sum rules

- model-independent, first-principles method, close in spirit to lattice computations. QCD sum rules rely on asymptotic expansions of Green's functions (analytically in a small parameter) while on the lattice the entire function can be found (numerically)
- OPE techniques provide a consistent way of treating perturbative corrections to matrix elements which is needed to retain RG invariance of physical observables usually violated in other approximations (factorization)

The starting point is the three-point correlator

$$
T\left(p_{1}, p_{2}\right)=i^{2} \int d^{4} x d^{4} y e^{i p_{1} x-i p_{2} y}\langle T j(x) \mathcal{O}(0) j(y)\rangle
$$

$\mathcal{O} \in\left\{Q, Q_{S}, R_{2}, R_{3}\right\}$ is a generic four-quark operator and
j can be either AV or PS current

$$
\begin{equation*}
j_{5}^{\mu}=\bar{s} \gamma^{\mu} \gamma_{5} b \quad(\mathrm{AV}), \quad j_{5}=\bar{s} i \gamma_{5} b \tag{PS}
\end{equation*}
$$

The overlap

$$
\langle 0| \bar{s} \gamma_{\mu} \gamma_{5} b(0)|\bar{B}(p)\rangle=i f_{B} p_{\mu},\langle 0| \bar{s} i \gamma_{5} b(0)|\bar{B}(p)\rangle=\frac{f_{B} M_{B}^{2}}{m_{b}+m_{s}}
$$

For $A V$ the correlator is a tensor, and one takes $p_{1}^{\mu} p_{2}^{\nu}$:

$$
T^{\mu \nu}\left(p_{1}, p_{2}\right)=p_{1}^{\mu} p_{2}^{\nu} T\left(p_{1}, p_{2}\right)+\ldots
$$

Spectral density $\rho\left(s_{1}, s_{2}, q^{2}\right)$

$$
T\left(p_{1}, p_{2}\right)=\int d s_{1} d s_{2} \frac{\rho\left(s_{1}, s_{2}, q^{2}\right)}{\left(s_{1}-p_{1}^{2}\right)\left(s_{2}-p_{2}^{2}\right)}
$$

contains physics.

- Hadronic picture: B-meson pole plus continuum

$$
\rho_{\mathrm{AV}}^{\text {had }}\left(s_{1}, s_{2}\right)=f_{B}^{2} \delta\left(s_{1}-M_{B}^{2}\right) \delta\left(s_{2}-M_{B}^{2}\right)\langle\bar{B}| \mathcal{O}|B\rangle+\rho_{\mathrm{AV}}^{\text {cont }}
$$

- Quark-gluon picture (QCD): OPE for $T\left(p_{1}, p_{2}\right)$ with a nonPT effects through condensates.

Quark-hadron duality

QCD sum rules = duality

$$
\int d s_{1} d s_{2} \rho_{i}^{\text {had }}\left(s_{1}, s_{2}\right)=\int d s_{1} d s_{2} \rho_{i}^{\mathrm{OPE}}\left(s_{1}, s_{2}\right) .
$$

Two practical techniques:

1. Finite Energy sum rules:
Δ being a square $m_{b}^{2}<s_{i}<s_{0}$ in (s_{1}, s_{2}) plane

$$
f_{B}^{2}\langle\bar{B}| \mathcal{O}|B\rangle=\int_{\Delta} d s_{1} d s_{2} \rho_{\mathrm{AV}}^{\mathrm{OPE}}\left(s_{1}, s_{2}\right)
$$

2. Borel sum rule: the OPE prediction model for the hadronic continuum and Borel transform

$$
f_{B}^{2}\langle\bar{B}| \mathcal{O}|B\rangle e^{-\frac{m_{D}^{2}}{M_{1}^{2}}-\frac{M_{D}^{2}}{M_{2}^{2}}}=\int_{\Delta} d s_{1} d s_{2} e^{-\frac{s_{1}}{M_{1}^{2}}-\frac{s_{2}}{M_{2}^{2}}} \rho_{\mathrm{AV}}^{\mathrm{OPE}}\left(s_{1}, s_{2}\right)
$$

Illustration: a model for physical spectrum

One-resonance hadronic spectrum

Spectrum of the OPE in QCD

Spectrum in OPE

Factorization in the OPE

OPE diagrams show that one can split three-point correlator into two pieces

$$
T\left(p_{1}, p_{2}\right)=T_{\mathrm{fac}}\left(p_{1}, p_{2}\right)+\Delta T\left(p_{1}, p_{2}\right)
$$

The factorized part has an explicit form

$$
T_{\text {fac }}\left(p_{1}, p_{2}\right)=\text { const } \times \Pi\left(p_{1}\right) \Pi\left(p_{2}\right)
$$

"const" and $\Pi\left(p_{i}\right)$ specific to the operator involved. For the operators of V-A structure

$$
T_{\text {fac }}^{\mathrm{AV}}\left(p_{1}, p_{2}\right)=2\left(1+\frac{1}{N_{c}}\right) \Pi^{V}\left(p_{1}\right) \Pi^{V}\left(p_{2}\right)
$$

with

$$
p^{\alpha} \Pi^{V}(p)=i \int d x e^{i x x}\left\langle T j(x) \bar{b} \gamma^{\alpha}\left(1-\gamma_{5}\right) s(0)\right\rangle .
$$

Sum rule for the factorized $T_{\text {fac }}$ yields $B=1$.

Deviation from factorization in the OPE

Then one finds a sum rule for $\Delta B=B-1$ directly

$$
f_{B}^{2} \Delta B e^{-\frac{w_{\mathrm{P}}^{2}}{M_{1}^{2}}-\frac{M_{B}^{2}}{N_{2}^{2}}}=\int d s_{1} d s_{2} \Delta \rho_{\mathrm{AV}}^{\mathrm{OPE}}\left(s_{1}, s_{2}\right) e^{-\frac{s_{1}}{W_{1}^{2}}-\frac{s_{2}}{M_{2}^{2}}}
$$

(given for AV current)

Figure: PT diagram at LO

At LO in pQCD the three-point function factorizes

$$
T\left(p_{1}, p_{2}\right)=T_{\text {fac }}\left(p_{1}, p_{2}\right), \quad \Delta T\left(p_{1}, p_{2}\right)=0
$$

and

$$
T^{\mathrm{LO}}\left(p_{1}, p_{2}\right)=T_{\text {fac }}^{\mathrm{LO}}\left(p_{1}, p_{2}\right)=\text { const } \times \Pi^{\mathrm{LO}}\left(p_{1}\right) \Pi^{\mathrm{LO}}\left(p_{2}\right)
$$

Then we have $B=1$. But this is only LO analysis. Higher order diagrams build up the full function $\Pi^{\mathrm{LO}}\left(p_{1}\right) \rightarrow \Pi\left(p_{1}\right)$

$$
T_{\text {fac }}^{\mathrm{LO}}\left(p_{1}, p_{2}\right) \rightarrow T_{\text {fac }}\left(p_{1}, p_{2}\right)=\text { const } \times \Pi\left(p_{1}\right) \Pi\left(p_{2}\right)
$$

Indeed, NLO pQCD gives

NLO factorizable contributions are given by the product of two-point correlation functions

$$
\Pi_{\mathrm{NLO}}^{f}=\frac{8}{3}\left(p_{1} \cdot p_{2}\right)\left\{\Pi_{\mathrm{LO}}\left(p_{1}^{2}\right) \Pi_{\mathrm{NLO}}\left(p_{2}^{2}\right)+\operatorname{symm}\left(p_{1}, p_{2}\right)\right\}
$$

Condensate factorizable contributions

factorizable nonPT GG diagram

- Factorizable diagrams form an important subset of all contributions, they are gauge and RG invariant.
- Classification of diagrams in terms of their factorizability is consistent and gives a powerful technique in the quantitative analysis.

Non-factorizable contributions. pQCD diagram:

Figure: A non-factorizable diagram at NLO

The NLO analysis of non-factorizable contributions within perturbation theory amounts to the calculation of a set of three-loop diagrams.

Non factorizable condensate contributions：

（a）

（b）

（c）

Results for the operators in NLO of $1 / m_{b}$ are obtained．

(a)

(b)

(c)

OPE result for the spectral density is
$\Delta \rho_{i}\left(s_{1}, s_{2}\right)=\Delta \rho_{i}^{\mathrm{GG}}\left(s_{1}, s_{2}\right)\langle G G\rangle+\Delta \rho_{i}^{\mathrm{sGs}}\left(s_{1}, s_{2}\right)\langle\bar{s} G s\rangle+\ldots$
for each of the eight cases:
AV or PS current for Q, Q_{S}, R_{2}, R_{3} operators.

Example (short): expression for Q_{S} with PS current

$$
\begin{aligned}
& \Delta \rho_{\mathrm{PS}}\left(s_{1}, s_{2}\right)=\frac{1}{48 \pi^{2}}\left\langle\frac{\alpha_{s}}{\pi} G G\right\rangle \frac{1}{s_{1} s_{2}}\left(\frac{s_{1} s_{2}}{2}\left(6-3 z_{1}-3 z_{2}+z_{1} z_{2}\right)\right. \\
& \left.\quad+\left(p_{1} p_{2}\right)^{2} z_{1} z_{2}\right) \\
& +\frac{m_{b}}{16 \pi^{2}}\langle\bar{s} G s\rangle\left(\left(-2+z_{1}\right) \delta\left(s_{2}-m_{b}^{2}\right)+\left(-2+z_{2}\right) \delta\left(s_{1}-m_{b}^{2}\right)\right)
\end{aligned}
$$

Here $z_{i}=m_{b}^{2} / s_{i}$.

Borel method (T.Mannel,B.Pecjak, AAP (2007))

$|\Delta B|=0.5 \%$ in all cases

Borel sum rules results in HQET approximation

Quite consistent. $|\Delta B|=0.5-1 \%$ in all cases. Formal procedure:

$$
M_{B}=m_{b}+\bar{\Lambda}, s=\left(m_{b}+E\right)^{2}, \quad s_{0}=\left(m_{b}+E_{0}\right)^{2}
$$

and expand QCD sum rules in $1 / m_{b}$.

Numerical results and uncertainties

Operator	$\Delta B(\%)$ QCD	$\Delta B(\%)$ HQET
Q	-0.6 ± 0.5	-0.6 ± 0.5
Q_{S}	-0.5 ± 0.4	-0.6 ± 0.4
R_{2}	0.3 ± 0.3	0.8 ± 0.7
R_{3}	0.3 ± 0.2	0.3 ± 0.2

Parameters: $210 \mathrm{MeV}<f_{B_{s}}<270 \mathrm{MeV}$
QCD: $m_{b}=4.2 \pm 0.2 \mathrm{GeV}, 32<s_{0}<40 \mathrm{GeV}^{2}$ HQET: $m_{b}=4.8 \mathrm{GeV}, 1 \mathrm{GeV}<E_{0}<1.5 \mathrm{GeV}$
Condensates are varied by $\pm 30 \%$.
The largest errors are associated with the value of the decay constant f_{B}. The dependence on $\bar{\Lambda}$ and E_{0} is moderate.

Uncertainty due to each parameter variation: an example - the Q_{S} operator in HQET. Uncertainty due to the condensates is comparable with that due to f_{B}.

$-\Delta B$ for Q_{S} operator, AV current, HQET sum rule.
Dark-gray band - gluon condensate, larger light-gray band - quark-gluon condensate.

Summary

- SR is a powerful tool for analysing ME of local operators relevant to flavor physics.
- Factorization results are reproduced at diagram level (not only LO)
- Non-factorizable contributions due to nonPT condensates to bag parameters are small

$$
\Delta B_{i}=(0.5-1) \%
$$

for all operators $\left\{Q, Q_{s}, R_{2}, R_{3}\right\}$

- The computation of the width difference for $B^{0}-\bar{B}^{0}$ is under solid theoretical control

