Overview and Status of T2K experiment

Jun Kameda (Institute for Cosmic Ray Research, Univ. of Tokyo) for T2K collaboration

16th International Seminar on High Energy Physic

Quarks 2010 at Kolomna, Russia

Jun.6th-Jun.12th, 2010

Outline

- Introduction of T2K experiments
- Physics Goal
- Experimental setup & status
- Summary

T2K collaboration

Canada	Italy	Poland	Spain	U.S.A.
TRIUMF	INFN, U.Roma	A.Soltan, Warsaw	IFIC, Valencia	Boston U.
U.Alberta	INFN, U.Napoli	H.Niewodniczanski,	U.A.Barcelona	B.N.L.
U.B.Columbia	INFN, U.Pabova	Cracow	11	Colorad S.U.
U.Regina	INFN, U.Bari	T.U.Warsaw	Switzerland	Duke U.
U.Toronto		U.Silesia, Katowice	U.Bern	Louisian <mark>a S.U.</mark>
U.Victoria	Japan	U.Warsaw	U.Geneva	Stony Br <mark>rok U</mark>
York U.	Horoshima U.	U.Wroklaw	ETH Zurich	U.C.Irvin <mark>e</mark>
	ICRR Kamioka	Russia	10 8 2 dece	U.Colora <mark>do</mark>
France	ICRR RCCN	INR PORT OF THE OWNER	United Kingdom	U.Pittsburgh
CEA Saciay	KEK	T2K	Imperial C.London	U.Roche <mark>ster</mark>
IPIN Lyon	Kobe U.	S.KOFIaino Project	Queen Mary U.L.	U.Washi <mark>ngton</mark>
LLR E.POIY	Kyoto U.	N.U.Chonnam	Lancaster U.	
LPNHE Paris	Miyagi U. Edu	U.Dongshin	Liverpool U.	MAR /
Germany	Osaka City U.	U.Sejong	Oxford U.	Tir .
	U. Tokyo	N.U.Seoul	Sheffield U.	
U.Adulen		U.Sungkyunkwan	Warwick U.	
			STFC/RAL	

STFC/Daresbury

• 62 Institute from 12 Countries,, ~500 physicists.

T2K (<u>Tokai to Kamioka</u>) Long Baseline v oscillation experiment

First Long baseline v oscillation experiment using High intensity off-axis v beam

- High intensity neutrino beam from JPARC.
- Quasi monochromatic off-axis neutrino beam is used. (Energy is tuned to oscillation maximum energy at 295km).
- Super-Kamiokande as far detector, Newly made near neutrino detectors

Physics Goal: • Discovery of $v_{\mu} \rightarrow v_{e}$ oscillation • Precise measurement of v_{μ} disappearance

Milestones

- 2001 "The JHF-Kamioka neutrino project" was published.
- Experiment officially approved. Start construction.
- Mar.2009 Construction completed.
- Apr.2009 First neutrino beam
- Jan.2010 Started physics run. $v_{\mu} \rightarrow v_{e}$ search started!
- Feb.2010 First T2K neutrino event at Super-Kamiokande !

Physics goal of T2K:

• Measure finite θ_{13} by v_e appearance search:

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(1.27 \Delta m_{13}^{2} L/E\right)$$

• Precise measurement of $\theta^{}_{23}, \Delta m^2^{}_{23}$ by $\nu^{}_{\mu}$ disappearance

 $P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - \sin^2 2\theta_{23} \sin^2 \left(1.27 \Delta m_{23}^2 L/E \right)$

Principle of T2K experiment

- Compare Observed number of events and Ev spectrum in Super-K with expected values, and extract neutrino oscillation parameters.
- Expected values at SK are obtained from Near Detector Measurements by extrapolation using "Fart to near ratio", R(SK/ND).
 - Nv_e^{sk} (expected) = $P(v_{\mu} \rightarrow v_e) \times R(SK/ND) \times Nv_{\mu}^{ND}$ (obs.)
 - Nv_{μ}^{sk} (expected) = $P(v_{\mu} \rightarrow v_{\mu}) \times R(SK/ND) \times Nv_{\mu}^{ND}(obs.)$

Near Detector Measurement

Principle (cont'd)

- Far to Near flux ratio, *R(SK/ND)*, is estimated by "beam MC".
- A detailed MC simulation of T2K neutrino beam (beam MC) has been developed.
 - Inputs to beam MC for Tuning
 - Targeting condition: Measured values by proton beam monitors.
 - Horn focusing effect, geometrical acceptance.
 - π ,K kinematics: From CERN NA61 experiment.

Event selection is done by GPS timing (will be discussed after.)

Off-axis beam

- Neutrino Energy has angle dependence from beam axis.
- Pseudo-monochromatic neutrino beam with finite off-axis.

 Dominant interaction is Charged Current (CC) Quasi-elastic (Q.E.) scattering:

$$v_{\mu}(v_{e}) + n \rightarrow \mu(e) + p$$

 Reducing B.G.s from inelastic processes.

Physics Goal of T2K 1. First observation of $v_{\mu} \rightarrow v_{e}$ oscillation

Search for appearance of v_e by electron signal from CC Q.E. scattering of v_e :

 $v_e + n \rightarrow e^- + p$

Background events:

- Beam v_e induced events: $v_e + n \rightarrow e + p$
- NC π^0 production:

$$\nu + N \rightarrow \nu + N + \pi^0$$

 $\swarrow \gamma + \gamma$

Reconstructed v_e energy (a.u.) of v_e CCQE enriched sample (at Super-Kamiokande) 100MeV Assuming $\sin^2 2\theta_{13} = 0.1$ $\Delta m_{13}^2 = 2.4 \times 10^{-3} eV^2$ of events Signal / B.G ratio ~ 7 B.G. ± 1000 1500 2000 2500 3000 3500 4000 4500 5000 500 Reconstructed Ev (MeV) ND measurement of beam v_e flux, π^0 production rate will reduce systematic uncertainty of B.G. rate.

Sensitivity to θ_{13}

Physics Goal of T2K 2. Precise measurement of v_{μ} disappearance

Neutrino Oscillation induce a distortion of energy of muon neutrinos. CCQE enriched sample is used to reconstruct Ev assuming 2-body interaction:

Reconstructed v_{μ} energy of v_{μ} CCQE enriched sample (at Super-Kamiokande)

Reconst. Neutrino Energy [GeV] Dip of the neutrino oscillation at $E_v \approx 600$ MeV.

Sensitivity to $\theta_{23} \& \Delta m_{23}$

Experimental setup: J-PARC Accelerator and Experimental Facility

Neutrino Beam line

Bird's eye photo in July. 2009

Beam direction / intensity stability using Muon Monitors

- Located downstream of beam dump.
- Monitoring muons from pion decay (π → ν + μ) with a threshold of Pµ> 5GeV/c.
- Monitoring spill-by-spill.
- Physics requirement: control beam direction < 1mrad.

On-Axis Near Detector (INGRID)

- Daily measurement of neutrino beam direction with <1mrad accuracy.
- 7modules in horizontal, 7 modules in vertical.
- A module is calorimeter of Scintillator tracking plane /Iron plane.

17

Y

Х

Off-Axis Detector

- Measure neutrino flux and cross section
- UA1 Magnet 0.2 T field
- Tracker Region: Fine Grained Detectors (FGDs) & TPCs
 - Particle Tracking (p, θ) & identification
- POD
 - Measure NC π^0 rate
- Includes a water target in POD and FGD2
 - Understand interactions on H₂0 target
- ECAL (Downtream Currently Installed)
 - Surrounds tracker and POD
 - Capture EM energy
 - Rest of ECAL is to be installed this summer
- SMRD
 - Muon ranging instrumentation in the magnet yoke

Off-Axis Detector

Far detector: Super-Kamiokande IV

- Water Cherenkov detector
- Deep underground (1000m, 2700 m.w.e), Kamioka-mine, Japan.
- Cylindrical shape,50kton water (22.5 kton fid.vol)
- Optically separated Inner Detector/ Outer Detector
- ID : 11129 20inch PMTs (~40% photo-coverage)
- OD: 1885 8inch PMTs
- SK-IV started Aug.2008 with new frontend electronics.

• 4π acceptance, very efficient π^0/e separation.

- High Particle ID (μ /e) power (~99% at 600MeV/c)
- Good energy reconstruction.
- Methods are established.

T2K data acquisition at Super-Kamiokande T2K events are acquired by GPS timing information of beam

- GPS timing information transferred to Super-K using network.
- All the PMT hits in +-500µsec from spill timing at SK are recorded as "T2K triggered" event.
- Low energy activity induced by neutrino interaction can be acquired. (ex. deexcitation γ 's from nuclei induced by NC elastic scattering)

First T2K beam v Event at Super-Kamiokande

Event display

3D view

2 Fully Contained (all visible particle inside ID) events are observed.(by end of March). Expected B.G. from atm.v~1.9x10⁻⁴

Timing distribution of Super-Kamiokande events

Delivered Proton number, Proton number per pulse

Date

T2K experiment has been stably running.

~ 2.4x10¹⁹ Protons are delivered by beginning of June 2010.

Summary

- T2K is the first LBL neutrino oscillation experiment with offaxis beam.
- Started $v_{\mu} \rightarrow v_{e}$ neutrino oscillation search from Jan. 2010 !
- Super-K observed first T2K beam event in Feb.2010.
 (2 of FC events are observed by end of March.)
- Stably running. Beam power ~50 kW now.
- After summer beam power is planned to increase over 100kW.
- First physics results expected in 2010.
- Sensitivity to sin²2θ₁₃ ~ 0.06 for 100kWx10⁷s (~2x10²⁰POT) data.
- Stay Tuned !

Supplements

Event classification

NHITAC : Number of OD PMT hits in a cluster PE300 : Total Q of ID PMT hits in a 300ns window

All sample

INGRID

 Module : Iron target (9 layers) + Tracking plane (11 layers) + Veto plane (3~4 layers)

Typical neutrino event

Tracking plane (24 ch x 2layer (X, Y)

- Scintillator
- WLS fiber
- MPPC (Multi Pixel Photon Counter)

Super-Kamiokande status

29

