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Essence of the Chiral Magnetic Effect (CME)

Generation of an electric current parallel to a magnetic field in a topo-

logically nontrivial background

[D. E. Kharzeev, L. D. McLerran and H. J. Warringa, 2008;

K. Fukushima, D. E. Kharzeev, and H. J. Warringa, 2008].

• Chirally symmetric phase of QCD with massless quarks qL, qR of a

unit electromagnetic charge

• qL → (q+−1/2, q−+1/2) and qR → (q++1/2, q−−1/2) (charge and helicity),

magnetic moment ∝ charge × spin

• External magnetic field aligns magnetic moments ⇒ spins and mo-

menta are correlated with the magnetic field

• Components (q+−1/2, q−+1/2) move in the opposite direction to the

field, (q++1/2, q−−1/2) – along the field



• A U(1)A chemical potential μ5 induced by a sphaleron produces a

state with a positive helicity:

N(q−+1/2) + N(q++1/2) > N(q+−1/2) + N(q−−1/2)

An electromagnetic current J ∝ l.h.s. - r.h.s.

B u R d R
- spin direction
- magnitic moment

u L d L

- electric current

- nonzero density of 
the topological charge

- spatial momentum



The weak coupling results

In the weak-coupling limit [K. Fukushima, D. E. Kharzeev, and H. J. Warringa, 2008]

the resulting current is

JV
3 =

μ5B

2π2
≡ JFKW

For nonzero frequencies of the external field there is a drop to 1/3 ×
JFKW . A temperature-dependent expression for the susceptibility χ ∝
T has also been obtained [K. Fukushima, D. E. Kharzeev, and H. J. Warringa, 2009].



CME in the gauge/gravity framework

The CME has been studied in the dual models to shed light into its

properties in the strong-coupling limit:

• [H.-U. Yee, 2009] – in a model of Einstein gravity with a U(1)L ×U(1)R

Maxwell theory in the AdS5 space and in the Sakai-Sugimoto model

with a non-zero frequency. Results agree with those in the weak-

coupling limit, except for the drop at ω = 0.

• [A. Rebhan, A. Schmitt and S. A. Stricker, 2010] – in the Sakai-Sugimoto model

at zero frequency. Result is 2/3 of the weak-coupling result in the

absence of the Bardeen counterterm and is zero at zero frequency

with the counterterm.



Experimental status of CME

Experimental status is discussed in [STAR collaboration and S. A. Voloshin, 2009],

overview was given by Prof. Andianov.

Lattice calculations by the ITEP Lattice group [P. V. Buividovich, M. N. Chern-

odub, E. V. Luschevskaya and M. I. Polikarpov, 2009] – overview given by Pavel Buiv-

idovich.



Approaches to holographic QCD – ”bottom-up”

Operators under consideration in ”bottom-up” AdS/QCD:

• Symmetry currents Ja
L,R μ where a is an adjoint SU(Nf)L,R index;

• Chiral symmetry violation order parameter Σαβ =
〈
q̄αqβ

〉
where

α, β = 1...Nf are fundamental flavor indices.

Radial coordinate of the AdS is interpreted as the energy scale with

UV region near the boundary. QCD is asymptotically conformal in the

UV ⇒ our 5D space is asymptotically AdS near the boundary. We have

to modify the geometry in the IR region to reflect the confinement.

In order to sharpen the model we have to test its consistency – one

has to calculate quantities known in QCD from the AdS point of view.



Five-Dimensional Effective Action

S5D =
∫

d5x
√

ge−Φtr

{
Λ2

(
|DX|2 +

3

R2
|X|2 − V (X)

)
− 1

4g2
5

(F2
L + F2

R)

}

with a metric ds2 =
R2

z2
(−dz2 + dxμdxμ) and dilaton Φ.

• ”Hard-wall”: Φ(z) ≡ 0, V (X) ≡ 0, 0 � z � zm,

• ”Soft-wall”: Φ(z) ∼ λz2(z → ∞), V (X) 	= 0, 0 � z < ∞.

La
μ(x, z = 0) = source of q̄L(x)γμtaqL(x),

Ra
μ(x, z = 0) = source of q̄R(x)γμtaqR(x),

lim
z→0

2

z
Xαβ(x, z) = source of q̄α

L(x)qβ
R(x).

If we KK-decompose all the fields and integrate out the dynamics along

the z-axis, we get an effective action for mesons - a chiral Lagrangian.



Gauge sector of the soft-wall AdS/QCD

In the chirally symmetric phase we only need to consider the gauge

sector, |X| = 0 (its phase – the 5D pion – is a more involved issue).

S = SY M [L] + SY M [R] + SCS[L] − SCS[R] (1)

SY M [A] = − 1

8g2
5

∫
e−φF ∧ ∗F = − 1

8g2
5

∫
dz d4x e−φ√gFMNFMN (2)

SCS[A] = − Nc

24π2

∫
A ∧ F ∧ F − 1

2
A ∧ A ∧ A ∧ F +

1

10
A ∧ A ∧ A ∧ A ∧ A

= − Nc

24π2

∫
dz d4x εMNPQRAMFNPFQR (3)

with a metric tensor

ds2 = gMNdXMdXN =
R2

z2
ηMNdXMdXN =

R2

z2
(−dz2 + dxμdxμ) (4)

.



Classical equations and the boundary conditions

Taking into account
R

g2
5

=
Nc

12π2
and imposing a gauge Lz = Rz = 0 we

obtain the following E.o.M.’s for the gauge fields:

∂z

⎛
⎝e−φ(z)

z
∂zL

μ

⎞
⎠ − 24εμνρσ ∂zLν∂ρLσ = 0 (5)

∂z

⎛
⎝e−φ(z)

z
∂zR

μ

⎞
⎠ + 24εμνρσ ∂zRν∂ρRσ = 0 (6)

with the following boundary conditions:

L0(0) = μL, R0(0) = μR, (7)

L3(0) = jL, R3(0) = jR, (8)

L1(0, x2) = −1

2
x2B, R1(0, x2) = −1

2
x2B, (9)

Lμ(∞) = Rμ(∞), ∂zLμ(∞) = −∂zRμ(∞). (10)



• Here μ =
1

2
(μL + μR), μ5 =

1

2
(μL −μR) are the chemical potentials.

• jL,R are the gauge field boundary values, a variation with respect

to which gives the currents

δS[L, R]

δL3(z = 0)
=

1

V4D

∂S[L, R]

∂jL
= JL, (11)

δS[L, R]

δR3(z = 0)
=

1

V4D

∂S[L, R]

∂jR
= JR. (12)

• Being source of the Abelian vector currents in the theory on the

boundary, the Abelian magnetic field manifests itself as a boundary

value for the 5D vector field strength.

• Boundary condition at z = ∞ is an adaptation of an analytical

continuation of an analogous condition in the chirally broken Sakai-

Sugimoto model.



On-shell action and currents

Action, estimated on-shell for the solutions of (5,6,10):

L0(z) = μL +
(
μ5 − 1

2
j5

) (
e−|β|w(z) − 1

)
, L3(z) =jL −

(
μ5 − 1

2
j5

) (
e−|β|w(z) − 1

)
,

R0(z) = μR −
(
μ5 +

1

2
j5

) (
e−|β|w(z) − 1

)
, R3(z) =jR −

(
μ5 +

1

2
j5

) (
e−|β|w(z) − 1

)
,

R1(z, x2) = −1

2
x2B, L1(z, x2) = −1

2
x2B, (13)

here j = jL+jR, j5 = jL−jR, and w(z) =
z∫
0

du u eφ(u),
e−φ(z)

z
w′(z) = 1,

yields:

J =
2

V4D

∂S

∂j
=

Nc

3π2
Bμ5, (14)

J5 =
2

V4D

∂S

∂j5
= − Nc

3π2
B(μ + j5). (15)

The AdS/CFT prescription implies that we set j5 = 0.



Anomalies and the Bardeen counterterm

In our setup there are two external gauge fields on the boundary –
Vμ(z = 0) and Aμ(z = 0). Vμ(z = 0) corresponds to e× an external
electromagnetic field and provides μ, while a nonzero Aμ(z = 0) ac-
counts for μ5. It has been pointed out in [A. Rebhan, A. Schmitt and S. A. Stricker,

2010] that the divergence of the vector current

∂μJ μ = − Nc

24π2
FV

μνF̃A μν

has to be compensated for by a local counterterm

SBardeen = c
∫

d4xεμνρσLμRν(F
L
ρσ + FR

ρσ), (16)

with an appropriate choice of the constant c.

SBardeen may be considered as a product of holographic renormaliza-
tion. Whether it needs to be taken into account remains unclear.

In our model c = − Nc

12π2
and

Jsubtracted = J + JBardeen =
Nc

3π2
Bμ5 +

(
− Nc

12π2

)
× 4Bμ5 = 0. (17)



Discussion of the relevance of the Bardeen counterterm

It was suggested by V. Rubakov [arXiv: 1005.1888[hep-ph]] that the coun-

terterm has to be excluded from the calculation, since it fixes the

anomaly of the vector current only in the presence of a real dynami-

cal axial gauge field, while in our case we are dealing with a constant

axial chemical potential, which is different from a constant temporal

component of an axial gauge field.

In the absence of this counterterm the CME current in the strong

coupling regime agrees exactly with the weak coupling limit (as it will

be demonstrated below).

How to formally distinguish between the two aforementioned cases in

holography is a problem still open to discussions.



Pseudoscalar contribution to the effect

The 5D scalar field X = |X|eiπ/fπ interacts with the gauge fields via

the covariant derivatives, thus inducing an interaction between π and

the gauge field AM .

• Usually the 4D pion is associated with a holonomy
∫

Azdz and the

π → γγ decay is determined by a part of the CS action
∫

dzd4x AzFV
μνFV μν.

In the Az = 0 gauge we have to reintroduce pion into the CS term.

• CS action is gauge invariant up to a surface term which is nonzero

in our setup. In order to make it explicitly invariant we introduce

2 scalars:

SCS =
Nc

24π2

(∫
L ∧ dL ∧ dL −

∫
R ∧ dR ∧ dR

)
(18)

→ Nc

24π2

(∫
(L + dφL) ∧ dL ∧ dL −

∫
(R + dφR) ∧ dR ∧ dR

)
(19)

which under gauge transformations L → L + dαL, R → R + dαR

transform as φL,R → φL,R − αL,R.



• fπ (φR − φL) may be associated with the five-dimensional pion in

the gauge in which Az is set to zero.

• PCAC relation connecting the axial current and the pion field

Ψ̄γνγ5Ψ ⇔ fπ∂νπ implies that we have to add the following term to

the pion lagrangian μ5fπ∂0π. Accordingly we have to modify the

5D action, obtaining an equation on the boundary: ∂0π+μ5fπ = 0.

Thus, π(z = 0) =
μ5

fπ
t.

Additionally, in the D3/D7 models an R-symmetry chemical po-

tential causes the D7 branes to rotate with an angular speed μR,

so that the phase of the scalar field is iμRt

• This yields another contribution to the CME:

JφAA =
Nc

6π2
Bμ5.



Summary table

Here is a summary of all the contributions to the CME:

Term in Yang–Mills Chern–Simons Bardeen Scalars
the action bulk boundary bulk boundary counterterm in CS

Contribution −1

3

Nc

2π2
Bμ5

1

3

Nc

2π2
Bμ5

1

3

Nc

2π2
Bμ5

1

3

Nc

2π2
Bμ5 −2

3

Nc

2π2
Bμ5

1

3

Nc

2π2
Bμ5

to the current

Action taken Total Total without scalars
into account subtracted nonsubtracted subtracted nonsubtracted

Resulting current,

in terms of
Nc

2π2
Bμ5

1

3
1 0

2

3



Conclusions

• We have presented a calculation of the CME in soft-wall AdS/QCD.

• Model under consideration has the same basic features as the other
holographic models where the CME has been studied, which has
been confirmed independently. However, the results differ from
those in the Sakai-Sugimoto model due to the presence of scalar
fields.

• Those scalars act as ’catalysts’ for the effect, only triggering it,
while its magnitude is defined by the Chern-Simons action.

• The nature of the effect remains topological and it does not depend
either on the dilaton or on the metric or on the details of the scalar
Lagrangian.

• CME in soft-wall AdS/QCD amounts to 1/3 of the weak-coupling
result if we take into account the Bardeen counterterm, and exactly
agrees with the weak-coupling result without the counterterm.


