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It is well known that in case if primordial density perturbations 
in the early Universe have rather large amplitude on some 
length scale, a non-negligible amount of primordial black holes 
(PBHs) can be produced through the gravitational collapse of 
this inhomogeneities. PBHs are a useful source of information 
about the very early Universe, and even their non-observation 
can give rather useful data for cosmology.

In many cases, the limits on the abundance of PBHs and 
corresponding cosmological constraints from PBHs have been 
obtained using simplest (“Standard”) cosmological model, 
assuming, in particular, the 4-dimensional FLRW space-time.

However, being a probe for the early Universe and very high-
energy phenomena in it, PBHs (and limits derived from them) 
are sensitive also to such assumptions.

Introduction
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In this talk we consider the possibility of PBH production in a 
particular theory with extra spatial dimension – a well-known 
Randall-Sundrum (1999) one-brane model.

In this model, our Universe is considered as a “brane”
embedded in a 5-dimensional anti-de Sitter (AdS) “bulk”. The 
bulk has a curvature of scale       related to the bulk 
cosmological constant as 

.

An Einstein-Hilbert 5D gravitational action is

,

where gravitational coupling constant is related to the 5D 
Planck mass:

.

Braneworld cosmology
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The 5D Einstein equation is

.
The static weak field limit gives the Poisson equation, from 
which the gravitational potential, on scales much smaller than 
the size of the extra dimension, is

.
Thus, Newton’s law is modified on scales             . 

The AdS metric in Gaussian normal coordinates takes the form

(brane is at y=0), the exponential “warp” factor reflects the 
confining role of the cosmological constant.
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In Poincare coordinates, the metric can be rewritten in a 
conformally flat form:

,

where                    , and FLRW metric on the brane is 
recovered, with                        and                      . 

The 5D energy-momentum tensor entering Einstein equation is

.

The bulk part is assumed to be zero and

,

where          is for particles and fields confined on the brane, 
and       is the brane tension.  
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The induced field equation on the brane, for empty bulk, is 
(Shiromizu, Maeda, Sasaki, 2000)

(*)                                                    .

We see that there are 2 corrections to the usual 4D 
equation: 1) A quadratic one

,              ,

which is negligible for               but dominant if           . 

and 2) the Weyl tensor projected on the brane, which 
includes the corrections from 5D graviton effects,

.

It follows from (*) that

and                .
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As usual, we assume that                     and               . In this 
case all the model parameters are expressed through        
and      :   

.

From table-top experiments (Hoyle et al, PRL 86, 1418, 2001; 
Long et al, Nature, 421, 922, 2003) it is known that

.

One also needs the junction conditions on the brane, which 
are written as (W. Israel, Nuovo Cim. B44, 1, 1966)

,

where the extrinsic curvature tensor is given by

.
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The quadratic correction to the Einstein equation leads to the 
corresponding modification of the Friedman equation:

.

Its solution for a radiation-dominated state on the brane is

and at late times (low energy density) the 4D cosmology is 
recovered.

The transition between the high energy (HE) and low energy 
(LE) regimes happens at the “critical” epoch, at which            
and the mode entering the horizon at this time (in this case,   
.                ) is given by

.

Friedman equation and horizon mass in RS model
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The horizon mass in this model is                               .

If we assume that                    then the horizon (and PBH) 
mass corresponding to the critical epoch is ~1025 g.

The dependence of horizon mass on time and k is shown in 
the figures (dashed curves are for the case of 4D cosmology).
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Characteristics of 5D black holes

We assume that for sufficiently small scales,             , the 
black hole metric is a 5D Schwarzschild solution (Myers & 
Perry, 1986)

.

The rate of a black hole mass change is given by the sum of 
evaporation and accretion terms (e.g., Majumdar, 2002):

.

Consideration shows that for t<tc accretion dominates over 
evaporation, and after tc evaporation dominates (Clancy et al, 
2003).
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The BH mass at the onset of the evaporation (t=tc), if the 
age of the black hole is equal to the age of the Universe, is

,

and, in general,

.

Figure: Black hole mass MBH*
vs. the moment of time at which 
the black hole evaporates.

Note that in the standard 4D 
case, the initial mass of PBHs
that evaporate today is about 
M* ~ 5x1014 g.
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RS cosmology and spherical collapse

The equation for density contrast in the RS model, including 
only the HE quadratic contributions is

.

The Jeans length is given by

The critical overdensity for HE regime is (Kawasaki, 2004)

,

which is lower than classical result                 (Carr, 1975). 
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Scalar perturbations

For considering the perturbation problem, one must write the 
perturbed metric on the brane and in the bulk, the perturbed 
equations of motion and the perturbed junction conditions.

It has been shown in (Mukohyama, 2000) that scalar-type 
perturbations in the bulk can be written in terms of the gauge-
invariant master variable                  , which satisfies the
equation 

.

The projection of the Weyl tensor in perturbed 4D Einstein 
equations can be parameterized as
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Here,                    are Kaluza-Klein degrees of freedom 
(effects of bulk geometry on the brane). These terms appear 
in equation for gravitational potentials, in particular

,

.

When perturbing junction conditions, we obtain 1) a boundary 
condition for master variable on the brane,

;

2) expressions for the KK terms through       , in particular

where                                                           ;
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3) the equation for comoving density contrast                            .

In the radiation-dominated brane Universe (              ) it is

.

Thus, equations for gauge invariant quantities on the brane
include the bulk master variable.
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In the HE regime, when
,

the following approximations can be used: 

.

One can show that in this case a decoupled 3-rd order 
equation for       exists (Cardoso, 2007) and at leading order in            
.        the solution (dominant super-horizon growing mode) is

. 

On the other hand, in sub-horizon regime,      undergoes 
harmonic oscillations, as in 4D case. The curvature 
perturbation invariant,

,

is conserved in the super-horizon regime, also as in 4D.
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It appears, however (Cardoso et al, 2007), that for large k>kc
the amplitudes of scalar perturbations ( or      ) increase 
during horizon crossing, and the degree of enhancement 
increases with k. There are 2 sources for this enhancement:

(1)               - corrections to the perturbation equations for        
and other variables;

(2) The effect of the bulk degrees of freedom (Kaluza-Klein 
modes) that are expressed through      .

Intermediate (“effective”) case: only (1) is included, the 
calculation is much simplified – only 1 ODE to solve.

In the regime t>>tc (or in the absence of extra dimensions), 
General Relativity is recovered.

If including (1)+(2), we need to solve a coupled system of 2-nd 
order PDE for        and ODE for      .  
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Numerical scheme
For the numerical calculation, a pseudo-spectral method was 
employed. We do a following change in the variables:

,                            ,                 ,

and equation for master variable is rewritten as

.

To solve this equation using difference method (such as 
Adams-Bashforth-Moulton scheme) the variable      is 
introduced:

.

For the     - axis, the transformation over Chebyshev
polynomials is done at each time step so that PDEs reduce to 
the system of ODEs.
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At each point            , the following quantities are known: 

,

also known are Chebyshev transforms                                        .

The grid based on Gauss-Lobatto points is used:                      .

brane Equations solved are:

Boundary conditions 
are imposed on

.

For points on the 
brane,      is also 
evaluated.
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The typical results of the calculations 
are shown in the figures. Here, we 
have taken k=3kc.
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On the upper figure, the 
comparison of three 
calculations is given: GR, 
Effective theory and full 5D 
calculation. The enhancement 
of the amplitude is seen after 
horizon-crossing.

Lower figure: Weyl tensor 
anisotropic stress calculation. 

a* represents the moment of 
horizon entry for the mode.

GR �

5D �

Eff
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For rather large values of k >100 kc the numerical calculation 
is very resource-consuming.
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Enhancement factors

Due to limitations of computing 
resources, we have been able 
to make calculations in 5D case 
only for limited range of k.

To explore PBH production for 
PBH masses ~109 g (such 
PBHs evaporate today), we 
need k > 106 kc, which is 
currently an unsolved problem. 

The enhancement factors have been calculated using 5D 
calculation and effective theory. In case of effective theory, the 
enhancement reaches an asymptotic value of ~3 at k~100kc.

We see additional enhancement from including KK terms, 
similar to one found by Cardoso et al, 2007.

5D / GR

5D / Eff

Eff / GR
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Conclusions

Primordial black holes can be used to probe perturbations in 
our Universe at very small scales, currently inaccessible to 
other types of experiments. 

In theoretical models with extra dimensions, such as the 
Randall-Sundrum braneworld model, several aspects of PBH 
formation and evolution are different: the formation threshold is 
lower, accretion and evaporation obey different laws compared 
to 4D case.

Furthermore, the evolution of the density perturbations in such 
models is affected by the bulk degrees of freedom. We have 
shown that taking this effect into account leads to additional 
enhancement of perturbation amplitude which increases the 
PBH formation probability. 


