Integrable systems and the universal R-matrix ${ }^{1}$

Kh. S. Nirov

Bergische Universität Wuppertal, and INR RAS, Moscow

Quarks 2010, Kolomna, Russia, June 6-12

[^0] A. V. Razumov

Classical and quantum integrable systems

The universal R-matrix and L-operators

The Yang-Baxter equation and functional relations

Khoroshkin-Tolstoy construction

Classical and quantum integrable systems
The universal R-matrix and L-operators The Yang-Baxter equation and functional relations Khoroshkin-Tolstoy construction

- Classical integrable systems
- Classical integrable systems
- Lagrangian and Hamiltonian description

- Classical integrable systems

- Lagrangian and Hamiltonian description
- Group-theoretic framework

- Classical integrable systems

- Lagrangian and Hamiltonian description
- Group-theoretic framework
- Riemann-Hilbert problem
- Classical integrable systems
- Lagrangian and Hamiltonian description
- Group-theoretic framework
- Riemann-Hilbert problem
- Quantum integrable systems
- Classical integrable systems
- Lagrangian and Hamiltonian description
- Group-theoretic framework
- Riemann-Hilbert problem
- Quantum integrable systems
- Bethe Ansatz (H. Bethe, 1931)
- Classical integrable systems
- Lagrangian and Hamiltonian description
- Group-theoretic framework
- Riemann-Hilbert problem
- Quantum integrable systems
- Bethe Ansatz (H. Bethe, 1931)
- Functional relations (R. Baxter, 1971-72)
- Classical integrable systems
- Lagrangian and Hamiltonian description
- Group-theoretic framework
- Riemann-Hilbert problem
- Quantum integrable systems
- Bethe Ansatz (H. Bethe, 1931)
- Functional relations (R. Baxter, 1971-72)
- Quantum groups (V. G. Drinfeld, 1985-87; M. Jimbo, 1985-87)
- Generalized Toda system

$$
q_{t t}=-\nabla_{q} U, \quad U=\sum_{\alpha \in \pi} \exp (2 \alpha(q)), \quad q(t)=\sum_{\alpha \in \pi} h_{\alpha} q^{\alpha}(t)
$$

- Generalized Toda system

$$
q_{t t}=-\nabla_{q} U, \quad U=\sum_{\alpha \in \pi} \exp (2 \alpha(q)), \quad q(t)=\sum_{\alpha \in \pi} h_{\alpha} q^{\alpha}(t)
$$

- Lax pair

$$
\begin{gathered}
L_{t}=[A, L] \\
A=-\sum_{\alpha \in \pi}\left(\mathrm{e}^{\mathrm{ad}_{q}} e_{\alpha}-\mathrm{e}^{-\mathrm{ad}_{q}} f_{\alpha}\right), \quad L=q_{t}+\sum_{\alpha \in \pi}\left(\mathrm{e}^{\mathrm{ad}_{q}} e_{\alpha}+\mathrm{e}^{-\mathrm{ad}_{q}} f_{\alpha}\right)
\end{gathered}
$$

- Generalized Toda system

$$
q_{t t}=-\nabla_{q} U, \quad U=\sum_{\alpha \in \pi} \exp (2 \alpha(q)), \quad q(t)=\sum_{\alpha \in \pi} h_{\alpha} q^{\alpha}(t)
$$

- Lax pair

$$
\begin{gathered}
L_{t}=[A, L] \\
A=-\sum_{\alpha \in \pi}\left(\mathrm{e}^{\mathrm{ad}_{q}} e_{\alpha}-\mathrm{e}^{-\mathrm{ad}_{q}} f_{\alpha}\right), \quad L=q_{t}+\sum_{\alpha \in \pi}\left(\mathrm{e}^{\mathrm{ad}_{q}} e_{\alpha}+\mathrm{e}^{-\mathrm{ad}_{q}} f_{\alpha}\right)
\end{gathered}
$$

- The classical Yang-Baxter equation

$$
\begin{gathered}
\{L(\zeta) \stackrel{\otimes}{\otimes} L(\xi)\}=[r(\zeta / \xi), L(\zeta) \otimes I+I \otimes L(\xi)], \quad r(x): \mathbb{C}^{\times} \rightarrow \mathfrak{G} \otimes \mathfrak{G} \\
{\left[r_{12}\left(\zeta_{12}\right), r_{13}\left(\zeta_{13}\right)\right]+\left[r_{12}\left(\zeta_{12}\right), r_{23}\left(\zeta_{23}\right)\right]+\left[r_{13}\left(\zeta_{13}\right), r_{23}\left(\zeta_{23}\right)\right]=0} \\
\zeta_{i j}=\zeta_{i} / \zeta_{j}, \quad r_{12}=r \otimes I, \quad r_{23}=I \otimes r, \quad \cdots
\end{gathered}
$$

- Quantization

$$
\begin{gathered}
R(\zeta): \mathbb{C}^{\times} \rightarrow U_{\hbar}(\mathfrak{G}) \otimes U_{\hbar}(\mathfrak{G}) \\
R(\zeta) \equiv R(\zeta, \hbar)=\rho(\zeta, \hbar)(I+\hbar r(\zeta)+\ldots)
\end{gathered}
$$

- Quantization

$$
\begin{gathered}
R(\zeta): \mathbb{C}^{\times} \rightarrow U_{\hbar}(\mathfrak{G}) \otimes U_{\hbar}(\mathfrak{G}) \\
R(\zeta) \equiv R(\zeta, \hbar)=\rho(\zeta, \hbar)(I+\hbar r(\zeta)+\ldots)
\end{gathered}
$$

- Let $\mathcal{R} \in \mathcal{A} \otimes \mathcal{A}$ such that

$$
\Delta^{\mathrm{op}}(a)=\mathcal{R} \Delta(a) \mathcal{R}^{-1}
$$

for all $a \in \mathcal{A}$. Suppose \mathcal{A} is quasitriangular

$$
\Delta \otimes \operatorname{id}(\mathcal{R})=\mathcal{R}_{13} \mathcal{R}_{23}, \quad \mathrm{id} \otimes \Delta(\mathcal{R})=\mathcal{R}_{13} \mathcal{R}_{12}
$$

Then \mathcal{R} is the universal R-matrix. It satisfies the $Q Y B E$

$$
\mathcal{R}_{12} \mathcal{R}_{13} \mathcal{R}_{23}=\mathcal{R}_{23} \mathcal{R}_{13} \mathcal{R}_{12}
$$

- Quantization

$$
\begin{gathered}
R(\zeta): \mathbb{C}^{\times} \rightarrow U_{\hbar}(\mathfrak{G}) \otimes U_{\hbar}(\mathfrak{G}) \\
R(\zeta) \equiv R(\zeta, \hbar)=\rho(\zeta, \hbar)(I+\hbar r(\zeta)+\ldots)
\end{gathered}
$$

- Let $\mathcal{R} \in \mathcal{A} \otimes \mathcal{A}$ such that

$$
\Delta^{\mathrm{op}}(a)=\mathcal{R} \Delta(a) \mathcal{R}^{-1}
$$

for all $a \in \mathcal{A}$. Suppose \mathcal{A} is quasitriangular

$$
\Delta \otimes \operatorname{id}(\mathcal{R})=\mathcal{R}_{13} \mathcal{R}_{23}, \quad \operatorname{id} \otimes \Delta(\mathcal{R})=\mathcal{R}_{13} \mathcal{R}_{12}
$$

Then \mathcal{R} is the universal R-matrix. It satisfies the $Q Y B E$

$$
\mathcal{R}_{12} \mathcal{R}_{13} \mathcal{R}_{23}=\mathcal{R}_{23} \mathcal{R}_{13} \mathcal{R}_{12}
$$

- Representation

$$
\begin{gathered}
R\left(\zeta_{1}, \zeta_{2}\right):=\varphi_{\zeta_{1}} \otimes \varphi_{\zeta_{2}}(\mathcal{R}) \\
R_{12}\left(\zeta_{12}\right) R_{13}\left(\zeta_{13}\right) R_{23}\left(\zeta_{23}\right)=R_{23}\left(\zeta_{23}\right) R_{13}\left(\zeta_{13}\right) R_{12}\left(\zeta_{12}\right) \\
R_{12}\left(\zeta_{12}\right) \in \operatorname{End}\left(V_{1} \otimes V_{2} \otimes \mathrm{id}_{3}\right), \quad R_{23}\left(\zeta_{23}\right) \in \operatorname{End}\left(\mathrm{id}_{3} \otimes V_{2} \otimes V_{3}\right), \quad \ldots
\end{gathered}
$$

L-operators

- Defining

$$
\hat{L}\left(\zeta_{12}\right)=\chi_{\zeta_{1}} \otimes \varphi_{\zeta_{2}}(\mathcal{R}), \quad \chi_{\zeta}: \mathcal{A} \rightarrow \mathcal{C},
$$

we obtain an element $\hat{L}(\zeta)$ called an L-operator and satisfying

$$
\hat{R}\left(\zeta_{12}\right)\left(\hat{L}\left(\zeta_{1}\right) \times \hat{L}\left(\zeta_{2}\right)\right)=\left(\hat{L}\left(\zeta_{2}\right) \times \hat{L}\left(\zeta_{1}\right)\right) \hat{R}\left(\zeta_{12}\right)
$$

Here $\hat{R}=R P$ with $P\left(v_{1} \otimes v_{2}\right)=v_{2} \otimes v_{1}$.

L-operators

- Defining

$$
\hat{L}\left(\zeta_{12}\right)=\chi_{\zeta_{1}} \otimes \varphi_{\zeta_{2}}(\mathcal{R}), \quad \chi_{\zeta}: \mathcal{A} \rightarrow \mathcal{C},
$$

we obtain an element $\hat{L}(\zeta)$ called an L-operator and satisfying

$$
\hat{R}\left(\zeta_{12}\right)\left(\hat{L}\left(\zeta_{1}\right) \times \hat{L}\left(\zeta_{2}\right)\right)=\left(\hat{L}\left(\zeta_{2}\right) \times \hat{L}\left(\zeta_{1}\right)\right) \hat{R}\left(\zeta_{12}\right)
$$

Here $\hat{R}=R P$ with $P\left(v_{1} \otimes v_{2}\right)=v_{2} \otimes v_{1}$.

- Another type of L-operators

$$
\check{L}\left(\zeta_{12}\right)=\varphi_{\zeta_{1}} \otimes \psi_{\zeta_{2}}(\mathcal{R}), \quad \psi_{\zeta}: \mathcal{A} \rightarrow \mathcal{D}
$$

and the corresponding relations

$$
\check{R}\left(\zeta_{12}\right)\left(\check{L}\left(\zeta_{1}\right) \times \check{L}\left(\zeta_{2}\right)\right)=\left(\check{L}\left(\zeta_{2}\right) \times \check{L}\left(\zeta_{1}\right)\right) \check{R}\left(\zeta_{12}\right)
$$

Now $\check{R}=P R$, and note that $\check{R} \neq \hat{R}$.

Traces of monodromy-type matrices

- Transfer matrix

$$
T\left(\zeta ; \xi_{1}, \xi_{2}, \ldots, \xi_{n} \mid \alpha\right)=\operatorname{tr}_{\varphi_{0}}\left(R_{01}\left(\zeta / \xi_{1}\right) R_{02}\left(\zeta / \xi_{2}\right) \cdots R_{0 n}\left(\zeta / \xi_{n}\right) \tau_{\alpha}\right)
$$

Here $R_{0 i}\left(\zeta / \xi_{i}\right)$ acts on $V_{0} \otimes V_{1} \otimes \ldots \otimes V_{n}$ and the trace is over V_{0}.

$$
\begin{gathered}
{\left[T\left(\zeta ; \xi_{1}, \ldots, \xi_{n}\right), T\left(\zeta^{\prime} ; \xi_{1}, \ldots, \xi_{n}\right)\right]=0} \\
Z\left(\zeta_{1}, \ldots, \zeta_{m} \mid \xi_{1}, \ldots, \xi_{n}\right)=\operatorname{tr}\left(T\left(\zeta_{1} ; \xi_{1}, \ldots, \xi_{n}\right) \cdots T\left(\zeta_{m} ; \xi_{1}, \ldots, \xi_{n}\right)\right)
\end{gathered}
$$

Traces of monodromy-type matrices

- Transfer matrix

$$
T\left(\zeta ; \xi_{1}, \xi_{2}, \ldots, \xi_{n} \mid \alpha\right)=\operatorname{tr}_{\varphi_{0}}\left(R_{01}\left(\zeta / \xi_{1}\right) R_{02}\left(\zeta / \xi_{2}\right) \cdots R_{0 n}\left(\zeta / \xi_{n}\right) \tau_{\alpha}\right)
$$

Here $R_{0 i}\left(\zeta / \xi_{i}\right)$ acts on $V_{0} \otimes V_{1} \otimes \ldots \otimes V_{n}$ and the trace is over V_{0}.

$$
\left[T\left(\zeta ; \xi_{1}, \ldots, \xi_{n}\right), T\left(\zeta^{\prime} ; \xi_{1}, \ldots, \xi_{n}\right)\right]=0
$$

$$
Z\left(\zeta_{1}, \ldots, \zeta_{m} \mid \xi_{1}, \ldots, \xi_{n}\right)=\operatorname{tr}\left(T\left(\zeta_{1} ; \xi_{1}, \ldots, \xi_{n}\right) \cdots T\left(\zeta_{m} ; \xi_{1}, \ldots, \xi_{n}\right)\right)
$$

- Baxter's Q-matrix

$$
\begin{gathered}
Q\left(\zeta ; \xi_{1}, \ldots, \xi_{n} \mid \beta\right)=\mathrm{tr}_{\chi, \psi}\left(L\left(\zeta / \xi_{1}\right) \times \ldots \times L\left(\zeta / \xi_{n}\right) \kappa_{\beta}\right) \\
{\left[T(\zeta ; \xi), Q\left(\zeta^{\prime} ; \xi\right)\right]=0, \quad\left[Q(\zeta ; \xi), Q\left(\zeta^{\prime} ; \xi\right)\right]=0} \\
T(\zeta ; \xi) Q(\zeta ; \xi)=A(\zeta / \xi) Q\left(q^{-2} \zeta ; \xi\right)+B(\zeta / \xi) Q\left(q^{2} \zeta ; \xi\right)
\end{gathered}
$$

- An important observation:

$$
\mathcal{R} \in \mathcal{B}_{+} \otimes \mathcal{B}_{-} \subset \mathcal{A} \otimes \mathcal{A}
$$

with \mathcal{B}_{+}spanned by e_{i}, h_{i}, and \mathcal{B}_{-}by f_{i}, h_{i}. Here \mathcal{A} is $U_{\hbar}\left(\mathfrak{g}^{\prime}(A)\right)$

$$
\begin{gathered}
{\left[h_{i}, h_{j}\right]=0,} \\
{\left[h_{i}, e_{j}\right]=a_{i j} e_{j}, \quad\left[h_{i}, f_{j}\right]=-a_{i j} f_{j},} \\
{\left[e_{i}, f_{j}\right]=\delta_{i j} \frac{q^{h_{i}}-q^{-h_{i}}}{q^{d_{i}}-q^{-d_{i}}},}
\end{gathered}
$$

$$
\sum_{k=0}^{1-a_{i j}}(-1)^{k}\left[\begin{array}{c}
1-a_{i j} \\
k
\end{array}\right]_{q^{d_{i}}}\left(e_{i}\right)^{1-a_{i j}-k} e_{j}\left(e_{i}\right)^{k}=0, \quad \&\left\{e_{i} \leftrightarrow f_{i}\right\}
$$

- We have a Hopf algebra with comultiplication $\left(q=\mathrm{e}^{\hbar}\right)$

$$
\begin{gathered}
\Delta\left(h_{i}\right)=h_{i} \otimes 1+1 \otimes h_{i}, \\
\Delta\left(e_{i}\right)=e_{i} \otimes 1+q^{-d_{i} h_{i}} \otimes e_{i}, \quad \Delta\left(f_{i}\right)=f_{i} \otimes q^{d_{i} h_{i}}+1 \otimes f_{i}
\end{gathered}
$$

The prescription for untwisted affine Lie algebras

- The system $\Delta_{+}(A)$ is supplied with a normal order
(i) all multiple roots follow each other in an arbitrary order;
(ii) each nonsimple root $\alpha+\beta$, where α is not proportional to β, is to be placed between α and β.
- We also add that for any root $\gamma \in \Delta_{+}(A)$

$$
\gamma+m \delta \prec k \delta \prec(\delta-\gamma)+\ell \delta
$$

The prescription for untwisted affine Lie algebras

- The system $\Delta_{+}(A)$ is supplied with a normal order
(i) all multiple roots follow each other in an arbitrary order;
(ii) each nonsimple root $\alpha+\beta$, where α is not proportional to β, is to be placed between α and β.
- We also add that for any root $\gamma \in \Delta_{+}(A)$

$$
\gamma+m \delta \prec k \delta \prec(\delta-\gamma)+\ell \delta
$$

- Constructing the root vectors corresponding to the positive roots of $\mathfrak{g}\left(A^{(1)}\right)$ from the root vectors corresponding to the simple positive roots $e_{\alpha_{0}}=e_{\delta-\theta}$ and $e_{\alpha_{i}}$

The prescription for untwisted affine Lie algebras

- The system $\Delta_{+}(A)$ is supplied with a normal order
(i) all multiple roots follow each other in an arbitrary order;
(ii) each nonsimple root $\alpha+\beta$, where α is not proportional to β, is to be placed between α and β.
- We also add that for any root $\gamma \in \Delta_{+}(A)$

$$
\gamma+m \delta \prec k \delta \prec(\delta-\gamma)+\ell \delta
$$

- Constructing the root vectors corresponding to the positive roots of $\mathfrak{g}\left(A^{(1)}\right)$ from the root vectors corresponding to the simple positive roots $e_{\alpha_{0}}=e_{\delta-\theta}$ and $e_{\alpha_{i}}$
- The universal R-matrix according to Khoroshkin and Tolstoy

$$
\mathcal{R}=\mathcal{R}_{\prec \delta} \mathcal{R}_{\sim \delta} \mathcal{R}_{\succ \delta} \mathcal{K}
$$

with \mathcal{K} given by the expression

$$
\mathcal{K}=\exp \left(\hbar \sum_{i, j=1}^{r}\left(b_{i j} h_{\alpha_{i}} \otimes h_{\alpha_{j}}\right)\right), \quad b a=I_{r}
$$

- The 1st factor

$$
\mathcal{R}_{\prec \delta}=\prod_{m \geq 0}^{\curvearrowright} \exp _{q^{-(\gamma, \gamma)}}\left(\left(q-q^{-1}\right) s_{m, \gamma}^{-1} e_{\gamma+m \delta} \otimes f_{\gamma+m \delta}\right)
$$

where

$$
\begin{gathered}
{\left[e_{\gamma+m \delta}, f_{\gamma+m \delta}\right]=s_{m, \gamma} \frac{q^{h_{\gamma+m}}-q^{-h_{\gamma+m \delta}}}{q-q^{-1}}} \\
\text { and } h_{\gamma+m \delta}=\sum_{i} k_{i} h_{i} \text { if } \gamma+m \delta=\sum_{i} k_{i} \alpha_{i} .
\end{gathered}
$$

- The 1st factor

$$
\mathcal{R}_{\prec \delta}=\prod_{m \geq 0}^{\curvearrowright} \exp _{q^{-(\gamma, \gamma)}}\left(\left(q-q^{-1}\right) s_{m, \gamma}^{-1} e_{\gamma+m \delta} \otimes f_{\gamma+m \delta}\right)
$$

where

$$
\left[e_{\gamma+m \delta}, f_{\gamma+m \delta}\right]=s_{m, \gamma} \frac{q^{h_{\gamma+m \delta}}-q^{-h_{\gamma+m \delta}}}{q-q^{-1}}
$$

and $h_{\gamma+m \delta}=\sum_{i} k_{i} h_{i}$ if $\gamma+m \delta=\sum_{i} k_{i} \alpha_{i}$.

- The 2nd factor

$$
\mathcal{R}_{\sim \delta}=\exp \left(\left(q-q^{-1}\right) \sum_{m>0} \sum_{i, j=1}^{r} u_{m, i j} e_{m \delta, \alpha_{i}} \otimes f_{m \delta, \alpha_{j}}\right),
$$

where

$$
\left[e_{\alpha_{i}+m \delta}, e_{n \delta, \alpha_{j}}\right]=t_{n, i j} e_{\alpha_{i}+(m+n) \delta}, \quad u_{m} t_{m}=I_{r}
$$

- The 1st factor

$$
\mathcal{R}_{\prec \delta}=\prod_{m \geq 0}^{\curvearrowright} \exp _{q^{-(\gamma, \gamma)}}\left(\left(q-q^{-1}\right) s_{m, \gamma}^{-1} e_{\gamma+m \delta} \otimes f_{\gamma+m \delta}\right)
$$

where

$$
\left[e_{\gamma+m \delta}, f_{\gamma+m \delta}\right]=s_{m, \gamma} \frac{q^{h_{\gamma+m \delta}}-q^{-h_{\gamma+m \delta}}}{q-q^{-1}}
$$

and $h_{\gamma+m \delta}=\sum_{i} k_{i} h_{i}$ if $\gamma+m \delta=\sum_{i} k_{i} \alpha_{i}$.

- The 2nd factor

$$
\mathcal{R}_{\sim \delta}=\exp \left(\left(q-q^{-1}\right) \sum_{m>0} \sum_{i, j=1}^{r} u_{m, i j} e_{m \delta, \alpha_{i}} \otimes f_{m \delta, \alpha_{j}}\right),
$$

where

$$
\left[e_{\alpha_{i}+m \delta}, e_{n \delta, \alpha_{j}}\right]=t_{n, i j} e_{\alpha_{i}+(m+n) \delta}, \quad u_{m} t_{m}=I_{r}
$$

- The 3rd factor

$$
\mathcal{R}_{\succ \delta}=\prod_{m \geq 0}^{\curvearrowright} \exp _{q-(\gamma, \gamma)}\left(\left(q-q^{-1}\right) s_{m, \delta-\gamma}^{-1} e_{(\delta-\gamma)+m \delta} \otimes f_{(\delta-\gamma)+m \delta}\right)
$$

- The universal R-matrix belongs to $U_{\hbar}\left(\mathfrak{b}_{+}^{\prime}\left(A^{(1)}\right)\right) \otimes U_{\hbar}\left(\mathfrak{b}_{-}^{\prime}\left(A^{(1)}\right)\right)$. We define $\varphi_{\zeta}, \zeta \in \mathbb{C}^{\times}$, by the relations

$$
\begin{gathered}
\varphi_{\zeta}\left(h_{\alpha_{i}}\right)=\varphi\left(h_{\alpha_{i}}\right), \\
\varphi_{\zeta}\left(e_{\alpha_{i}}\right)=\zeta^{s_{i}} \varphi\left(e_{\alpha_{i}}\right), \quad \varphi_{\zeta}\left(f_{\alpha_{i}}\right)=\zeta^{-s_{i}} \varphi\left(f_{\alpha_{i}}\right),
\end{gathered}
$$

where $s_{i} \in \mathbb{Z}$ and $\varphi=\pi \circ \varepsilon$, with ε being a homomorphism of $U_{\hbar}\left(\mathfrak{g}^{\prime}\left(A^{(1)}\right)\right)$ to $U_{\hbar}(\mathfrak{g}(A))$, and π - a representation of $U_{\hbar}(\mathfrak{g}(A))$.

- The universal R-matrix belongs to $U_{\hbar}\left(\mathfrak{b}_{+}^{\prime}\left(A^{(1)}\right)\right) \otimes U_{\hbar}\left(\mathfrak{b}_{-}^{\prime}\left(A^{(1)}\right)\right)$. We define $\varphi_{\zeta}, \zeta \in \mathbb{C}^{\times}$, by the relations

$$
\begin{gathered}
\varphi_{\zeta}\left(h_{\alpha_{i}}\right)=\varphi\left(h_{\alpha_{i}}\right), \\
\varphi_{\zeta}\left(e_{\alpha_{i}}\right)=\zeta^{s_{i}} \varphi\left(e_{\alpha_{i}}\right), \quad \varphi_{\zeta}\left(f_{\alpha_{i}}\right)=\zeta^{-s_{i}} \varphi\left(f_{\alpha_{i}}\right),
\end{gathered}
$$

where $s_{i} \in \mathbb{Z}$ and $\varphi=\pi \circ \varepsilon$, with ε being a homomorphism of $U_{\hbar}\left(\mathfrak{g}^{\prime}\left(A^{(1)}\right)\right)$ to $U_{\hbar}(\mathfrak{g}(A))$, and π - a representation of $U_{\hbar}(\mathfrak{g}(A))$.

- For L-operators of type \hat{L} we take $\chi_{\zeta}: U_{\hbar}\left(\mathfrak{b}_{+}^{\prime}\left(A^{(1)}\right)\right) \rightarrow \mathcal{C}$, and for L-operators of type \check{L} we take $\psi_{\zeta}: U_{\hbar}\left(\mathfrak{b}_{-}^{\prime}\left(A^{(1)}\right)\right) \rightarrow \mathcal{D}$.
- The universal R-matrix belongs to $U_{\hbar}\left(\mathfrak{b}_{+}^{\prime}\left(A^{(1)}\right)\right) \otimes U_{\hbar}\left(\mathfrak{b}_{-}^{\prime}\left(A^{(1)}\right)\right)$. We define $\varphi_{\zeta}, \zeta \in \mathbb{C}^{\times}$, by the relations

$$
\begin{gathered}
\varphi_{\zeta}\left(h_{\alpha_{i}}\right)=\varphi\left(h_{\alpha_{i}}\right) \\
\varphi_{\zeta}\left(e_{\alpha_{i}}\right)=\zeta^{s_{i}} \varphi\left(e_{\alpha_{i}}\right), \quad \varphi_{\zeta}\left(f_{\alpha_{i}}\right)=\zeta^{-s_{i}} \varphi\left(f_{\alpha_{i}}\right)
\end{gathered}
$$

where $s_{i} \in \mathbb{Z}$ and $\varphi=\pi \circ \varepsilon$, with ε being a homomorphism of $U_{\hbar}\left(\mathfrak{g}^{\prime}\left(A^{(1)}\right)\right)$ to $U_{\hbar}(\mathfrak{g}(A))$, and π - a representation of $U_{\hbar}(\mathfrak{g}(A))$.

- For L-operators of type \hat{L} we take $\chi_{\zeta}: U_{\hbar}\left(\mathfrak{b}_{+}^{\prime}\left(A^{(1)}\right)\right) \rightarrow \mathcal{C}$, and for L-operators of type \check{L} we take $\psi_{\zeta}: U_{\hbar}\left(\mathfrak{b}_{-}^{\prime}\left(A^{(1)}\right)\right) \rightarrow \mathcal{D}$.
- Here, for the unital associative algebras \mathcal{C} and \mathcal{D} we take the tensor product of q-deformed oscillator algebras, each defined by the generators a_{i}, a_{i}^{\dagger} and $D_{i}, i=1, \ldots, r$, with the relations

$$
\begin{gathered}
{\left[D_{i}, a_{i}\right]=-a_{i}, \quad\left[D_{i}, a_{i}^{\dagger}\right]=a_{i}^{\dagger}} \\
a_{i} a_{i}^{\dagger}=1-q^{2} q^{2 D_{i}},
\end{gathered} a_{i}^{\dagger} a_{i}=1-q^{2 D_{i}}
$$

- Of special interest

$$
A_{2}^{(1)}=\left(\begin{array}{rrr}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right)
$$

$$
\delta=\alpha_{0}+\alpha_{1}+\alpha_{2}
$$

Taking $\pi=\pi^{(1,0)}$ we come to the R-matrix

$$
\begin{aligned}
& R(\zeta)=q^{2 / 3} \mathrm{e}^{\lambda_{3}\left(q^{2} \zeta^{s}\right)-\lambda_{3}\left(q^{-2} \zeta^{s}\right)}\left[E_{11} \otimes E_{11}+E_{22} \otimes E_{22}+E_{33} \otimes E_{33}\right. \\
&+ \frac{q^{-1}\left(1-\zeta^{s}\right)}{1-q^{-2} \zeta^{s}}\left(E_{11} \otimes E_{22}+E_{11} \otimes E_{33}+E_{22} \otimes E_{11}+E_{22} \otimes E_{33}+E_{33} \otimes E_{11}\right. \\
&+\left.E_{33} \otimes E_{22}\right)+\frac{1-q^{-2}}{1-q^{-2} \zeta^{s}}\left(\zeta^{s_{1}} E_{12} \otimes E_{21}+\zeta^{s_{1}+s_{2}} E_{13} \otimes E_{31}+\zeta^{s_{2}} E_{23} \otimes E_{32}\right. \\
&\left.\left.\quad+\zeta^{s-s_{1}} E_{21} \otimes E_{12}+\zeta^{s-s_{1}-s_{2}} E_{31} \otimes E_{13}+\zeta^{s-s_{2}} E_{32} \otimes E_{23}\right)\right]
\end{aligned}
$$

where

$$
\begin{gathered}
\lambda_{3}(\zeta)=\sum_{m \in \mathbb{Z}_{+}} \frac{1}{q^{2 m}+1+q^{-2 m}} \frac{\zeta^{m}}{m}=\sum_{m \in \mathbb{Z}_{+}} \frac{1}{[3]_{q^{m}}} \frac{\zeta^{m}}{m} \\
\lambda_{3}\left(q^{2} \zeta\right)+\lambda_{3}(\zeta)+\lambda_{3}\left(q^{-2} \zeta\right)=-\log (1-\zeta)
\end{gathered}
$$

- Gauge invariance:

$$
R^{\left(s, s_{1}, s_{2}\right)}\left(\zeta_{12}\right)=\left[G\left(\zeta_{1}\right) \otimes G\left(\zeta_{2}\right)\right] R^{(1,0,0)}\left(\zeta_{12}^{s}\right)\left[G\left(\zeta_{1}\right) \otimes G\left(\zeta_{2}\right)\right]^{-1}
$$

where

$$
G(\zeta)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \zeta^{-s_{1}} & 0 \\
0 & 0 & \zeta^{-s_{1}-s_{2}}
\end{array}\right)
$$

- Gauge invariance:

$$
R^{\left(s, s_{1}, s_{2}\right)}\left(\zeta_{12}\right)=\left[G\left(\zeta_{1}\right) \otimes G\left(\zeta_{2}\right)\right] R^{(1,0,0)}\left(\zeta_{12}^{s}\right)\left[G\left(\zeta_{1}\right) \otimes G\left(\zeta_{2}\right)\right]^{-1}
$$

where

$$
G(\zeta)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \zeta^{-s_{1}} & 0 \\
0 & 0 & \zeta^{-s_{1}-s_{2}}
\end{array}\right)
$$

- The transfer matrices of inhomogeneous vertex models related to R-matrices with different choices of s, s_{1} and s_{2} are connected by a similarity transformation and a change of the spectral parameters. The corresponding partition functions in the case of the toroidal boundary conditions are connected by a change of the spectral parameters.
Analogously, the Q-operators obtained from L-operators corresponding to different values of s, s_{1} and s_{1} are connected by a change of the spectral parameters and a similarity transformation.

L-operators of type \hat{L}

- Choosing the evaluation map
$\chi_{\zeta}\left(h_{\delta-\alpha-\beta}\right)=-D_{1}-D_{2}, \quad \chi_{\zeta}\left(h_{\alpha}\right)=2 D_{1}-D_{2}, \quad \chi_{\zeta}\left(h_{\beta}\right)=-D_{1}+2 D_{2}$,
$\chi_{\zeta}\left(e_{\delta-\alpha-\beta}\right)=\frac{1}{q-q^{-1}} a_{1} a_{2} q^{-D_{1}-2 D_{2}} \zeta^{s-s_{1}-s_{2}}$,
$\chi_{\zeta}\left(e_{\alpha}\right)=\frac{1}{q-q^{-1}} a_{1}^{\dagger} \zeta^{s_{1}}, \quad \chi_{\zeta}\left(e_{\beta}\right)=\frac{1}{q-q^{-1}} q^{D_{1}} a_{2}^{\dagger} \zeta^{s_{2}}$,
we come to the L-operator ($s=1, s_{1}=s_{2}=0$ for brevity)

$$
\hat{L}(\zeta)=\mathrm{e}^{\lambda_{3}\left(q^{-2} \zeta\right)}\left(\begin{array}{ccc}
q^{D_{1}} & q^{-2} a_{1} q^{-D_{1}-D_{2}} \zeta & a_{1} a_{2} q^{-D_{1}-3 D_{2}} \zeta \\
a_{1}^{\dagger} q^{D_{1}} & q^{-D_{1}+D_{2}}-q^{-2} q^{D_{1}-D_{2}} \zeta & -a_{2} q^{D_{1}-3 D_{2}} \zeta \\
0 & a_{2}^{\dagger} q^{D_{2}} & q^{-D_{2}}
\end{array}\right)
$$

- The evaluation map
$\chi_{\zeta}\left(h_{\delta-\alpha-\beta}\right)=-D_{1}-D_{2}, \quad \chi_{\zeta}\left(h_{\alpha}\right)=2 D_{1}-D_{2}, \quad \chi_{\zeta}\left(h_{\beta}\right)=-D_{1}+2 D_{2}$,

$$
\begin{gathered}
\chi_{\zeta}\left(e_{\delta-\alpha-\beta}\right)=-\frac{1}{q-q^{-1}} a_{1} a_{2} q^{-D_{1}} \zeta^{s-s_{1}-s_{2}}, \\
\chi_{\zeta}\left(e_{\alpha}\right)=\frac{1}{q-q^{-1}} a_{1}^{\dagger} \zeta^{s_{1}}, \quad \chi_{\zeta}\left(e_{\beta}\right)=\frac{1}{q-q^{-1}} q^{-D_{1}} a_{2}^{\dagger} \zeta^{s_{2}}
\end{gathered}
$$

leads to the L-operator ($s=1, s_{1}=s_{2}=0$ for brevity)
$\hat{L}(\zeta)=\frac{\mathrm{e}^{-\lambda_{3}\left(q^{2} \zeta\right)}}{1-\zeta}\left(\begin{array}{ccc}q^{D_{1}}-q^{-2} q^{-D_{1}} \zeta & -a_{1} q^{-3 D_{1}+D_{2}} \zeta & -a_{1} a_{2} q^{-D_{1}-D_{2}} \zeta \\ a_{1}^{\dagger} q^{D_{1}} & q^{-D_{1}+D_{2}} & a_{2} q^{D_{1}-D_{2}} \zeta \\ q^{-1} a_{1}^{\dagger} a_{2}^{\dagger} & a_{2}^{\dagger} q^{-2 D_{1}+D_{2}} & q^{-D_{2}}-q^{D_{2}} \zeta\end{array}\right)$
\checkmark Gauge invariance

$$
\hat{L}^{\left(s, s_{1}, s_{2}\right)}\left(\zeta_{12}\right)=\gamma_{\zeta_{1}}\left(G\left(\zeta_{2}\right) \hat{L}^{(1,0,0)}\left(\zeta_{12}^{s}\right) G^{-1}\left(\zeta_{2}\right)\right),
$$

where $\gamma_{\zeta}, \zeta \in \mathbb{C}^{\times}$, is given by

$$
\gamma_{\zeta}\left(a_{i}\right)=a_{i} \zeta^{-s_{i}}, \quad \gamma_{\zeta}\left(a_{i}^{\dagger}\right)=a_{i}^{\dagger} \zeta^{s_{i}}, \quad \gamma_{\zeta}\left(D_{i}\right)=D_{i}, \quad i=1,2 .
$$

L-operators of type \check{L}

- Here we work with the mapping ψ_{ζ} given by

$$
\begin{gathered}
\psi_{\zeta}\left(h_{\delta-\alpha-\beta}\right)=-D_{1}-D_{2}, \quad \psi_{\zeta}\left(h_{\alpha}\right)=2 D_{1}-D_{2}, \quad \psi_{\zeta}\left(h_{\beta}\right)=-D_{1}+2 D_{2}, \\
\psi_{\zeta}\left(f_{\delta-\alpha-\beta}\right)=\frac{1}{q-q^{-1}} q^{-D_{1}-2 D_{2}} a_{1}^{\dagger} a_{2}^{\dagger} \zeta^{-s+s_{1}+s_{2}} \\
\psi_{\zeta}\left(f_{\alpha}\right)=\frac{1}{q-q^{-1}} a_{1} \zeta^{-s_{1}}, \quad \psi_{\zeta}\left(f_{\beta}\right)=\frac{1}{q-q^{-1}} a_{2} q^{D_{1}} \zeta^{-s_{2}} .
\end{gathered}
$$

This leads to the L-operator (again $s=1, s_{1}=s_{2}=0$)
$\check{L}(\zeta)=\mathrm{e}^{\lambda_{3}\left(q^{-2} \zeta\right)}\left(\begin{array}{ccc}q^{D_{1}} & a_{1} q^{-D_{1}+D_{2}} & 0 \\ q^{-2} a_{1}^{\dagger} q^{D_{1}-2 D_{2}} \zeta & q^{-D_{1}+D_{2}}-q^{-2} q^{D_{1}-D_{2}} \zeta & a_{2} q^{D_{1}-D_{2}} \\ q^{-3} a_{1}^{\dagger} a_{2}^{\dagger} q^{-2 D_{2}} \zeta & -q^{-2} a_{2}^{\dagger} q^{-D_{2}} \zeta & q^{-D_{2}}\end{array}\right)$

- While choosing the evaluation map

$$
\begin{gathered}
\psi_{\zeta}\left(h_{\delta-\alpha-\beta}\right)=-D_{1}-D_{2}, \quad \psi_{\zeta}\left(h_{\alpha}\right)=2 D_{1}-D_{2}, \quad \psi_{\zeta}\left(h_{\beta}\right)=-D_{1}+2 D_{2}, \\
\psi_{\zeta}\left(f_{\delta-\alpha-\beta}\right)=-\frac{1}{q-q^{-1}} q^{-D_{1}} a_{1}^{\dagger} a_{2}^{\dagger} \zeta^{-s+s_{1}+s_{2}}, \\
\psi_{\zeta}\left(f_{\alpha}\right)=\frac{1}{q-q^{-1}} a_{1} \zeta^{-s_{1}}, \quad \psi_{\zeta}\left(f_{\beta}\right)=\frac{1}{q-q^{-1}} a_{2} q^{-D_{1}} \zeta^{-s_{2}}
\end{gathered}
$$

we obtain one more L-operator (here $s=1, s_{1}=s_{2}=0$)

$$
\check{L}(\zeta)=\frac{\mathrm{e}^{-\lambda_{3}\left(q^{2} \zeta\right)}}{1-\zeta}\left(\begin{array}{ccc}
q^{D_{1}}-q^{-2} q^{-D_{1}} \zeta & a_{1} q^{-D_{1}+D_{2}} & a_{1} a_{2} q^{-D_{1}-D_{2}} \\
-q^{-2} a_{1}^{\dagger} q^{-D_{1}} \zeta & q^{-D_{1}+D_{2}} & a_{2} q^{-D_{1}-D_{2}} \\
-q^{-1} a_{1}^{\dagger} a_{2}^{\dagger} \zeta & a_{2}^{\dagger} q^{D_{2}} \zeta & q^{-D_{2}}-q^{D_{2}} \zeta
\end{array}\right)
$$

\checkmark Gauge invariance

$$
\check{L}^{\left(s, s_{1}, s_{2}\right)}\left(\zeta_{12}\right)=G\left(\zeta_{1}\right) \gamma_{\zeta_{2}}\left(\check{L}^{(1,0,0)}\left(\zeta_{12}^{s}\right)\right) G^{-1}\left(\zeta_{1}\right)
$$

[^0]: ${ }^{1}$ Based on work in collaboration with H. Boos, F. Göhmann, A. Klümper, and

