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Preliminaries:
“Category” of local gauge field theories:

Equations of motion (Lagrangian), gauge generators, etc. involve fi-
nite number of space time derivatives. In general, “controllable num-
ber” like e.g. in noncommutative theories, String Filed Theory or
Higher spin gauge theories.

Depending on a particular question (global symmetries, consistent
deformations, existence of Lagrangian, and, in fact, anomalies, coun-
terterms, quantization) one or another equivalent formulation can be
more convenient.

Which local gauge field theories are to be consider equivalent?

Theories related through elimination of generalized auxiliary fields

These comprise usual auxiliary fields and the algebraically pure
gauge fields (Stückelberg variables).

Global symmetries, consistent interactions, etc. are invariant under
elimination of generalized auxiliary fields. At the level of formal
path integral these can be integrated out/gauge fixed.



Examples:

• Lagrangian and Hamiltonian formulations.

• Gravity as a gauge theory of Lorentz, Poincare, . . . groups.

• Gravity with cosmological constant or conformal gravity as a
gauge theory of (A)dS or conformal group.

• Vasiliev unfolded (and related) formulations of higher spin gauge
fields

Often: new formulation manifests new geometrical structure



It turns out that new formulations can often be arrived at through
equivalent reductions of an appropriate parent theory:

Parent Field Theory

Original
formulation Reduction 1 Reduction 2
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For free systems: Barnich, M.G., Semikhatov, Tipunin (2004)

• red arrow – explicit and constructive

• Systematic way to construct Vasiliev unfolded formulations

• Essentially new formulation useful in e.g. generic mixed sym-
metry fields on flat or AdS spaces, some conformal fields, etc.



Linear parent theory

Linear gauge theories ∼= BRST first quantized systems

H = ⊕iHi - graded vector space. eA - basis
Φ(x) –H-valued “wave function”
Ω = ΩAB(x, ∂∂x ) – BRST operator: gh(Ω) = 1 and ΩΩ = 0.

Φ(x) = . . .+ Φ−1 + Φ0 + Φ1 + . . . gh(Φi) = −i .

Φ0 – physical fields, Φ1 – gauge parameters (ghosts),
Φ−1 – antifields, . . .

Equations of motion, gauge symmetries, . . . :

ΩΦ(0) = 0 , Φ(0) ∼ Φ(0) + Ωχ(1) , . . .



Extension analogous to that used in Fedosov quantization
symplectic manifolds: Fedosov (1994)
For constrained systems: Batalin, Fradkin, Fradkina (1990)
Unified description in BRST terms: Batalin, M.G., Lyakhovich (2001)
For cotangent bundles: Bordemann, Neumaier, Waldmann (1997)

new variables: yµ

new constraints: ∂
∂xµ −

∂
∂yµ = 0

new ghosts: θµ Barnich, M.G., Semikhatov, Tipunin (2004)

Φ(x)→ Φ(x, y, θ) , Ω→ Ωparent

Ωparent = d− σ + Ω̄ , Ω̄ = Ω(x+ y,
∂

∂y
)

d = θµ
∂

∂xµ
, σ = θµ

∂

∂yµ

Fields: ΨA −→ ΨA
(µ1...µk)[ν1...νl]

Being almost trivial in the case of non-gauge systems or flat space
it quite meaningful for gauge theories or general geometry. For in-
stance higher forms become dynamical.



BRST theory
Parent theory can be generalized for general gauge theories. But

one needs a bit more technology.

Batalin-Vilkovisky formalism:
Given equations Ta, gauge symmetries Riα, reducibility relations,....
the BRST differential:

s = δ + γ + . . . , s2 = 0 , gh(s) = 1

δ = Ta
∂

∂Pa
+ . . . , γ = cαRiα

∂

∂φi
+ . . . .

δ – (Koszule-Tate) restriction to the stationary surface
γ – implements gauge invariance condition

φi – fields, cα – ghosts, Pa – ghost momenta/antifields, . . .

gh(φi) = 0 , gh(cα) = 1 , gh(Pa) = −1 , . . .

BRST differential completely defines the theory.
Equations of motion, gauge symmetries can be read off from s:

sP|Ψ=0,gh(Ψ)6=0 = 0 , δεφ
i = (sφi)|Ψ=0,gh(Ψ)6=0,1, cα=εα , . . .



In the context of local gauge field theory:
Jet space: coordinates

ΨA,ΨA
;µ,Ψ

A
;µν , . . . (xµ can also be included)

Total derivative:

∂µ = ∂

∂xµ
+ ΨA

;µ
∂

∂ΨA
+ ΨA

;µν
∂

∂ΨA;ν
+ . . .

BRST differential is an evolutionary vector field:

[∂µ, s] = 0 , sΨA = sA[Ψ, x]

Local functionals:

Quotient space: f [Ψ] ∼ f [Ψ] + ∂µj
µ[Ψ]

More invariant way: Hn(d = dxµ∂µ, local forms)

sωn + dωn−1 = 0 , ωnk ∼ ωnk + dχn−1
k + sχnk−1

In the local field theory – local BRST cohomology encode physically
interesting quantities.



Generalized auxiliary fields and equivalent reductions

In the Lagrangian context (Dresse, Grégoire, Henneaux (1990)):
–“auxiliary fields for the master action”.

At the level of equations of motion: ϕα, va, wa

(swa)|wa=0 = 0 ⇔ va = V a[ϕ]

va, wa – generalized auxiliary fields.

Reduced system:

s̃φα = sφα|w=0,v=V [φ] , s̃2 = 0

Constraints:
wa = 0, va − V a[ϕ] = 0

Equivalence = Elimination of generalized auxiliary fields

(Local) BRST cohomology are invariant. E.g. observables, global
symmetries, consistent interactions, anomalies, etc. are isomorphic.
In addition, possible Lagrangians are also the isomorphic.



Parent theory at the nonlinear level
How to pass from the first-quantized to the field theory description?
(replace BRST operator Ω with BRST differential s)

For a BRST first quantized system. Consider Φ(x) as a “string field”
Φ(x) = ΨA(x)eA and define

sΦ = ΩΦ

Here: s acts on ΨA while Ω acts on x and eA.
This is easy to do for d and σ entering Ωparent. Combine fields into:

Ψ̃A(x|y, θ) =
∑
k,l

1
k!l!

ΨA
(λ1...λk)[ν1...νl]

(x)θν1 . . . θνlyλ1 . . . yλk

(variables y, θ are now just “bookkeeping device” for indexes!!!)

(d)F Ψ̃ = dΨ̃ , (σ)F Ψ̃ = σΨ̃

For instance:

(σ)F ΨA
(0)[µ] = ΨA

(µ)[0] , (d)F ΨA
(0)[µ] = ∂µΨA

(0)[0] ,



On the space of fields ΨA
(λ1...λk)[ν1...νl]

define s̄ by

s̄ΨA
(0)[0] = sΨA|∂(µ)ΨA→ΨA(µ)[0]

,

[s̄, ∂

∂xµ
+
(

∂

∂yµ

)F

] = 0 , [s̄,
(

∂

∂θµ

)F

] = 0

Finally:

sparent = (d)F − (σ)F + s̄ , Fields: ΨA
(µ)[ν](x)

In more conventional form:

sparent =
∫
dnxdnθ

[
dΨa − θµ

(
( ∂

∂yµ
)FΨ

)a
+ sa(Ψ)

]
δ

δΨa(x, θ)

Ψa = {ΨA
(µ)} – target space coordinates

– generalization of AKSZ sigma model



AKSZ sigma model

Alexandrov, Kontsevich, Schwartz, Zaboronsky(1994)

Consider two Q-manifolds: A.Schwartz (1992)
Target space: M, degree ghM, nilpotent vector field Q

Q2 = 0 , ghM(Q) = 1

Space-time: X, degree ghX, d, ghX(d) = 1, d2 = 0,
d-invariant volume form dµ

Typical example: X = ΠTX0, coordinates xµ, θµ, n = dim X0

d = θµ
∂

∂xµ
, dµ = dx0 . . . dxn−1dθn−1 . . . dθ0 ≡ dnxdnθ



Supermanifold of maps (M-valued fields on X): BRST differential:

s =
∫
dnxdnθ [dΨa(x, θ) +Qa(Ψ(x, θ))] δ

δΨa(x, θ)

total ghost degree: gh(A) = ghM(A) + ghX(A)

Because s2 = 0, gh(s) = 1 =⇒
local gauge field theory

In terms of jet space:

s = (d)F + Q̄ (cf. sparent = (d)F − (σ)F + s̄ )

– Nonlinear parent theory is a generalization of the AKSZ sigma
model with the target space being jet space associated to the starting
point system and Q-structure being the starting point BRST differen-
tial s.



Features:

• Parent theory is equivalent to the original theory through the
elimination of the generalized auxiliary fields. More precisely
all ΨA

(µ)[ν] are generalized auxiliary save for ΨA
(0)[0].

• Any collection of contractible pairs for s (i.e. wa, va such that
swa = va) are generalized auxiliary fields for the parent the-
ory. This gives lots of possibilities to construct equivalent re-
duced theories. For instance using the known results on (local)
BRST cohomology.

• If the starting point theory is diffeomorphism invariant and dif-
feomorphisms are in the generating set of gauge transforma-
tions (there is a ghost field ξµ and s = ξµ∂µ + . . .) then (σ)F

can be absorbed into s̄ by the following field redefinition:

ξµ(0)[ν] → ξµ(0)[ν] + δµν (originates from ξµ → ξµ + θµ)

In this case parent theory is precisely AKSZ sigma model



• For regular gauge theories s = δ + γ + . . . and cohomology
of Koszule-Tate differential δ do not involve antifields. Elimi-
nating contractible pairs for δ one gets rid off all the antifields.
In this case gh(ΨA) > 0 after the reduction. If in addition the
system is diffeomorphism invariant then

sparent = (d)F + γ̃ , γ̃ = (γ reduced to δ cohomology)

Equations of motion: Free Differential Algebra (FDA)

This explains the relation to the unfolded formalism
Vasiliev (1989). . . (2005). . .

Moreover, the above procedure can be seen as systematic way
to construct unfolded formulation.
There is also a close relationship to the FDA approach to SUGRA
by d’Auria, P. Fre (1982). . . (2008). . .
In pure math FDA were introduced and studied in Sullivan (1977).
Somewhat related recent approach “double field theory” by
Hull, Zwiebach (2009).

• Universality – because all the derivatives are independent fields
the parent theory is a kind of universal (hence the talk title...)



Examples

Gravity in the metric formulation

Fields: gab itself, ghost field ξa, antifields g∗ab and ξ∗a. The BRST
differential: s = δ + γ

δg∗ab = δ

δgab
L[g] , δξ∗c = g∗ab∂cg

ab + 2∂a(gabg∗bc)

and
γgab = Lξg

ab = ξc∂cg
ab − gcb∂cξa − gac∂cξb ,

γξc = 1

2
[ξ, ξ]c = ξa∂aξ

c ,

γg∗ab = −∂c(g∗abξc)− g∗ac∂bξc ,
γξ∗c = −∂a(ξ∗c ξ

a)− ξ∗c∂aξa

Eliminating the antifields and absorbing (σ)F one ends up with

γ̃gab = Lξg
ab = ξc∂cg

ab − gcb∂cξa − gac∂cξb ,

γ̃ξc = 1

2
[ξ, ξ]c = ξa∂aξ

c ,



The parent theory BRST differential reduces to:

sparent = (d)F + γ̃

Physical (vanishing ghost degree) fields:

gab(c) = gab(c) + θµ(. . .) + . . . , ξa(b) = ξa(b) + θµξaµ(b) + . . .

To make contact to the literature, let

ya, pb [ya, pb] = δab – canonically conjugated variables

Generating functions:

F = gab(c)papby
(c) , A = θµξaµ(b)pay

(b)

A – 1-form with values in the Lie algebra of vector fields
F – 0-form taking values in the respective module.
Equations of motion: Vasiliev (2005)

dA+ 1

2
[A,A] = 0 , dF + [A,F ] = 0 , algebraic constraints

Gravity as a gauge theory of diffemorphism algebra
Spin-2 sector of equations in Fedosov (1994). First-quantized inter-
pretation M.G. (2006). Linearized version Barnich, M.G., Semikhatov,
Tipunin (2004).



One can reduce further:
All variables are contractible pairs but
Barnich, Brandt, Henneaux (1995), Brandt (1997)

ξa, ξab , gab, Rabcd, DeR
a
bcd, . . . .

The differential:

γ̃ξa = ξbξAb , γ̃ξba = ξcaξ
b
c + 1

2
ξcξdRbcda , γ̃(R) = . . .

“Russian formula”. Known in YM context since R.Stora (1982)
Under usual assumptions one can put gab = ηab and eliminate sym-
metric part of ξab . The physical fields are then

ξa = ξa + θµeaµ + . . . , ξab = ξab + θµωaµb , curvatures + . . .

The equations of motion are

dea + ωbae
a = 0 , dωab + ωcaω

b
c + 1

2
ecedRbcda = 0 , . . .

The direct procedure to obtain the remaining equations was in Vasiliev
(2005)



Relativistic particle

Action
S = 1

2

∫
dτ(λ−1ηµν ẋ

µẋν + λm2) .

Gauge transformation

δxµ = ẋµε , δλ = λ̇ε+ λε̇ ,

Ghost variables ξ, antifields x∗µ, λ
∗, ξ∗. BRST differential

sxµ = ξẋµ , sλ = ξ̇λ+ ξλ̇ , sξ = 0 , . . .

For simplicity ηµν = const but all works in general.

Because of 1-d diffeomorphisms (σ)F can be absorbed by s:

sparent = (d)F + s , 1d AKSZ sigma model



All variables can be eliminated save for Brandt (97)

xµ , pµ = λ−1ẋµ − ξx∗µ , C = λξ , P = λ∗ − λ−1ξξ∗

The reduced differential:

s̃xµ = Cpµ , s̃pµ = 0 , s̃C = 0 , s̃P = 1

2
(m2 − p2)

Remarkably:

s̃ = {Ω, · } , Ω = −C 1

2
(p2 −m2)

{xµ, pν} = δµν , {C,P} = 1

The resulting 1d AKSZ model is known M.G., Damgaard (1999)

In general:
In 1d case parent theory contains the Hamiltonian BFV-BRST formu-
lation as a particular reduction!
Target space is an extended phase space of BFV-BRST formalism.

This suggests the interpretation of the target space in the multidi-
mensinal case as well...



Conclusions

• Because of the generality nearly any gauge theory can easily be
used as an example. Moreover, the computations needed for
reductions are identical to those for local BRST cohomlogy.
Especially in the covariant tensor calculus of F. Brandt. Using
these results one can explicitly find new forms of

– YM (and Einstein-YM theory). In this way one can e.g.
derive Vasiliev unfolded formulation of YM.

– 4d minimal SUGRA

– Bosonic string. In this case it is not surprising that the
resulting theory is a gauge theory of the Virasoro algebra

– Conformal gravity. BRST cohomology computations done
in Boulanger (2004)

– . . .

• Can be considered as a systematic way to construct unfolded
formulation of general gauge theories.



• Generating procedure for new formulations. In particular, those
that manifest one or another structure. In some sense parent
formulation and its reductions make the gauge and the BRST
cohomology structure manifest. For instance, gravity as a gauge
theory of diffeomorphism algebra or bosonic string as a gauge
theory for Virasoro algebra.

• As a tool to find a relevant geometry. For instance starting
from metric gravity one end up with the Cartan formulation
and finds relevant curvatures just by trying to compute BRST
cohomology.

• Instead of constructing parent formulation for a given theory
one can construct theory immediately in the parent or related
form. This approached has proved extremely useful in the con-
text of Higher Spin gauge theories already in its linear version.
For instance, concise formulations for general mixed symme-
try gauge fields on Minkowski or AdS space were constructed

Alkalaev, M.G, Tipunin (2008), Alkalaev, M.G (2009). (talk by
K. Alkalaev at this conference). Classification of global sym-
metries for bosonic singletons Bekaert, M.G. (2009).


