Study of rare decays at OKA and NA62 experimental setups

Khudyakov A.

INR, Moscow

Quarks-2010, 6-12 June 2010

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Outline

OKA

- Experiment overview
- Separated beam
- Experimental setup
- Physical program
- ► NA62
 - Experiment overview

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Physical program

OKA experiment

k a

> Goal: precisely study rare decays Technique: In-flight decays, RF-separated beam.

> > Collaboration: IHEP, Protvino INR, Moscow JINR, Dubna

ISTRA+ experiment

ISTRA+ is predecessor of OKA experiment.

	ISTRA+	OKA
p (GeV/c)	25	12.6 (18)
Intensity	$3\cdot 10^6$	$4\cdot 10^6$
$\%~{\it K}^{\pm}$	3% K-	25% K ⁺
${\cal K}^\pm$ per spill	$9\cdot 10^4$	10 ⁶
part of decayed K^\pm	6%	9%

10-30 times increase in statistics is expected.

OKA experimental setup

- p = 12.6 GeV/c (or 18 GeV/c)
- Intensity $\sim 4 \cdot 10^6$ per spill
- > 25% K^+ in the beam.

Separated beam: pro and contra

- Absence of trigger efects
 Possibility of fixed target
- Possibility of fixed target program

 Long and complicated beam line

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Relatively low intensity

Scheme of separation

OKA uses superconductive RF deflectors for beam separation. They were build in Karlsruhe and were used on SPS, CERN in 1978-1981.

- Working frequency 2865 MHz
- \blacktriangleright Field strench $\sim 1~\text{MV/m}$
- Working temperature 1.8K

Separated beam

Threshold curve of \check{C}_2

Separated beam (6.967% \pm 0.039%)

2009: Stable separate

Stable separated beam.

- ▶ 25% K⁺
- $I \sim 2 \cdot 10^6$ per spill

2010:

Currently deflectors are being cleaned in order to increase separation effeciency and beam intencity.

OKA: experimental setup overview

OKA: beam spectrometer

Purpose:

- Reconstruct track of primary particle.
- Measure momentum of primary particle with $\delta p/p \sim 1\%$
- Identify primary particle

Detectors:

- ▶ 7 fast wire proportional chambers.
- Beam magnet ($\sim 1 \text{ Tm}$)
- ► 2 cherenkov counters for partile identification.

 π^+ rejection — filled with air at 1 atm.

 K^+ identification — filled with SF_6 at 1.6 atm.

OKA: Beam proportional chambers

- ► $20 \times 20 \text{cm}^2$
- 188 wires, 1.084mm step
- 80% freon-14 (*CF*₄),
 20% isobutane (*C*₄*H*₁₀)

★ ∃ → ∃

OKA: Decay volume

- 11m long
- Filled with He at 1 atm
- Guard system registers γ at large angles.
- ~200 sandwitch veto counters with fiber readout.
 5 mm scintillator 1.5 mm Pb
- Retractable target for study of K⁺N interactions.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

OKA: Spectrometer

Wire proportional chambers

- 2 mm step ($\sigma_{x} \sim 600 \mu$ m)
- 2 stations before magnet
- Magnet
 - Field integral $\sim 2~\text{Tm}$
- Straw tubes
 - space resolution $\sigma_{x}\sim$ 300 μ m
 - 3 planes (2 layers each)
- Drift tubes
 - Space resolution $\sigma_x \sim 400 \mu {
 m m}$
 - 2 planes (3 layers each)

Wire proportional chambers

Straw tubes

Drift tubes

э

OKA: Matrix hododscope

Detector purpose:

- Resolve XY ambiguity
- Trigger on number of secondary charged tracks
- Provide time tagging for tracks

Construction:

- 16×16 scintillation pads
- Inner section: 6×6 pads
- Light is registered using APD

Efficiency exceed 95%

OKA: Electromagnetic calorimeter

- ► 20 X₀
- $\blacktriangleright \ \frac{\delta E}{E} \approx \frac{5\%}{\sqrt{E}}$
- ~ 4000 lead glass and 256 PWO crystals

Energy spectrum for 5 GeV e^+ test beam

Physical program

Baseline: ISTRA+ program on larger statistics.

Main direction	method
χ PT tests, deviations from SM	Branching and/or dalitz-plot
	in K_{I2} , $K_{I2\gamma}$ and K_{I3} decays
T-odd effects	T-odd assymetries in 4-body
	decays
Sgoldstino search	$K^+ ightarrow \pi^+ \pi^0 P$ decay. Peak in
	$(P_{\mathcal{K}} - P_{\pi^+} - P_{\pi^0})^2$ distribution.
Fixed target program	

Program is being tuned by latest result from NA48/2, NA62, KLOE

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

T-odd correlations

Search for T-odd correlations in 4-body decay $K^+ \rightarrow e^+(\mu^+)\nu\pi^0\gamma$ (J. Gervais, J. Iliopoulous, J. Kaplan 1966)

T-odd variable:
$$\xi = rac{1}{M_K^3} ec{p}_\gamma \cdot (ec{p}_\pi imes ec{p}_l)$$
, $A_\xi = rac{N(\xi>0) - N(\xi<0)}{N(\xi>0) + N(\xi<0)}$

$$\begin{array}{ll} \mbox{Standard model predictions:} \\ \hline {\cal K} \rightarrow e \nu \pi^0 \gamma & {\cal A}_{\xi} \approx 0.5 \cdot 10^{-4} \\ {\cal K} \rightarrow \mu \nu \pi^0 \gamma & {\cal A}_{\xi} \approx 10^{-4} \end{array}$$

Some SM extension predict larger values: $A_{\xi} \sim 3 \cdot 10^{-4}$ (Braguta et al. Phys.Rev.D68,2003)

Current measurements: $A_{\xi}(K_{e3\gamma}) = -0.015 \pm 0.0213$ (ISTRA+) $A_{\xi}(K_{\mu3\gamma}) = -0.03 \pm 0.13$ (ISTRA+)

Program with fixed target

Separated beam makes possible study of K^+N interactions

Target: thin ($\sim 0.1X_0$) aluminium disk inside the decay volume.

• Searches for exotic states with hidden strangeness F. Close and P. Page predict $s\bar{s}g$ with $J^{PC} = 2^{-+}$, $\Gamma = 120 \text{MeV} \rightarrow K_2^*(1430) K$

OKA can look for this state in $K^- p \to K^+ K^- \pi^0 \Lambda$

• Searches for pentaquark *uusss* CERN (2m) and Argone (15ft) bubble chambers saw narrow ($\Gamma < 20$ MeV) state in the reaction $K^-p \rightarrow Y^{*+}\pi^-$; $Y^{*+} \rightarrow \Sigma K \bar{K} + 2\pi$

► Spectroscopy of light mesons $K^+ p \rightarrow f_2(1515) + \Lambda; \quad f_2(1515) \rightarrow \phi\gamma; f_1(1285) \rightarrow \phi\gamma$ $K^+ p \rightarrow f_0(600 - 1200) + \Lambda; f_0 \rightarrow \pi\pi; K\bar{K}$

Primakoff physics

Study of kaon scattering in coulomb potential of nuclea.

Rogalyov (Phys.Atom. Nucl. 64(2001)) compared cross sections of processes above near threshold. First process is affected by Wess-Zumino-Witten(WZW) anomaly.

$$\sigma_{K^+\pi^0}/\sigma_{K^0\pi^+} \approx 80 {
m nb}/15 {
m nb}$$

There is no experimental data for kaons!

OKA: Current status

Event reconstructions from commisioning runs:

- Experimental setup commisioning is complete.
- Autumn 2010 start of data taking.

NA62 experiment

Experiment goal:

Measure branching of ultra-rare decay ${\cal K}^+ \to \pi^+ \nu \bar{\nu}.$

Technique:

Very high intesity beam.

- Beam intensity ~ 2.5 · 10⁹ per spill.
- Unseparated beam (K^+ content $\sim 5\%$)
- ▶ *p* = 75 GeV/c
- Setup is optimized for searches for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay.

NA62: Experimental setup

Experimental strategy:

- Hermeticity for γ in order to supress $K^+ \rightarrow \pi^+ \pi^0$.
- Efficient particle identification. Particulary μ rejection.
- Redundant momentum measurements.

Physical program

- Decays go via penguin and box diagrams (loop induced FCNC)
- Hadronic matrix elements are extracted from $K^+ \rightarrow e^+ \nu \pi^0$ decay
- Uncertainties are only from charm quark contributions
- Highly sensitive to New Physics.

Aim is to measure O(100) events with 10% background

- Extract V_{td} element with 10% precision.
- Check V_{CKM} unitarity.
- New Physics?

Lepton universality

- Sub-permille accuracy due to cancellation on hadronic uncertainties.
- Strong helicity supression of e± mode enhances sensiticity to New Physics.
- $K \to e\nu\gamma(IB)$ is included into R_K by definition.

Standard model prediction: $R_{\mathcal{K}} = \frac{\text{Br}(\mathcal{K}^{\pm} \rightarrow e \pm \nu(\gamma))}{\text{Br}(\mathcal{K}^{\pm} \rightarrow \mu \pm \nu(\gamma))} = (2.477 \pm 0.001) \cdot 10^{-5}$

NA62 plans to measure R_K with precision better that 0.5%. Data was recoded in 2007-2008.

OKA could achieve same level of precision.

Thank you

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで