

QUARKS-2010 International Seminar June 6-12 2010 Kolomna, Russia

Hot Topics From BABAR Experiment (page 1)

What is the World Made of ?

QUARKS-2010 International Seminar June 6-12 2010 Kolomna, Russia

The Birth of the Universe (13.7 Billion Years Ago)

What Happened to the Antimatter

Why is the Universe Exclusively Made of Matter ?

- □ Andrei Sakharov (JETP, 5, No 1, 1967)
- **1.** Baryon violating interactions
- 2. Thermal non-equilibrium situation
- 3. CP Violation

Nobel Peace Prize in 1975 \rightarrow

- □ Testing the Sakharov's criteria:
- 1. No evidence that baryon number is violated
- 2. In thermal equilibrium particles are identical \rightarrow No asymmetry

CP violation is necessary to understand matter-antimatter imbalance

\Box In 2001 BABAR and Belle discovered direct CP violation in *B* mesons

QUARKS-2010 International Seminar June 6-12 2010 Kolomna, Russia

Hot Topics From BABAR Experiment (page 6)

B Meson Factories

□ BABAR at SLAC National Accelerator Laboratory, California, USA

□ Another B-factory machine is at KEKB (Tsukuba) in Japan

BABAR Detector

BABAR Collaboration

BABAR Collaboration

University of South Alabama & University of Mississippi: R. Godang

Mobile, Alabama

QUARKS-2010 International Seminar June 6-12 2010 Kolomna, Russia

Hot Topics From BABAR Experiment (page 11)

University of South Alabama

http://www.southalabama.edu

Established in 1964

QUARKS-2010 International Seminar June 6-12 2010 Kolomna, Russia

Hot Topics From BABAR Experiment (page 12)

Search for Higgs Bosons and New Physics

Search for SM Higgs at Tevatron

Search for SM Higgs (CP-Even Scalar)

NMSSM Higgs PRD 76, 051105, 2007: Dermisek, Gunion, McElrath

Prediction Higgs A^0 : PRD 81, 075003 (2010): Dermisek, Gunion

] At tree-level, $\mathcal{B}(a)$ apply equally to $\mathcal{B}(A^0)$

independent of $\cos \theta_A$ due to the absence of tree-level a

 $\square \ \mathcal{B}(a
ightarrow au^+ au^-)$ and $\mathcal{B}(a
ightarrow \mu^+ \mu^-)$ as a function of $tan \ eta$

 $tan \ \beta = h_u/h_d$ = ratio of the vacuum expectation value

BABAR Data: $\Upsilon(nS)$

Final BABAR Data

- BaBar data sets:
 - 122 x 10⁶ Υ(3S) decays
 - 99 x 10⁶ Υ(2S) decays
 - "offpeak" samples of 1.4fb⁻¹ and 2.4fb⁻¹ collected ~30 MeV below the Υ(2S) and Υ(3S)
 - 79 fb⁻¹ "continuum background" samples of Υ(4S) with similar detector conditions

QUARKS-2010 International Seminar June 6-12 2010 Kolomna, Russia

 $\Upsilon(2S,3S) o \gamma A^0$, $A^0 o \mu^+ \mu^-$ BABAR \Box Search for A^0 scalar boson in the radiative decays of $\Upsilon(2S)$ and $\Upsilon(3S)$ \Box If A^0 exists its decays depends on its mass Assuming no invisible (neutralino) decays ${\cal B}(A^0 o \mu^+ \mu^-) pprox$ sizable at low $m_{A^0} < 2 m_ au$ \Box Require 2 oppositely charged tracks and one γ at least one of which is identified as a muon $\Box E_{\gamma} > 200 \text{ MeV}$ (COM), while allowing

additional γ with energy lower than 200 MeV

 \Box Use kinematic fit of $\gamma \mu^+ \mu^-$ system,

including the beam energy and decay vertex constraints

Signal MC simulation

$\Upsilon(2S,3S) ightarrow \gamma A^0$, $A^0 ightarrow \mu^+\mu^-$, PRL 103, 081803 (2009) BABAR

Search for A^0 as a function of mass m_{A^0}

Scan range $0.212 < m_{A^0} < 9.3$ GeV (a) $\mathcal{B}(\Upsilon(2S)
ightarrow \gamma A^0) imes \mathcal{B}_{\mu\mu}$ (b) $\mathcal{B}(\Upsilon(3S) \to \gamma A^0) \times \mathcal{B}_{\mu\mu}$ (c) $f_{\Upsilon}^2 imes {\cal B}_{\mu\mu}$ $\mathcal{B}(\varUpsilon(nS)
ightarrow \gamma A^0)$ are related to the effective Yukawa coupling f_{Υ} of bound b quark to A^0

$$\frac{\mathcal{B}(\Upsilon(nS) \to \gamma A^{0})}{\mathcal{B}(\Upsilon(nS) \to \ell^{+} \ell^{-})} = \frac{f_{\Upsilon}^{2}}{2\pi\alpha} \left(1 - \frac{m_{A^{0}}^{2}}{m_{\Upsilon(nS)}^{2}}\right)$$

Shaded area is excluded from the search around the J/ψ and $\psi(2S)$ resonances

No signal observed at $m_{A^0} \sim 214$ MeV

Significant positive fluctuation of $\Upsilon(3S) \sim 2.8\sigma$ and $\Upsilon(2S) \sim 3.1\sigma$

 ${\cal B}(\eta_b o \mu^+ \mu^-) < 0.9\%$ at 90% C.L.

QUARKS-2010 International Seminar June 6-12 2010 Kolomna, Russia

$\Upsilon(1S) \rightarrow$ Invisible. PRL 103, 251801 (2009)

Summary

QUARKS-2010 International Seminar June 6-12 2010 Kolomna, Russia

Hot Topics From BABAR Experiment (page 30)