Study of neutrino oscillations in accelerator experiments

Yury Kudenko Institute for Nuclear Research RAS

QUARKS2010 Kolomna, 10 June 2010

v oscillations and mixing

3 fam

milies
$$\begin{pmatrix} V_e \\ V_\mu \\ V_\tau \end{pmatrix} = U \begin{pmatrix} V_1 \\ V_2 \\ V_3 \end{pmatrix}$$
 $U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$
atmospheric $\int_{V_e} V_{\mu} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{-i\delta} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \\ V_3 \end{pmatrix}$

link between atmospheric and solar

U parameterization: three mixing angles θ_{12} θ_{13} θ_{23} CP violating phase δ

$$\Delta m_{ij}^2 = m_i^2 - m_j^2 \qquad \Delta m_{12}^2 + \Delta m_{23}^2 + \Delta m_{31}^2 = 0$$

 $\Delta m_{12}^2 = \Delta m_{sol}^2 \approx 7.5 \times 10^{-5} \,\text{eV}^2 \quad \Delta m_{23}^2 \cong \Delta m_{31}^2 = \Delta m_{atm}^2 \approx 2.4 \times 10^{-3} \,\text{eV}^2 \quad \theta_{12} \sim 34^0 \,\theta_{23} \sim 45^0 \,\theta_{13} = ?$

two independent
$$\Delta m^2$$

Oscillation experiments: Appearance and Disappearance

10 June 2010 QUARKS2010

Long baseline accelerator experiments

LBL experiments cannot distinguish between Dirac and Majorana neutrinos do not provide information about absolute ν mass

Neutrino oscillation experiments at accelerators

K2K (finished)
MINOS $\nu_{\mu} \rightarrow \nu_{\mu}$ Δm_{23}^2 , $\sin^2 2\theta_{23}$ MINOS
OPERA $\nu_{\mu} \rightarrow \nu_{\tau}$ MiniBooNE
T2K
NOVALSNDsterile ν $\nu_{\mu} \rightarrow \nu_{e}$ θ_{13} , mass order
 $\delta_{CP}(?)$

K2K: first LBL experiment

MINOS

Precise study of "atmospheric" neutrino oscillations, using the NUMI beam and two detectors

Proton beam: 120 GeV protons, $3x10^{13}$ POT/spill, 0.4 MW, 1 m segmented graphite target, 2 horns <u>v- beam:</u> v_{μ} - 92.9%, anti- v_{μ} - 5.8%, (v_{e} + anti- v_{e})- 1.3%, peak energy ~(3-9) GeV

Data taking since 2006

10 June 2010 QUARKS2010 Detectors: ND, FD

Far Det: 5.4 kton magnetized Fe/Sci Tracker/Calorimeter at Soudan, MN (L=735 km)

<u>Near Det:</u> 980 ton version of FD, at FNAL (L \approx 1 km)

MINOS: $v_{\mu} \rightarrow v_{\mu}$

3.36x10²⁰ POT analyzed Improved analysis

Phys.Rev.Lett. 101 131802 (2008)

 $\Delta m_{23}^2 = (2.43 \pm 0.13) \times 10^{-3}$ sin²2 $\theta_{23} = 1.00 - 0.08$

MINOS: $\nu_{\mu} \rightarrow \nu_{e}$

For 3.18x10²⁰ POT MINOS analysis suggested a hint for non-zero θ_{13} (1.5 σ excess of v_e in Far detector) Detected 35 events Expected bkg 27 ± 5 (stat) ± 2 (syst)

New result based on 7.01x10²⁰ POT

MINOS: $\nu_{\mu} \rightarrow \nu_{e}$

7x10²⁰ POT

detected 54 v_e events expected bkg 49.1 ±7.0 (stat) ± 2.7 (syst) (35.8 NC; 6.3 v_{μ} - CC; 5.0 beam v_e ; 2.0 v_{τ})

Efficiency for selection of v_e -CC events in Far Detector 41.6±1.0 % Background suppression in Far Detector ~93%

for $\delta = 0$

 $2sin^22\theta_{13}sin^2\theta_{23}$ <0.12 (90% c.l.) normal hierarchy

 $2sin^22\theta_{13}sin^2\theta_{23}$ <0.20 (90% c.l.) inverted hierarchy

Best constraint on θ_{13} for almost all δ assuming $\Delta m^2 > 0$ and maximal $\sin^2 \theta_{23}$

MINOS: $\nu_{\mu} \rightarrow \nu_{s}$

deficit of NC events at Far Detector would be an indication of existence of sterile neutrinos

3.2x10²⁰ POT, peak neutrino energy 3.3 GeV

388 NC events detected in Far Detector 377 \pm 19.4(stat) \pm 18.5(syst) expected from standard 3-flavor neutrino models

R =1.04
$$\pm$$
 0.08(stat) \pm 0.07(syst) - 0.1(v_e)

Phys.Rev.D81:052004 (2010), arXiv:1001.0336

For maximally allowed v_e appearance

$$f_s\equiv rac{P_{
u_\mu
ightarrow
u_s}}{1-P_{
u_\mu
ightarrow
u_\mu}}$$
< 0.55 (90% CL)

Hybrid Detector:

- •Two supermodules Target Mass ~1.8 ktons
- 2 Magnetic spectrometers with RPC & Drift tubes
- 2 x [31 Target Tracker planes and Target Walls]
- ~200000 "ECC bricks" (56 Pb/Emulsion layers)
- 12 M Emulsion plates (thin double-coated)

OPERA: $\nu_{\mu} \rightarrow \nu_{\tau}$ **sensitivity** expected

full mixing, 5 years run 4.5 x10¹⁹pot/y

	τ decay channel	B.R. (%)	Signal ∆m² = 2.5 x 10-3 eV²	Background	
	τ → μ	17.7	2.9	0.17	
	τ → e	17.8	3.5	0.17	
	$\tau \to h$	49.5	3.1	0.24	
	τ <mark>→ 3h</mark>	15.0	0.9	0.17	
	Total		10.4	0.75	

Data taking since 2007 Accumulated in 2008-09 $\sim\!5.3$ x $10^{19}\,\text{POT}$ Analysis of data with 1.89 x $10^{19}\,\text{POT}$

2010: 1st ν_τ candidate event is observed

OPERA: first v_{τ} candidate

arXiv:1006.1623 [hep-ex]

decay $\tau^{-} \rightarrow h^{-}(n\pi^{0})v_{\tau}$

- Expected number of ν_{τ} events 0.54 \pm 013 (syst)
- Probability that this event due to background fluctuation 4.5%
- Significance of observation 2.01σ
 - 20 charm decays observed
 - expectation from MC 16.0 \pm 2.9

A milestone in neutrino physics

Congratulations to OPERA!

MiniBooNE $\nu_{\mu} \rightarrow \nu_{e}$

PRL 98:231801, 2007 PRL 102:101802,2009

osc. analysis

0.6

6.46E20 POT

0.6

0.8

.....

0.8

Data

v_ from µ

ν_e from K⁺ ν_ from K⁰

π^ō misid

 $\Delta \rightarrow N\gamma$

Const. Syst. Error

1.2

data - expected background

 $sin^{2}2\theta = 0.004$, $\Delta m^{2} = 1.0 eV^{2}$

sin²2θ=0.2, Δ m²=0.1eV²

1.2

best-fit v_µ→v_e

1.4

1.4 1.5

E^{QE} (GeV)

E^{QE}_v (GeV)

dirt other

6.46 x 10²⁰ POT

No v_e excess in oscillation signal region E_v> 475 MeV

however

Excess 128.8 \pm 20.4 \pm 38.3 events above background for 200-475 MeV

Background-subtracted:

Events / MeV

2.5

1.5

0.5

Excess Events / MeV

0.2

0.8

0.6

0.4

0.2

-0.2

0.4

0.4

MiniBooNE anti- v_{μ} \rightarrow anti- v_{e}

W.C. Louis, Aspen 2010

PRL 103, 111801 (2009)

anti- v_e data are inconclusive (low statistics) but consistent with LSND anti- v_e result with 6x10²⁰ POT is expected soon, with ~10²¹ POT in 2011

Possible interpretations

if low-energy excess for v_{μ} *is confirmed to be a real signal*

• Non-oscillation $v + N \rightarrow v + N + \gamma$

Coupling between $\gamma,$ Z and ω σ ~ 2.6×10^{-41}(E_v/GeV)^6(g_{_0}/10)^4\,cm^2

С.С.Герштейн, Ю.Я.Комаченко, М.Ю.Хлопов, ЯФ 33 (1981) 1597 J.Harvey, C.Hill, R.Hill, arXiv:0708.1281 R.Hill, arXiv:0905.0291; Jenkins,Goldman, arXiv:0906.0984

Oscillation

3 +1 model
M.Maltoni, T.Schwetz, arXiv:0051.0107
3 + 2 or 3 + 3 models
M.Maltoni, T.Schwetz, arXiv:0051.0107
A.Nelson, J.Walsh, arXiv:0711.1363

Extra dimensions

H.Pas, S.Pakvasa, T.Weiler, hep-ph/0504096 (predicted low-energy excess)

Lorentz violation

T.Katori, A.Kostelecky, R.Tayloe, hep-ph/0606154

Heavy Sterile Neutrino Decay S.Gninenko, arXiv:0902.3802 VSBL Electron Neutrino Disappearance C.Giunti, M.Laveder, arXiv: 0902:1992

 ν_{μ}

Second generation LBL experiments

Off Axis Neutrino Beams

- Increase flux on oscillation maximum
- Reduce high-energy tail and NC backgrounds
- Reduce ν_{e} contamination from K and μ decay

T2K off-axis beam

Oscillation Prob. Shah 0.8 0.6 @ ∆m² = 3.0 ×10-3 0.4 0.2 0 v energy spectrum ⁶3500 (Flux × x-section) 3000 2500 OA0° 2000 1500 1000 OA3° 500 00 35 4 GeV 0.5 2 2.5 1 1.5 3

T2K: Quasi-monochromatic v_{μ} (95%) beam ~0.4% v_{e} at peak energy ~700 MeV

T2K physics goals

Proton energy 30 GeV, integral 8 x 10²¹ POT (~5 years)

$v_{\rm e}$ appearance

ν_{μ} disappearance

Status of T2K

Construction completed

Physics run started

First SuperK event

March 2009

January 2010

February 2010

ν event in ND280

T2K: 1st neutrino event in SK

T2K Outlook & 2010 goals

- First physics run till July 2010 beam power ~50kW
- Upgrade of kicker magnets and horn power supply; remaining Ecal installation and commissioning July – October, 2010
- Second physics run start in November 2010 beam power \geq 100kW

NOvA event patterns

NOvA

θ_{13} sensitivities vs time

as expected in 2006

Short baseline reactor experiments Double-Chooz and Daya Bay $\longrightarrow \theta_{13}$ (insensitive to δ_{CP})

Conclusion

- Neutrino oscillations physics beyond the Standard Model
- Accelerator experiments: very productive and provide exiting results
- MINOS, OPERA, MiniBooNe successfully taking data
- **T2K** running for physics since January 2010
- Main goal for LBL accelerator experiments: θ_{13} key parameters which determines the future of these experiments
- Non-zero θ_{13} will give us a chance to measure mass hierarchy and to probe CP violation in lepton sector

New results are coming next week!