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Introduction and Summary

A number of perspective physical applications of the e�ective models are connected
with multi-quark functions, which are the subject of present report. The basic
method of calculations is a formalism of multilocal (double, triple, etc.) sources

Dahmen H.D., Jona-Lasinio G.
Variational formulation of quantum �eld theory.
Nuovo Cim. A52:807�838, 1967,

Rochev V.E.
Many-Particle Relativistic Equations For Fermions.
Teor. Mat. Fiz. 51:22�33, 1982 ( Theor. Math. Phys. 51:330-337, 1982).

As an object of application of the method we choose Nambu - Jona-Lasinio (NJL)
model

Nambu Y. and Jona-Lasinio G.
Dynamical model of elementary particles based on an analogy with
superconductivity.
Phys. Rev. 122:345�358, 1961; 124:246�254, 1961.
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Introduction and Summary

This model is one of the most successful e�ective models of quantum
chromodynamics for the light hadrons.The NJL model is widely used also in various
aspects of the physics of light nuclei.
It is necessary to note, that this method has been successfully applied for the other
�eld-theoretic models and can be applied also for analogous calculations in other
similar e�ective models. The multi-quark functions arise in higher orders of the
mean-�eld expansions (MFE) for the NJL model. To formulate the MFE we have
used an iteration scheme of solution of the Schwinger-Dyson equation with the
fermion bilocal source, which has been developed in works

Rochev V.E.
A nonperturbative method of calculation of Green functions.
J. Phys. A30:3671�3680, 1997;

Rochev V.E. and Saponov P.A.
The four fermion interaction in D = 2,D = 3,D = 4: A Nonperturbative treatment.
Int. J. Mod. Phys. A13:3649�3666, 1998;

Rochev V.E.
On nonperturbative calculations in quantum electrodynamics.
J. Phys. A33:7379�7406, 2000.
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Introduction and Summary

The report is organized as follows.

In Section 2 we describe the method of construction of the MFE with the fermion
bilocal source for the NJL model with the SUV (2)× SUA(2)�symmetric four-quark
interaction and, for the sake of completeness, consider the well-known leading
approximation results of this model. Also in this section we investigate the
�rst-after-leading step of the iteration scheme, which gives us the equations for the
leading order two-particle Green function and NLO correction to the propagator of
quarks.
In Section 3 we describe the second step of the iteration scheme. As a result we
obtain the equations for four-quark Green function and for the three-quark Green
function. We also obtain in this step the equations for NLO two-quark function and
NNLO correction to quark propagator. We discuss the structure of second step
equations and obtain the solutions of four-quark and three-quark equations.
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Introduction and Summary

In Section 4 in base of work

Rochev V.E.
Meson contributions in the Nambu-Jona-Lasinio model.
Teor. Mat. Fiz.159:81-95,2009 (Theor. Math. Phys.159: 488-498, 2009),

a problem of calculations of corrections to mean-�eld approximation in NJL model is
discussed, where, for solve this problem author (V.E. Rochev) used the Legendre
transformation method with respect to a bilocal source. This method e�ectively takes
into account symmetry limitations, which are originated due to chiral Ward identity.
The corrections to quark propagator and two-particle quark functions are de�ned by
proposed method.
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Introduction and Summary

In Section 5 we describe the third step of iteration scheme. As a result we obtain the
equations for six-quark Green function and for the �ve-quark Green function, and,
the NLO equations for four-quark and three-quark Green functions. We also obtain
in this step the equations for NNLO two-particle function and NNNLO correction to
quark propagator.

Jafarov R.G. and Rochev V.E.
On equations for the multi-quark bound states in Nambu-Jona-Lasinio model.
arXiv:hep-ph/0609183.

In Section 6 the modi�cation of the MFE for the NJL model in the formalism with
the multilocal diquark and triple-quark sources is brie�y discussed.
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Section 2.The mean-�eld expansion in the bilocal source formalism.
Leading and �rst step equations

As an example of the physically interesting model we consider the chiral-symmetric
NJL model. The model contains up and down quarks �elds ψ, each with nc colors.
The Lagrangian of the two-�avor NJL model may be written in the well-known form

L = ψ̄i ∂̂ψ +
g
2

[
(ψ̄ψ)2 + (ψ̄iγ5τ

aψ)2
]
. (1)

To construct the MFE we use an iteration scheme of the solution of
functional-di�erential Schwinger-Dyson equation (SDE)

G + i ∂̂
δG
δη

+ ig
{ δ

δη
tr
[
δG
δη

]
+ iγ5τ

a δ

δη
tr
[
iγ5τ

a δG
δη

]}
= η ?

δG
δη

(2)

for the generating functional G of Green functions.
The generating functional G can be represented as the functional integral with
bilocal fermion source η:

G(η) =

∫
D(ψ, ψ̄) exp i

{∫
dxL−

∫
dxdyψ̄(y)η(y , x)ψ(x)

}
. (3)
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Section 2.

We shall solve Eq. (2) employing the method which proposed in work

Jafarov R.G. and Rochev V.E.
Central Eur. J. Phys. 2:367�381, 2004
arXiv: hep-ph/0311339;

Jafarov R.G. and Rochev V.E.
arXiv:hep-ph/0406333.

The solution of the equation of leading approximation,i.e., the functional-di�erential

SDE (2) with zero r.h.s., is the following functional G(0) = exp
{
Tr
(

S ? η
)}
, where S

is solution of the equation

1 + i ∂̂S + igS · tr [S(0)] = 0. (4)

The leading approximation generates the linear iteration scheme

G = G(0) + G(1) + · · ·+ G(n) + · · · ,
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Section 2.

consists in the step-by-step solutions of the equations

G(n) + i ∂̂
δG(n)

δη
+ ig

{ δ

δη
tr
[
δG(n)

δη

]
− γ5τ

a δ

δη
tr
[
γ5τ

a δG(n)

δη

]}
= η ?

δG(n−1)

δη
. (5)

Functional G(n) is G(n) = P(n)G(0), where P(n) is a polynomial of 2n -th degree on the
bilocal source η.
The unique connected Green function of the leading approximation S is the quark
propagator. A solution of Eq. (4) is S(p) = (m − p̂)−1, where m is the dynamical
quark mass, which is a solution of the gap equation of the NJL model in the chiral
limit.
The other connected Green's functions appear in the subsequent steps of the iterative
scheme.
The �rst iteration step contains the leading-order equation for the two-particle S2

quark function

S2 = −S · S + K ? S2 (6)

(Here K = ig
{

(S · S) ? tr [S2]− (Sγ5τ
aS) ? tr [γ5τ

aS2]
}
is the kernel of equation)
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Section 2.

and also the equation for the correction to the propagator S(1)

S(1) = [S(1)]0 + ig
{

(S ? S) · tr [S(1)(0)]
}
. (7)

(Here [S(1)]0 = ig{S ? [S2 − γ5τ
aS2γ5τ

a]} is inhomogeneous term of equation).

As a result of standard operation we obtain for the sigma-meson and pion amplitudes:

Aσ(p) =
1

4nc(4m2 − p2)I0(p)
,

Aπ(p) =
1

4ncp2I0(p)
,

I0(p) � single-loop integral.

Eq. (7) for NLO quark propagator S(1) gives us a possibility for de�ne the meson
corrections to quark mass. Introducing the NLO mass operator
Σ(1) = S−1 ? S(1) ? S−1, we obtain from Eq. (7):

Σ(1)(x) = S(x)Aσ(x) + 3S(−x)Aπ(x) + igδ(x)[S(1)(0)]. (8)
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Section 3. Second step equations and solutions

The second step contains the equations for the four (S4)- and three-particle S3

functions and also the equations for the two-particle function S(1)
2 and the

second-order corrections to the quark propagator S(2). For these four functions we
have a system of four integral equations. All these equations (and all equations of
following steps of the iteration scheme) possess the structure, which is similar to the
structure of Eq. (6):

Sn = S0
n + ig

{
(S · S) ? tr [Sn]− (Sγ5τ

a · S) ? tr [γ5τ
aSn]

}
,

and di�er from each other by the structure of inhomogeneous terms S0
n . The

inhomogeneous term in the equation for four-quark function S4 is

S0
4 = 3 ·

{
−S · S · S2

}
, (9)

where S2 is de�ned in preceding section by Eq. (6). The inhomogeneous term in the
equation for three-quark function S3

S0
3 = 2 ·

{
−S · S · S(1)

}
+ 2 ·

[
−S · S2

]
+ ig · S ?

{
tr [S4]− γ5τ tr [γ5τS4]

}
.
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Section 3.

Due to such structure of the system its solution should be started with the equation
for four-quark function S4, then should be solved the equation for three-quark
function S3, etc.
The equation for four-quark Green function S4 with inhomogeneous term (9) has
following simple solution

S4 = 3 ·
{

S2 · S2

}
.

This solution is disconnected, and it means the absence of physical e�ects due to
four-particle functions in the given order of MFE. Particularly, the pion-pion
scattering can not describe in the given order and will be appear only in next step of
iteration scheme (third order of MFE), in principle. The solution can be obtained
likewise to solving of Eq. (6) for the two-quark function. The connected part of the
amputated three-quark function possesses two-meson and three-meson contributions.
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Section 4.The corrections to the two-quark function and the Legendre
transformation in mean-�eld expansion

This iterative scheme is attractive because the equations of any order have a simple
analytic structure. Solving the equations of any order is actually an algebraic
problem reminiscent of constructing a perturbation series.
The reverse side of this simplicity is problems arising related to including symmetry
and its physical consequences. The main problem of such kind arises in calculating
corrections to the two-particle function.
This Section based in work

Rochev V.E.
Teor. Mat. Fiz.159:81-95,2009 (Theor. Math. Phys.159: 488-498, 2009).

where, author use the method of the Legendre transformation with respect to a
bilocal source to determine corrections the two-quark function in the NJL model.
The two-quark function of the leading approximation in the NJL model contains two
single-pole terms corresponding to composite mesons. The presence of these mesons
in the spectrum of the NJL model is one of the main e�ects of this model. The scalar
meson (the sigma meson) is massive, while the pseudoscalar meson (the pion) is
massless in the chiral limit according to the general NGB theorem for systems with
spontaneously broken symmetry.
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Section 4.

But in the process of calculating the corrections to the two-quark function in the
framework of the above-mentioned method the terms containing second-order poles
in the quark-antiquark channel appear. It is very di�cult to coordinate these terms,
which are artifacts of the computational scheme, with the widely accepted
interpretation of results in terms of particles. Another problem arises in attempting
to interpret them as the �rst terms of some expansions: the pion acquires mass in the
chiral limit, which contradicts the NGB theorem.A way out of this dilemma is to
modify the calculation method in such a manner that the pion masslessness will be
preserved in the chiral limit in the theory with higher-order corrections taken into
account.
The method for such a modi�cation is to pass from the generating functional G to
the generating functional of the Legendre transformation with respect to the bilocal
source η.
Such a passage in terms of perturbation theory diagrams means that only those
diagrams that are two-quark irreducible are taken into account. The other diagrams,
just as in the usual perturbation theory, are e�ectively taken into account by the
functional combinatorics of the Legendre transformation.
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Section 4.

Generating functional of the Legendre transformation depending on the functional
variable S is:

W [S] = Z [η[S]] + iTr [S ? η[S]],

S(η) = i δZ [η]
δη

, 1
i
δW
δS = η.

In view of these relations, the SDE for the generating functional of the Legendre
transformation becomes

1
i
δW
δS

= S−1 + i ∂̂ + ig{tr [S] + iγ5τ
atr [iγ5τ

aS]}+ ig
{

S2 ? S−1 + iγ5τ
aS2 ? iγ5τ

aS−1
}
,

where S2 = i δ2Z
δηδη

= δS
δη

is two-quark function.
The two-quark function, as a functional of S, is de�ned by the relation

S2 ?
δη

δS
= S2 ?

1
i
δ2W
δSδS

= 1. (10)

This equations in essentially the equation for two-particle function (Bethe-Salpeter
equation(BSE)) in the formalism of the Legendre transformation with respect to the
bilocal source η.
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Section 4.

The kernel K of the BSE is the connected part of the second derivative of the
generating functional of the Legendre transformation and is de�ned by the relation
δη
δS = −S−1 · S−1 + K . Two-quark amplitude is

F c
2 = −K + S ? F c

2 ? S ? K . (11)

In terms of the generating functional of the Legendre transformation, chiral Ward
identity has the form

τ aγ5i ∂̂ = tr
[
δη

δS
? Sγ5τ

a + τ aγ5S ?
δη

δS

]
(12)

Easily determine that chiral Ward identity (12) holds in the leading approximation,
and this guarantees the existence of a massless pion in the given approximation.
With the switched-o� source, the solution of the equation for two-quark amplitude
has the form of solution for leading order two-quark equation

F c
0 = {1 · 1Aσ + iγ5τ

a · iγ5τ
aAπ},

In the leading order, there are no di�erences in the descriptions of physical e�ects
between the Legendre transformation formalism and the mean-�eld expansion
considered in Section 2.
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Subsection 4.1. Corrections to the leading approximation (meson e�ects)

The equation for the generating functional of the Legendre transformation with the
corrections included has the form

η = S−1 + i ∂̂ + ig{tr [S] + iγ5τ
atr [iγ5τ

aS] +
1
i
δW1

δS
,

where
1
i
δW1

δS
= S ? F c

0 . (13)

In Eq. (13) F c
0 is the functional of S, whose derivatives can be calculated using

relation (10). The derivative of Eq. (13) with respect to the functional variable S
yields the correction to the kernel of the BSE for the two-particle function:

K1 = F c
0 + S ?

δF c
0

δS
(14)

Di�erentiating relation (11) leads to the equation for the three-particle function
δF c

0 /δS

δF c
0

δS
=

= −
{

Aσ ·F c
0 ?S + Aσ ·S ?F c

0 + (iγ5τ
a)

[
Aπ ·F c

0 ?S(iγ5τ
a) + Aπ · (iγ5τ

a)S ?F c
0

]}
(15)

Formula (15) together with (14) yields the correction to the kernel of the BSE for the
two-particle function.
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Section 4.

As can be seen, this correction consists of the one-meson (the �rst term in (14))and
two-meson contributions of three-particle function (15).
The main problem in calculating the corrections to the two-particle amplitude is the
requirement that these corrections correspond to the NGB theorem. The chiral Ward
identity holds in the determinations of these corrections by the Legendre
transformation method, which ensures the validity of the NGB theorem in this
approach.
Verifying the chiral Ward identity (12) for the kernel of the BSE including
corrections (14) and ((15) is a less trivial procedure than similarly verifying the
leading approximation, nevertheless the result is positive for this case too. This result
shows that the approximation under consideration is physically acceptable, i.e. it is a
symmetry-preserving approximation for calculating the corrections to the
two-particle function.

Vladimir E. Rochev and Rauf G. Jafarov () 10 èþíÿ 2010 ã. 18 / 26



Section 5. Structure of third step of iteration

As we have showed above the equation for the four-quark function S4 has a simple
exact solution which is the product of �rst-order two-quark functions (see Eq. (12)).
As it seen from this solution, the pion-pion scattering in NJL model is suppressed,
i.e. in the second order of MFE this scattering is absent. This process arises in the
third order of our iterative scheme, i.e. in NLO four-quark function S(1)

4 .
The third-step generating functional is

G(3) [η] =

{
1
6!
Tr
(

S6 ∗ η6
)

+
1
5!
Tr
(

S5 ∗ η5
)

+
1
4!
Tr
(

S(1)
4 ∗ η

4
)

+

1
3!
Tr
(

S(1)
3 ∗ η

3
)

+
1
2
Tr
(

S(2)
2 ∗ η

2
)

+ Tr
(

S(3) ∗ η
)}

G(0).

After standard operations we obtain the equations for six-quark function S6 and for
�ve-quark function S5. Inhomogeneous terms are following:

S0
6 = 5 ·

{
−S · S · S4

}
(16)
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Section 5.

and

S0
5 = 4 ·

{
−S · S · S3·

}
+ 4 ·

[
−S · S4

]
+ ig

{[
S ? S6

]
−
[
Sγ5τ

a ? S6γ5τ
a
]}
, (17)

accordingly. The equations for six-quark function and for the �ve-quark function with
inhomogeneous term (16) and (17) in our iteration scheme are new.
The third step of iterative scheme gives us the equation for NLO four-quark function
(S(1)

4 ). As we note above the structure of this equation have are the form (11) with
following inhomogeneous term

(S(1)
4 )0 = 3 ·

{
−S ·S ·S(1)

2

}
+ 3 ·

[
−S ·S3

]
+ ig

{[
S ?S5

]
−
[
Sγ5τ

a ?S5γ5τ
a
]}
. (18)

The equation for NLO four-quark function S(1)
4 gives us possibility to describe the

pion-pion scattering in quark �elds context. The inhomogeneous term (18) of

equations for four-quark NLO function S(1)
4 contains �ve-quark function S5,

three-quark function S3 and NLO two-quark function S(1)
2 . The inhomogeneous term

(17) for �ve-quark equation include the six-quark function S6, four-quark function S4

and three-quark function S3.

Vladimir E. Rochev and Rauf G. Jafarov () 10 èþíÿ 2010 ã. 20 / 26



Section 5.

Before the investigation of NLO four-quark function S(1)
4 it is necessary to �nd the

solution of equation for six-quark function S6, because the inhomogeneous part (17)
includes function S6. Also it is necessary to �nd a solution of equation for NLO
two-quark function S(1)

2 (see Section 4).
The solution of six-quark equation is the sum of products of two-quark functions S2

and four-quark functions S4:

S6 = 5 ·
{

S2 · S4

}
In this step we obtain also the equations for NLO three-quark function S(1)

3 , NNLO

two-quark function S(2)
2 and the equation for NNNLO correction to the quark

propagator S(3), which matter the forms (16), at n = 3, n = 2, n = 1, accordingly.

Vladimir E. Rochev and Rauf G. Jafarov () 10 èþíÿ 2010 ã. 21 / 26



Section 6. The generalization of the method for other types of
multi-quark sources

In this last Section we consider the generalization of MFE of Section 2, which
includes other types of multi-quark sources except of bilocal source η. Such
generalization can be useful for the description of baryons in the framework of MFE.
Firstly, consider the formalism with diquark sources. For this purpose, we add two
diquark-source terms ξ and ξ̄ in the exponent of Eq. (3) for generating functional G:

G(η, ξ, ξ̄) =

∫
D(ψ, ψ̄) exp i

{∫
dxL−

∫
dxdyψ̄(y)η(y , x)ψ(x)+

+
∫

dx1dx2ψ̄(x1)ψ̄(x2)ξ(x1, x2) +
∫

dx1dx2ξ̄(x1, x2)ψ(x1)ψ(x2)
}
.

With these sources SDE (2) is modi�ed as follows:

G + i ∂̂
δG
δη

+ ig
{ δ

δη
tr
[
δG
δη

]
− γ5τ

a δ

δη
tr
[
γ5τ

a δG
δη

]}
=

= η ?
δG
δη

+ 2 · δG
δξ

? ξ. (19)
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Section 6.

We have, apart from SDE (19), the additional SDE, which generates by new sources:

i ∂̂
δG
δξ̄

+ ig
{ δ

δξ̄
tr
[
δG
δη

]
− γ5τ

a δ

δξ̄
tr
[
γ5τ

a δG
δη

]}
=

= η ?
δG
δξ̄
− 2 · ξ̄ ? δG

δη
. (20)

It should be noted, that the presence of the new diquark source leads to the
connection condition for derivatives of generating functional:

δ2G
δξ̄(x2, x1)δη(y , x)

= − δ2G
δξ̄(x1, x)δη(y , x2)

. (21)

Due to this connection condition SDE (20) can be rewritten in the alternative forms.
These alternative forms, being fully equivalent from the point of view of an exact
solution of SDE's, can lead to di�erent approximations in the MFE. The choice of
the suitable forms for the construction of MFE in the case should be made with an
assistance of corresponding physical reasons.
In the very similar manner one can introduce three-quark, or baryon sources. These
sources can be used for the direct description of nucleons and other baryons omitting
the intermediate diquark modelling.
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Section 6.

The generating functional with anti-commutative three-quark sources ζ and ζ̄ is

G(η, ζ, ζ̄) =

∫
D(ψ, ψ̄) exp i

{∫
dxL−

∫
dxdyψ̄(y)η(y , x)ψ(x)+

+
∫

dx1dx2dx3ψ̄(x1)ψ̄(x2)ψ̄(x3)ζ(x1, x2, x3) +
∫

dx1dx2dx3ζ̄(x1, x2, x3)ψ(x1)ψ(x2)ψ(x3)
}
.

SDE (2) with three-quark sources is modi�ed as follows:

G + i ∂̂
δG
δη

+ ig
{ δ

δη
tr
[
δG
δη

]
− γ5τ

a δ

δη
tr
[
γ5τ

a δG
δη

]}
= η ?

δG
δη
− 3 · δG

δξ
? ζ. (22)

As above, apart from SDE (22), the additional SDE exists, which generates by the
three-quark sources:

i ∂̂
δG
δζ̄

+ ig
{ δ

δζ̄
tr
[
δG
δη

]
− γ5τ

a δ

δζ̄
tr
[
γ5τ

a δG
δη

]}
= η ?

δG
δζ̄

+ 3i · δ
2G

δηδη
ζ̄. (23)

The connection condition for the derivatives of the generating functional, which is
very similar to the condition (21), also exists in the three-quark-source formalism,
and also leads to alternative forms of SDE (23).
The method of the construction of MFE for these system of equations is similar to
that of Section 2. An analysis of this construction is the object of future
investigations.
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Thanks for questions!
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