# LIGHT MESON SPECTROSCOPY AND REGGE TRAJECTORIES IN THE RELATIVISTIC QUARK MODEL

Rudolf Faustov

Dorodnicyn Computing Centre RAS, Moscow

(in collaboration with Dietmar Ebert and Vladimir Galkin)

Ebert, Faustov, Galkin — Eur. Phys. J.C 60, 273-278 (2009) Ebert, Faustov, Galkin — Phys. Rev. D 79, 114029 (2009)

# OUTLINE

- 1. Introduction
- 2. Relativistic quark model
- 3. Mass spectra of light quark-antiquark mesons
- 4. Regge trajectories of light mesons
- 5. Masses of light tetraquarks in the diquark-antidiquark picture
- 6. Masses of light scalar mesons

## **INTRODUCTION**

Vast amount of experimental data on light meson with masses up to 2500 MeV is available.
 The classification of these new data requires a better theoretical understanding of light meson mass spectra.

• Light exotic states (such as tetraquarks, glueballs, hybrids) predicted by quantum chromodynamics (QCD) are expected to have masses in this range.

• It is argued by Glozman et al. that the states of the same spin with different isospins and opposite parities are approximately degenerate in the interval 1700-2400 MeV. An intensive debate is going on now in the literature about whether the chiral symmetry is restored for highly excited states.

• Renewed interest to the Regge trajectories both in  $(M^2, J)$  and  $(M^2, n_r)$  planes (M is the mass, J is the spin and  $n_r$  is the radial quantum number of the meson state): their linearity, parallelism and equidistance.  $\implies$  Assignment of experimentally observed mesons to particular Regge trajectories.

### • Problem of scalar mesons:

- Abundance and peculiar properties of light scalars
- Experimental and theoretical evidence for the existence of  $f_0(600)(\sigma)$ ,  $K_0^*(800)(\kappa)$ ,  $f_0(980)$  and  $a_0(980)$  indicates that lightest scalars form a full SU(3) flavour nonet.
- Inversion of the mass ordering of light scalars, which cannot be naturally understood in the qq̄ picture.
   ⇒ Various alternative interpretations:
  - \* four quark states (tetraquarks) and in particular diquark-antidiquark bound states
  - $\star$  proximity of  $f_0/a_0$  to the  $K\bar{K}$  threshold led to the  $K\bar{K}$  molecular picture.



Comparison of a traditional ideally mixed  $q\bar{q}$  nonet of light mesons (like vector mesons) with the scalar diquark-antidiquark nonet and experimentally known light scalar mesons. Diquarks are considered in the colour antitriplet state.

### **RELATIVISTIC QUARK MODEL**

Quasipotential equation of Schrödinger type:

$$\left(\frac{b^2(M)}{2\mu_R} - \frac{\mathbf{p}^2}{2\mu_R}\right)\Psi_M(\mathbf{p}) = \int \frac{d^3q}{(2\pi)^3} V(\mathbf{p}, \mathbf{q}; M)\Psi_M(\mathbf{q})$$

p - relative momentum of quarks M - bound state mass ( $M = E_1 + E_2$ )  $\mu_R$  - relativistic reduced mass:

$$\mu_R = \frac{E_1 E_2}{E_1 + E_2} = \frac{M^4 - (m_1^2 - m_2^2)^2}{4M^3}$$

b(M) - on-mass-shell relative momentum in cms:

$$b^{2}(M) = \frac{[M^{2} - (m_{1} + m_{2})^{2}][M^{2} - (m_{1} - m_{2})^{2}]}{4M^{2}}$$

 $E_{1,2}$  - center of mass energies:

$$E_1 = \frac{M^2 - m_2^2 + m_1^2}{2M}, \quad E_2 = \frac{M^2 - m_1^2 + m_2^2}{2M}$$

- Parameters of the model fixed from heavy meson sector
- $q\bar{q}$  quasipotential



$$V(\mathbf{p}, \mathbf{q}; M) = \bar{u}_1(p)\bar{u}_2(-p) \left\{ \frac{4}{3} \alpha_S D_{\mu\nu}(\mathbf{k}) \gamma_1^{\mu} \gamma_2^{\nu} + V_{\text{conf}}^V(\mathbf{k}) \Gamma_1^{\mu} \Gamma_{2;\mu} + V_{\text{conf}}^S(\mathbf{k}) \right\} u_1(q) u_2(-q)$$

 $\mathbf{k} = \mathbf{p} - \mathbf{q}$  $D_{\mu\nu}(\mathbf{k})$  - (perturbative) gluon propagator  $\Gamma_{\mu}(\mathbf{k})$  - effective long-range vertex with Pauli term:

$$\Gamma_{\mu}(\mathbf{k}) = \gamma_{\mu} + \frac{i\kappa}{2m} \sigma_{\mu\nu} k^{\nu},$$

 $\kappa$  - anomalous chromomagnetic moment of quark,

$$u^{\lambda}(p) = \sqrt{\frac{\epsilon(p) + m}{2\epsilon(p)}} \left(\begin{array}{c} 1\\ \frac{\boldsymbol{\sigma}\mathbf{p}}{\epsilon(p) + m} \end{array}\right) \chi^{\lambda},$$

with  $\epsilon(p)=\sqrt{\mathbf{p}^2+m^2}.$ 

• Lorentz structure of 
$$V_{
m conf} = V_{
m conf}^V + V_{
m conf}^S$$

In nonrelativistic limit

$$\begin{aligned}
 V_{\text{conf}}^V &= (1-\varepsilon)(Ar+B) \\
 V_{\text{conf}}^S &= \varepsilon(Ar+B)
 \end{aligned}
 \end{aligned}
 Sum: (Ar+B)$$

 $\varepsilon$  - mixing parameter

$$V_{
m Coul}(r) = -rac{4}{3} rac{lpha_s}{r}$$

Parameters  $A, B, \kappa, \varepsilon$  and quark masses fixed from analysis of meson masses and radiative decays:  $\varepsilon = -1$  from heavy quarkonium radiative decays  $(J/\psi \rightarrow \eta_c + \gamma)$  and HQET  $\kappa = -1$  from fine splitting of heavy quarkonium  ${}^{3}P_{J}$  states and HQET  $(1 + \kappa) = 0 \implies$  vanishing long-range chromomagnetic interaction (flux tube model)

Freezing of  $\alpha_s$  for light quarks

$$\alpha_s(\mu) = \frac{4\pi}{\beta_0 \ln \frac{\mu^2 + M_0^2}{\Lambda^2}}, \quad \beta_0 = 11 - \frac{2}{3}n_f, \quad \mu = \frac{2m_1m_2}{m_1 + m_2},$$

$$M_0 = 2.24\sqrt{A} = 0.95 \; {\rm GeV}$$

Quasipotential parameters:

 $A=0.18~{
m GeV}^2$ ,  $B=-0.30~{
m GeV}$ ,  $\Lambda=0.413~{
m GeV}$  (from  $M_
ho$ )

#### Quark masses:

 $\begin{array}{ll} m_b = 4.88 \,\, {\rm GeV} & m_s = 0.50 \,\, {\rm GeV} \\ m_c = 1.55 \,\, {\rm GeV} & m_{u,d} = 0.33 \,\, {\rm GeV} \end{array}$ 

• Light tetraquarks in diquark-antidiquark picture

$$(qq')$$
-interaction:  $V_{qq'} = \frac{1}{2}V_{q\bar{q}'}$ 

$$V(\mathbf{p},\mathbf{q};M) = \bar{u}_1(p)\bar{u}_2(-p)\mathcal{V}(\mathbf{p},\mathbf{q};M)u_1(q)u_2(-q),$$

where

$$\mathcal{V}(\mathbf{p},\mathbf{q};M) = \frac{2}{3}\alpha_s D_{\mu\nu}(\mathbf{k})\gamma_1^{\mu}\gamma_2^{\nu} + \frac{1}{2}V_{\text{conf}}^V(\mathbf{k})\Gamma_1^{\mu}\Gamma_{2;\mu} + \frac{1}{2}V_{\text{conf}}^S(\mathbf{k})$$

 $(d_1 \bar{d}_2)$ -interaction:

$$d = (qq')$$

$$V(\mathbf{p}, \mathbf{q}; M) = \frac{\langle d_1(P) | J_\mu | d_1(Q) \rangle}{2\sqrt{E_{d_1} E_{d_1}}} \frac{4}{3} \alpha_s D^{\mu\nu}(\mathbf{k}) \frac{\langle d_2(P') | J_\nu | d_2(Q') \rangle}{2\sqrt{E_{d_2} E_{d_2}}} + \psi_{d_1}^*(P) \psi_{d_2}^*(P') \left[ J_{d_1;\mu} J_{d_2}^{\mu} V_{\text{conf}}^V(\mathbf{k}) + V_{\text{conf}}^S(\mathbf{k}) \right] \psi_{d_1}(Q) \psi_{d_2}(Q'),$$



 $J_{d,\mu}$  – effective long-range vector vertex of diquark:

$$J_{d;\mu} = \begin{cases} \frac{(P+Q)_{\mu}}{2\sqrt{E_d(p)E_d(q)}} & \text{for scalar diquark} \\ -\frac{(P+Q)_{\mu}}{2\sqrt{E_d(p)E_d(q)}} + \frac{i\mu_d}{2M_d}\Sigma^{\nu}_{\mu}k_{\nu} & \text{for axial vector} \\ \text{diquark } (\mu_{\rm d}=0) \end{cases}$$

 $\mu_d$  - total chromomagnetic moment of axial vector diquark diquark spin matrix:  $(\Sigma_{\rho\sigma})^{\nu}_{\mu} = -i(g_{\mu\rho}\delta^{\nu}_{\sigma} - g_{\mu\sigma}\delta^{\nu}_{\rho})$  $\mathbf{S}_d$  - axial vector diquark spin:  $(S_{d;k})_{il} = -i\varepsilon_{kil}$ 

 $\psi_d(P)$  – diquark wave function:

$$\psi_d(p) = \left\{ egin{array}{cc} 1 & ext{for} & \ arepsilon_d(p) & \ arepsilon_d(p) & ext{for} & \ arepsilon_d(p) & \$$

for scalar diquark for axial vector diquark

 $\varepsilon_d(p)$  – polarization vector of axial vector diquark

 $\langle d(P)|J_{\mu}|d(Q)\rangle$  – vertex of diquark-gluon interaction:

$$\langle d(P)|J_{\mu}(0)|d(Q)\rangle = \int \frac{d^3p \, d^3q}{(2\pi)^6} \bar{\Psi}_P^d(\mathbf{p})\Gamma_{\mu}(\mathbf{p},\mathbf{q})\Psi_Q^d(\mathbf{q}) \Rightarrow F(k^2)$$

 $\Gamma_{\mu}$  – two-particle vertex function of the diquark-gluon interaction

#### **MASSES OF LIGHT QUARK-ANTIQUARK MESONS**

The quasipotential of  $q\bar{q}$  interaction is extremely nonlocal in configuration space for arbitrary quark masses. To make it local

- $\star$  heavy quarks: nonrelativistic v/c or heavy quark  $1/m_Q$  expansion
- ★ light quarks: highly relativistic, substitution

$$\epsilon_q(p) \equiv \sqrt{m_q^2 + \mathbf{p}^2} \to E_q = \frac{M^2 - m_{q'}^2 + m_q^2}{2M}$$

 $q\bar{q}$  potential

$$V_{q\bar{q}}(r) = V_{\rm SI}(r) + V_{\rm SD}(r)$$

spin-dependent potential

$$V_{\rm SD}(r) = a_1 \, \mathbf{LS}_1 + a_2 \, \mathbf{LS}_2 + b \left[ -\mathbf{S}_1 \mathbf{S}_2 + \frac{3}{r^2} (\mathbf{S}_1 \mathbf{r}) (\mathbf{S}_2 \mathbf{r}) \right] + c \, \mathbf{S}_1 \mathbf{S}_2 + d \, (\mathbf{LS}_1) (\mathbf{LS}_2)$$

where e.g.

$$c = \frac{2}{3E_1E_2} \left[ \Delta \bar{V}_{\text{Coul}}(r) + \left( \frac{E_1 - m_1}{2m_1} - (1+\kappa) \frac{E_1 + m_1}{2m_1} \right) \times \left( \frac{E_2 - m_2}{2m_2} - (1+\kappa) \frac{E_2 + m_2}{2m_2} \right) \Delta V_{\text{conf}}^V(r) \right]$$

spin-independent potential

$$\begin{split} V_{\rm SI}(r) &= V_{\rm Coul}(r) + V_{\rm conf}(r) + \frac{(E_1^2 - m_1^2 + E_2^2 - m_2^2)^2}{4(E_1 + m_1)(E_2 + m_2)} \Biggl\{ \frac{1}{E_1 E_2} V_{\rm Coul}(r) \\ &+ \frac{1}{m_1 m_2} \Biggl( 1 + (1 + \kappa) \Biggl[ (1 + \kappa) \frac{(E_1 + m_1)(E_2 + m_2)}{E_1 E_2} \\ &- \Biggl( \frac{E_1 + m_1}{E_1} + \frac{E_1 + m_2}{E_2} \Biggr) \Biggr] \Biggr) V_{\rm conf}^V(r) + \frac{1}{m_1 m_2} V_{\rm conf}^S(r) \Biggr\} \\ &+ \frac{1}{4} \Biggl( \frac{1}{E_1(E_1 + m_1)} \Delta \tilde{V}_{\rm Coul}^{(1)}(r) + \frac{1}{E_2(E_2 + m_2)} \Delta \tilde{V}_{\rm Coul}^{(2)}(r) \Biggr) \\ &- \frac{1}{4} \Biggl[ \frac{1}{m_1(E_1 + m_1)} + \frac{1}{m_2(E_2 + m_2)} - (1 + \kappa) \Biggl( \frac{1}{E_1 m_1} + \frac{1}{E_2 m_2} \Biggr) \Biggr] \Delta V_{\rm conf}^V(r) \\ &+ \frac{(E_1^2 - m_1^2 + E_2^2 - m_2^2)}{8m_1 m_2(E_1 + m_1)(E_2 + m_2)} \Delta V_{\rm conf}^S(r) + \frac{1}{E_1 E_2} \frac{L^2}{2r} \tilde{V}_{\rm Coul}'(r), \end{split}$$

|               |          | Theory |         | Experime   | nt         |            | Theory   | Exp       | periment     |
|---------------|----------|--------|---------|------------|------------|------------|----------|-----------|--------------|
| $n^{2S+1}L_J$ | $J^{PC}$ | qar q  | I = 1   | mass       | I = 0      | mass       | $sar{s}$ | I = 0     | mass         |
| $1^{1}S_{0}$  | $0^{-+}$ | 154    | $\pi$   | 139.57     |            |            | 743      |           |              |
| $1^3S_1$      | $1^{}$   | 776    | ho      | 775.49(34) | $\omega$   | 782.65(12) | 1038     | arphi     | 1019.455(20) |
| $1^{3}P_{0}$  | $0^{++}$ | 1176   | $a_0$   | 1474(19)   | $f_0$      | 1200-1500  | 1420     | $f_0$     | 1505(6)      |
| $1^{3}P_{1}$  | $1^{++}$ | 1254   | $a_1$   | 1230(40)   | $f_1$      | 1281.8(6)  | 1464     | $f_1$     | 1426.4(9)    |
| $1^3P_2$      | $2^{++}$ | 1317   | $a_2$   | 1318.3(6)  | $f_2$      | 1275.1(12) | 1529     | $f_2'$    | 1525(5)      |
| $1^{1}P_{1}$  | $1^{+-}$ | 1258   | $b_1$   | 1229.5(32) | $h_1$      | 1170(20)   | 1485     | $h_1$     | 1386(19)     |
| $2^1S_0$      | $0^{-+}$ | 1292   | $\pi$   | 1300(100)  | $\eta$     | 1294(4)    | 1536     | $\eta$    | 1476(4)      |
| $2^3S_1$      | $1^{}$   | 1486   | ho      | 1465(25)   | $\omega$   | 1400-1450  | 1698     | arphi     | 1680(20)     |
| $1^3D_1$      | $1^{}$   | 1557   | ho      | 1570(70)   | $\omega$   | 1670(30)   | 1845     |           |              |
| $1^3D_2$      | $2^{}$   | 1661   |         |            |            |            | 1908     |           |              |
| $1^3D_3$      | $3^{}$   | 1714   | $ ho_3$ | 1688.8(21) | $\omega_3$ | 1667(4)    | 1950     | $arphi_3$ | 1854(7)      |
| $1^1D_2$      | $2^{-+}$ | 1643   | $\pi_2$ | 1672.4(32) | $\eta_2$   | 1617(5)    | 1909     | $\eta_2$  | 1842(8)      |
| $2^3P_0$      | $0^{++}$ | 1679   |         |            | $f_0$      | 1724(7)    | 1969     |           |              |
| $2^3P_1$      | $1^{++}$ | 1742   | $a_1$   | 1647(22)   |            |            | 2016     | $f_1$     | 1971(15)     |
| $2^3P_2$      | $2^{++}$ | 1779   | $a_2$   | 1732(16)   | $f_2$      | 1755(10)   | 2030     | $f_2$     | 2010(70)     |
| $2^1P_1$      | $1^{+-}$ | 1721   |         |            |            |            | 2024     |           |              |
| $3^1S_0$      | $0^{-+}$ | 1788   | $\pi$   | 1816(14)   | $\eta$     | 1756(9)    | 2085     | $\eta$    | 2103(50)     |
| $3^3S_1$      | $1^{}$   | 1921   | ho      | 1909(31)   | $\omega$   | 1960(25)   | 2119     | arphi     | 2175(15)     |
| $1^3F_2$      | $2^{++}$ | 1797   |         |            | $f_2$      | 1815(12)   | 2143     | $f_2$     | 2156(11)     |
| $1^{3}F_{3}$  | $3^{++}$ | 1910   | $a_3$   | 1874(105)  |            |            | 2215     | $f_3$     | 2334(25)     |
| $1^3F_4$      | $4^{++}$ | 2018   | $a_4$   | 2001(10)   | $f_4$      | 2018(11)   | 2286     |           |              |

Table 1: Masses of excited light (q = u, d) unflavored mesons (in MeV).

Table 1: (continued)

|               |          | Theory |         | Experime  | nt         |          | Theory   | Expe     | eriment  |
|---------------|----------|--------|---------|-----------|------------|----------|----------|----------|----------|
| $n^{2S+1}L_J$ | $J^{PC}$ | qar q  | I = 1   | mass      | I = 0      | mass     | $sar{s}$ | I = 0    | mass     |
| $1^{1}F_{3}$  | $3^{+-}$ | 1884   |         |           |            |          | 2209     | $h_3$    | 2275(25) |
| $2^3D_1$      | $1^{}$   | 1895   | ho      | 1909(31)  |            |          | 2258     | $\omega$ | 2290(20) |
| $2^3D_2$      | $2^{}$   | 1983   | $ ho_2$ | 1940(40)  | $\omega_2$ | 1975(20) | 2323     |          |          |
| $2^3D_3$      | 3        | 2066   |         |           |            |          | 2338     |          |          |
| $2^1D_2$      | $2^{-+}$ | 1960   | $\pi_2$ | 1974(84)  | $\eta_2$   | 2030(20) | 2321     |          |          |
| $3^3P_0$      | $0^{++}$ | 1993   | $a_0$   | 2025(30)  | $f_0$      | 1992(16) | 2364     | $f_0$    | 2314(25) |
| $3^{3}P_{1}$  | $1^{++}$ | 2039   | $a_1$   | 2096(123) |            |          | 2403     |          |          |
| $3^3P_2$      | $2^{++}$ | 2048   | $a_2$   | 2050(42)  | $f_2$      | 2001(10) | 2412     | $f_2$    | 2339(60) |
| $3^{1}P_{1}$  | $1^{+-}$ | 2007   | $b_1$   | 1960(35)  | $h_1$      | 1965(45) | 2398     |          |          |
| $4^1S_0$      | $0^{-+}$ | 2073   | $\pi$   | 2070(35)  | $\eta$     | 2010(50) | 2439     |          |          |
| $4^{3}S_{1}$  | $1^{}$   | 2195   | ho      | 2265(40)  | $\omega$   | 2205(30) | 2472     |          |          |
| $1^3G_3$      | 3        | 2002   | $ ho_3$ | 1982(14)  | $\omega_3$ | 1945(20) | 2403     |          |          |
| $1^3G_4$      | $4^{}$   | 2122   | $ ho_4$ | 2230(25)  | $\omega_4$ | 2250(30) | 2481     |          |          |
| $1^3G_5$      | $5^{}$   | 2264   | $ ho_5$ | 2300(45)  | $\omega_5$ | 2250(70) | 2559     |          |          |
| $1^1G_4$      | $4^{-+}$ | 2092   |         |           |            |          | 2469     |          |          |
| $3^3D_1$      | $1^{}$   | 2168   | ho      | 2149(17)  |            |          | 2607     |          |          |
| $3^3D_2$      | $2^{}$   | 2241   | $ ho_2$ | 2225(35)  | $\omega_2$ | 2195(30) | 2667     |          |          |
| $3^3D_3$      | $3^{}$   | 2309   | $ ho_3$ | 2300(60)  | $\omega_3$ | 2278(28) | 2727     |          |          |
| $3^1D_2$      | $2^{-+}$ | 2216   | $\pi_2$ | 2245(60)  | $\eta_2$   | 2248(20) | 2662     |          |          |

Table 1: (continued)

|               |          | Theory |         | Experime  | nt         |            | Theory   | Expe  | riment |
|---------------|----------|--------|---------|-----------|------------|------------|----------|-------|--------|
| $n^{2S+1}L_J$ | $J^{PC}$ | qar q  | I = 1   | mass      | I = 0      | mass       | $sar{s}$ | I = 0 | mass   |
| $2^3F_2$      | $2^{++}$ | 2091   | $a_2$   | 2100(20)  | $f_2$      | 2141(12)   | 2514     |       |        |
| $2^3F_3$      | $3^{++}$ | 2191   | $a_3$   | 2070(20)  |            |            | 2585     |       |        |
| $2^3F_4$      | $4^{++}$ | 2284   |         |           | $f_4$      | 2320(60)   | 2657     |       |        |
| $2^1F_3$      | $3^{+-}$ | 2164   | $b_3$   | 2245(50)  |            |            | 2577     |       |        |
| $4^{3}P_{0}$  | $0^{++}$ | 2250   |         |           | $f_0$      | 2189(13)   | 2699     |       |        |
| $4^{3}P_{1}$  | $1^{++}$ | 2286   | $a_1$   | 2270(50)  | $f_1$      | 2310(60)   | 2729     |       |        |
| $4^{3}P_{2}$  | $2^{++}$ | 2297   | $a_2$   | 2280(30)  | $f_2$      | 2297(28)   | 2734     |       |        |
| $4^1P_1$      | $1^{+-}$ | 2264   | $b_1$   | 2240(35)  | $h_1$      | 2215(40)   | 2717     |       |        |
| $2^3G_3$      | $3^{}$   | 2267   | $ ho_3$ | 2260(20)  | $\omega_3$ | 2255(15)   | 2743     |       |        |
| $2^3G_4$      | $4^{}$   | 2375   |         |           |            |            | 2819     |       |        |
| $2^3G_5$      | $5^{}$   | 2472   |         |           |            |            | 2894     |       |        |
| $2^1G_4$      | $4^{-+}$ | 2344   | $\pi_4$ | 2250(15)  | $\eta_4$   | 2328(30)   | 2806     |       |        |
| $5^1S_0$      | $0^{-+}$ | 2385   | $\pi$   | 2360(25)  | $\eta$     | 2320(15)   | 2749     |       |        |
| $5^3S_1$      | $1^{}$   | 2491   |         |           |            |            | 2782     |       |        |
| $1^3H_4$      | $4^{++}$ | 2234   | $a_4$   | 2237(5)   | $f_J$      | 2231.1(35) | 2634     |       |        |
| $1^3H_5$      | $5^{++}$ | 2359   |         |           |            |            | 2720     |       |        |
| $1^3H_6$      | $6^{++}$ | 2475   | $a_6$   | 2450(130) | $f_6$      | 2465(50)   | 2809     |       |        |
| $1^{1}H_{5}$  | $5^{+-}$ | 2328   |         |           |            |            | 2706     |       |        |

• Important conclusion: Light scalars below 1 GeV cannot be described as  $q\bar{q}$  mesons in our model

#### • State mixing

Using the  $\eta - \eta'$  mixing scheme, which accounts for the axial vector anomaly (Feldmann, Kroll, Stech) with mixing angle  $\phi = 38^{\circ}$  and the decay constant ratio  $y \equiv f_q/f_s = 0.81$  for our values of  $M_{\eta_{s\bar{s}}} = 743$  MeV and the pion mass  $M_{\pi} = 154$  MeV we get

- $M_\eta = 573 \; {
  m MeV} \qquad \qquad M_{n'} = 989 \; {
  m MeV}$
- $M_{\eta}^{
  m exp} = 547.853 \pm 0.0024 \; {
  m MeV} \qquad M_{\eta'}^{
  m exp} = 957.66 \pm 0.24 \; {
  m MeV}$

Strange meson states  $(L_L)$  with J = L are the mixtures of spin-triplet  $({}^{3}L_L)$  and spin-singlet  $({}^{1}L_L)$  states:

$$K_J = K(^{1}L_L)\cos\varphi + K(^{3}L_L)\sin\varphi, K'_J = -K(^{1}L_L)\sin\varphi + K(^{3}L_L)\cos\varphi, \qquad J = L = 1, 2, 3...$$

Mixing angle  $\varphi \approx 44^{\circ}$  for all considered states in our model

|               |         | Theory           | Exper                | riment      |               |         | Theory           | Exper   | riment   |
|---------------|---------|------------------|----------------------|-------------|---------------|---------|------------------|---------|----------|
| $n^{2S+1}L_J$ | $J^P$   | $q \overline{s}$ | $\overline{I} = 1/2$ | mass        | $n^{2S+1}L_j$ | $J^P$   | $q \overline{s}$ | I = 1/2 | mass     |
| $1^{1}S_{0}$  | $0^{-}$ | 482              | K                    | 493.677(16) | $3^1S_0$      | $0^{-}$ | 2065             |         |          |
| $1^3S_1$      | $1^{-}$ | 897              | $K^*$                | 891.66(26)  | $3^3S_1$      | $1^{-}$ | 2156             |         |          |
| $1^{3}P_{0}$  | $0^+$   | 1362             | $K_0$                | 1425(50)    | $2^3D_1$      | $1^{-}$ | 2063             |         |          |
| $1^3P_2$      | $2^+$   | 1424             | $K_2^*$              | 1425.6(15)  | $2^3D_3$      | $3^{-}$ | 2182             |         |          |
| $1P_1$        | $1^{+}$ | 1412             | $K_1$                | 1403(7)     | $2D_2$        | $2^{-}$ | 2163             | $K_2$   | 2247(17) |
| $1P_1$        | $1^+$   | 1294             | $K_1$                | 1272(7)     | $2D_2$        | $2^{-}$ | 2066             |         |          |
| $2^1S_0$      | $0^{-}$ | 1538             |                      |             | $3^3P_0$      | $0^+$   | 2160             |         |          |
| $2^3S_1$      | $1^{-}$ | 1675             | $K^*$                |             | $3^3P_2$      | $2^+$   | 2206             |         |          |
| $1^3D_1$      | $1^{-}$ | 1699             | $K^*$                | 1717(27)    | $3P_1$        | $1^+$   | 2200             |         |          |
| $1^3D_3$      | $3^{-}$ | 1789             | $K_3^*$              | 1776(7)     | $3P_1$        | $1^+$   | 2164             |         |          |
| $1D_2$        | $2^{-}$ | 1824             | $K_2$                | 1816(13)    | $1^3G_3$      | $3^{-}$ | 2207             |         |          |
| $1D_2$        | $2^{-}$ | 1709             | $K_2$                | 1773(8)     | $1^3G_5$      | $5^{-}$ | 2356             | $K_5^*$ | 2382(24) |
| $2^3P_0$      | $0^+$   | 1791             |                      |             | $1G_4$        | $4^{-}$ | 2285             | -       |          |
| $2^3P_2$      | $2^+$   | 1896             |                      |             | $1G_4$        | $4^{-}$ | 2255             |         |          |
| $2P_1$        | $1^{+}$ | 1893             |                      |             | $2^3F_4$      | $4^{+}$ | 2436             |         |          |
| $2P_1$        | $1^{+}$ | 1757             | $K_1$                | 1650(50)    | $2F_3$        | $3^{+}$ | 2348             | $K_3$   | 2324(24) |
| $1^{3}F_{2}$  | $2^{+}$ | 1964             | $K_2^*$              | 1973(26)    | $2^3G_5$      | $5^{-}$ | 2656             |         |          |
| $1^3F_4$      | $4^{+}$ | 2096             | $\bar{K_4^*}$        | 2045(9)     | $2G_4$        | $4^{-}$ | 2575             | $K_4$   | 2490(20) |
| $1F_3$        | $3^{+}$ | 2080             | -                    |             |               |         |                  |         |          |
| $1F_3$        | $3^{+}$ | 2009             |                      |             |               |         |                  |         |          |

Table 2: Masses of excited strange mesons (in MeV).

#### **REGGE TRAJECTORIES**

a) The  $(J, M^2)$  Regge trajectory:

 $J = \alpha M^2 + \alpha_0$ 

b) The  $(n_r, M^2)$  Regge trajectory:

$$n_r \equiv n - 1 = \beta M^2 + \beta_0,$$

where  $\alpha$ ,  $\beta$  are the slopes and  $\alpha_0$ ,  $\beta_0$  are intercepts.

QCD string with two light quarks at the ends gives the slopes:

$$\alpha = \frac{1}{2\pi\sigma}, \qquad \beta = \frac{1}{4\pi\sigma} \implies \alpha/\beta = 2.$$

where  $\sigma$  is the string tension which is equal to the slope of the linear confining potential A

The quasiclassical picture for the massless Salpeter equation with a linear confining potential:

$$(2p + Ar)\psi = M\psi,$$

gives for the Regge slopes

$$\alpha = \frac{1}{8A}, \qquad \beta = \frac{1}{4\pi A} \implies \alpha/\beta = \pi/2.$$

Phenomenological analysis and some ADS/QCD models favour:

$$\alpha = \beta = 1/(2\pi A)$$



Figure 1: Parent and daughter  $(J, M^2)$  Regge trajectories for isovector (a) and isoscalar (b) light mesons with natural parity. Diamonds are predicted masses. Available experimental data are given by dots with error bars and particle names.  $M^2$  is in GeV<sup>2</sup>.

 $P = (-1)^{J}$  – natural parity  $P = (-1)^{J-1}$  – unnatural parity



Figure 2: Parent and daughter  $(J, M^2)$  Regge trajectories for isovector (a) and isodoublet (b) light mesons with unnatural parity. Dashed line corresponds to the Regge trajectory, fitted without  $\pi$  and K.



Figure 3: Parent and daughter  $(J, M^2)$  Regge trajectories for isovector light  $q\bar{q}$  mesons with natural parity  $(a_0)$ .

Note:  $a_0(1450)$  and  $\rho(1700)$  do not lie on the corresponding Regge trajectories  $\Rightarrow$  possible exotic nature



Figure 4: The  $(n_r, M^2)$  Regge trajectories for spin-singlet isovector mesons  $\pi$ ,  $b_1$ ,  $\pi_2$  and  $b_3$  (a) and  $\rho({}^3S_1)$ ,  $\rho({}^3D_1)$ ,  $\rho_3({}^3D_3)$  and  $\rho_3({}^3G_3)$  (b) (from bottom to top). The dashed line corresponds to the Regge trajectory, fitted without  $\pi$ .

The quality of fitting the  $\pi$  meson Regge trajectories both in  $(J, M^2)$  and  $(n_r, M^2)$  planes is significantly improved if the ground state  $\pi$  is excluded from the fit (the  $\chi^2$  is reduced by more than an order of magnitude and becomes compatible with the values for other trajectories).

In the kaon case omitting the ground state also improves the fit but not so dramatically as for the pion.

 $\implies$  the special role of the pion originating from the chiral symmetry breaking.

| Trajectory             | natural                       | parity                          | unnatura                  | l parity                     |
|------------------------|-------------------------------|---------------------------------|---------------------------|------------------------------|
|                        | $lpha$ (GeV $^{-2}$ )         | $lpha_0$                        | $lpha$ (GeV $^{-2}$ )     | $lpha_0$                     |
| qar q                  | ρ                             |                                 | $\pi$                     |                              |
| parent                 | $0.887 \pm 0.008$             | $0.456 \pm 0.018$               | $0.828 \pm 0.057^{*}$     | $-0.025\pm 0.034^{*}$        |
| daughter 1             | $1.009\pm0.019$               | $-1.232 \pm 0.074$              | $1.031\pm0.063$           | $-1.846 \pm 0.217$           |
| daughter 2             | $1.144\pm0.113$               | $-3.092 \pm 0.540$              | $1.171\pm0.009$           | $-3.737 \pm 0.042$           |
| qar q                  | $a_0$                         |                                 | $a_1$                     |                              |
| parent                 | $1.125\pm0.035$               | $-1.607 \pm 0.104$              | $1.014\pm0.036$           | $-0.658 \pm 0.120$           |
| daughter 1             | $1.291\pm0.003$               | $-3.640 \pm 0.011$              | $1.148 \pm 0.012$         | $-2.497 \pm 0.050$           |
| daughter 2             | $1.336\pm0.022$               | $-5.300 \pm 0.102$              | $1.154\pm0.014$           | $-3.798 \pm 0.007$           |
| $qar{s}$               | $K^*$                         |                                 | K                         |                              |
| parent                 | $0.839 \pm 0.004$             | $0.318 \pm 0.012$               | $0.780\pm0.022^{\dagger}$ | $-0.197 \pm 0.036^{\dagger}$ |
| daughter               | $0.942\pm0.046$               | $-1.532 \pm 0.209$              | $0.964 \pm 0.072$         | $-2.240 \pm 0.296$           |
| $s\bar{s}$             | arphi                         |                                 | $\eta_{sar{s}}$           |                              |
| parent                 | $0.728 \pm 0.011$             | $0.234 \pm 0.034$               | $0.715 \pm 0.023$         | $-0.444 \pm 0.068$           |
| daughter 1             | $0.721 \pm 0.089$             | $-1.072 \pm 0.047$              | $0.718 \pm 0.032$         | $-1.786 \pm 0.157$           |
| daughter 2             | $0.684 \pm 0.039$             | $-2.047 \pm 0.226$              | $0.729 \pm 0.010$         | $-3.174 \pm 0.057$           |
| $^*$ fit without $	au$ | $\pi: \alpha = (1.053 \pm 0)$ | 0.059) GeV $^{-2}$ , $lpha_0$ = | $= -0.725 \pm 0.170$      |                              |
| † £                    | $Z_{1} = (0.946)$             | (0,012) $(-2)$                  | $0.421 \pm 0.042$         |                              |

Table 3: Fitted parameters of the  $(J, M^2)$  parent and daughter Regge trajectories for light mesons with natural and unnatural parity (q = u, d).

 $^\dagger$  fit without  $K_{\odot} lpha = (0.846 \pm 0.013)~{
m GeV}^{-2}$  ,  $lpha_0 = -0.431 \pm 0.042$ 

| Table 4: Fitted parameters of the ( | $n_r, M^2$ | Regge trajectories for | or light mesons. |
|-------------------------------------|------------|------------------------|------------------|
|-------------------------------------|------------|------------------------|------------------|

| Meson          | $eta$ (GeV $^{-2}$ )  | $eta_0$               | Meson           | $eta$ (GeV $^{-2}$ ) | $eta_0$            |
|----------------|-----------------------|-----------------------|-----------------|----------------------|--------------------|
| q ar q         |                       |                       | $sar{s}$        |                      |                    |
| $\pi$          | $0.679 \pm 0.023^{*}$ | $-0.018\pm 0.014^{*}$ | $\eta_{sar{s}}$ | $0.559 \pm 0.009$    | $-0.315 \pm 0.026$ |
| $ ho(^3S_1)$   | $0.700\pm0.023$       | $-0.451 \pm 0.060$    | arphi           | $0.597 \pm 0.009$    | $-0.662 \pm 0.031$ |
| $a_0$          | $0.830 \pm 0.032$     | $-1.214 \pm 0.109$    | $f_0$           | $0.566 \pm 0.009$    | $-1.156 \pm 0.039$ |
| $a_1$          | $0.840 \pm 0.037$     | $-1.401 \pm 0.134$    | $f_1$           | $0.561 \pm 0.013$    | $-1.224 \pm 0.058$ |
| $b_1$          | $0.863 \pm 0.030$     | $-1.431 \pm 0.106$    | $h_1$           | $0.575\pm0.015$      | $-1.292 \pm 0.066$ |
| $a_2({}^3P_2)$ | $0.867 \pm 0.036$     | $-1.585 \pm 0.134$    | $f_2$           | $0.581 \pm 0.007$    | $-1.370 \pm 0.031$ |
| $ ho(^3D_1)$   | $0.894 \pm 0.013$     | $-2.182 \pm 0.050$    |                 |                      |                    |
| $\pi_2$        | $0.916 \pm 0.032$     | $-2.514 \pm 0.134$    |                 |                      |                    |
| $ ho_3(^3D_3)$ | $0.874\pm0.041$       | $-2.623 \pm 0.189$    |                 |                      |                    |
| $a_2({}^3F_2)$ | $0.891 \pm 0.010$     | $-2.881 \pm 0.043$    |                 |                      |                    |
| $a_3$          | $0.890 \pm 0.014$     | $-3.254 \pm 0.066$    |                 |                      |                    |
| $b_3$          | $0.906 \pm 0.015$     | $-3.225 \pm 0.071$    |                 |                      |                    |
| $a_4$          | $0.899 \pm 0.016$     | $-3.672 \pm 0.084$    |                 |                      |                    |

\* fit without  $\pi$ :  $\beta = (0.750 \pm 0.032) \text{ GeV}^{-2}$ ,  $\beta_0 = -0.287 \pm 0.109$ 

In our model

$$\langle \alpha \rangle / \langle \beta \rangle \approx 1.3$$

and for light mesons without s-quark

 $\langle \beta \rangle \approx 0.85 \text{ GeV}^{-2} \approx 1/(2\pi A) = 0.88 \text{ GeV}^{-2}$ 

## **MASSES OF LIGHT TETRAQURKS**

Light tetraquarks are considered in the diquark-antidiquark picture:

- 1. Masses and form factors of light diquarks are calculated
- 2. Tetraquark is considered as a bound diquark-antidiquark state

We take the diquark masses and form factors form our previous studies of heavy baryons in the heavy quark-light diquark picture

Table 5: Masses of light ground state diquarks (in MeV). S and A denotes scalar and axial vector diquarks antisymmetric [...] and symmetric  $\{...\}$  in flavour, respectively.

| Quark     | Diquark_ |      |      | Mass |      |         |
|-----------|----------|------|------|------|------|---------|
| content   | type     | our  | NJL  | BSE  | BSE  | Lattice |
| [u,d]     | S        | 710  | 705  | 737  | 820  | 694(22) |
| $\{u,d\}$ | А        | 909  | 875  | 949  | 1020 | 806(50) |
| [u,s]     | S        | 948  | 895  | 882  | 1100 |         |
| $\{u,s\}$ | А        | 1069 | 1050 | 1050 | 1300 |         |
| $\{s,s\}$ | А        | 1203 | 1215 | 1130 | 1440 |         |

In the diquark-antidiquark picture of tetraquarks both scalar S (antisymmetric in flavour [...]) and axial vector A (symmetric in flavour {...}) diquarks are considered  $\Longrightarrow$ Structure of the light tetraquark ground (1S) states (C is defined only for neutral self-conjugated states):

• Two states with  $J^{PC} = 0^{++}$ :

$$X(0^{++}) = S\bar{S}$$
$$X(0^{++\prime}) = A\bar{A}$$

• Three states with  $J^{PC} = 1^{+\pm}$ :

$$X(1^{++}) = \frac{1}{\sqrt{2}}(S\bar{A} + \bar{S}A)$$
$$X(1^{+-}) = \frac{1}{\sqrt{2}}(S\bar{A} - \bar{S}A)$$
$$X(1^{+-'}) = A\bar{A}$$

• One state with  $J^{PC} = 2^{++}$ :

 $X(2^{++}) = A\bar{A}.$ 

#### Lightest scalar tetraquarks

The lightest  $S\bar{S}$  scalar (0<sup>++</sup>) tetraquark states form the SU(3) flavour nonet:



- one tetraquark  $([ud][\bar{u}\bar{d}])$  with neither open or hidden strangeness (Q = 0 and I = 0);
- four tetraquarks ( $[sq][\bar{u}\bar{d}]$ ,  $[\bar{s}\bar{q}][ud]$ , q = u, d) with open strangeness ( $Q = 0, \pm 1$ ,  $I = \frac{1}{2}$ );
- four tetraquarks  $([sq][\bar{s}\bar{q}'])$  with hidden strangeness  $(Q = 0, \pm 1, I = 0, 1)$ .

| State              |                                  | Theory |                     | Fyn       | eriment          |            |
|--------------------|----------------------------------|--------|---------------------|-----------|------------------|------------|
| $\tau PC$          | Diquark                          | Theory |                     |           |                  |            |
| $J^{r}$            | content                          | mass   | I = 0               | mass      | I = 1            | mass       |
| (qq)(ar qar q)     |                                  |        |                     |           |                  |            |
| $0^{++}$           | $Sar{S}$                         | 596    | $f_0(600)~(\sigma)$ | 400-1200  |                  | -          |
| $1^{+\pm}$         | $(S\bar{A}\pm\bar{S}A)/\sqrt{2}$ | 672    |                     |           |                  |            |
| $0^{++}$           | $Aar{A}$                         | 1179   | $f_0(1370)$         | 1200-1500 |                  |            |
| $1^{+-}$           | $Aar{A}$                         | 1773   |                     |           |                  |            |
| $2^{++}$           | $\Lambda \overline{\Lambda}$     | 1015   | $\int f_2(1910)$    | 1903(9)   |                  |            |
|                    | АА                               | 1913   | $\int f_2(1950)$    | 1944(12)  |                  |            |
| $(qs)(ar{q}ar{s})$ |                                  |        |                     |           |                  |            |
| $0^{++}$           | $Sar{S}$                         | 992    | $f_{0}(980)$        | 980(10)   | $a_{0}(980)$     | 984.7(12)  |
| $1^{++}$           | $(S\bar{A} + \bar{S}A)/\sqrt{2}$ | 1201   | $f_1(1285)$         | 1281.8(6) | $a_1(1260)$      | 1230(40)   |
| $1^{+-}$           | $(S\bar{A} - \bar{S}A)/\sqrt{2}$ | 1201   | $h_1(1170)$         | 1170(20)  | $b_1(1235)$      | 1229.5(32) |
| $0^{++}$           | $Aar{A}$                         | 1480   | $f_0(1500)$         | 1505(6)   | $a_0(1450)$      | 1474(19)   |
| $1^{+-}$           | $Aar{A}$                         | 1942   | $h_1(1965)$         | 1965(45)  | $b_1(1960)$      | 1960(35)   |
| $2^{++}$           | $A \overline{A}$                 | 2007   | $\int f_2(2010)$    | 2011(70)  | $\int a_2(1990)$ | 2050(45)   |
| 2                  | ЛЛ                               | 2091   | $\int f_2(2140)$    | 2141(12)  | $a_2(2080)$      | 2100(20)   |
| $(ss)(ar{s}ar{s})$ |                                  |        |                     |           |                  |            |
| $0^{++}$           | $Aar{A}$                         | 2203   | $f_0(2200)$         | 2189(13)  |                  | -          |
| $1^{+-}$           | $Aar{A}$                         | 2267   | $h_1(2215)$         | 2215(40)  |                  | -          |
| 2++                | $Aar{A}$                         | 2357   | $f_2(2340)$         | 2339(60)  |                  | -          |

Table 6: Masses of light unflavored diquark-antidiquark ground state ( $\langle L^2 \rangle = 0$ ) tetraquarks (in MeV) and possible experimental candidates. S and A denote scalar and axial vector diquarks.

Table 7: Masses of strange diquark-antidiquark ground state ( $\langle \mathbf{L}^2 \rangle = 0$ ) tetraquarks (in MeV) and possible experimental candidates. S and A denote scalar and axial vector diquarks.

| State                                    | Diquark                          | Theory | Experime                   | Experiment |  |  |
|------------------------------------------|----------------------------------|--------|----------------------------|------------|--|--|
| $J^P$                                    | content                          | mass   | $I = \frac{1}{2}$          | mass       |  |  |
| $(qq)(ar{s}ar{q})$ or $(sq)(ar{q}ar{q})$ |                                  |        |                            |            |  |  |
| $0^+$                                    | $Sar{S}$                         | 730    | $K_{0}^{*}(800)\;(\kappa)$ | 672(40)    |  |  |
| $1^+$                                    | $(S\bar{A}\pm\bar{S}A)/\sqrt{2}$ | 1057   |                            |            |  |  |
| $0^+$                                    | $Aar{A}$                         | 1332   | $K_0^*(1430)$              | 1425(50)   |  |  |
| $1^{+}$                                  | $Aar{A}$                         | 1855   |                            |            |  |  |
| 2+                                       | $Aar{A}$                         | 2001   | $K_{2}^{*}(1980)$          | 1973(26)   |  |  |

• Lightest scalar mesons  $f_0(600)$  ( $\sigma$ ),  $K_0^*(800)$  ( $\kappa$ ),  $f_0(980)$  and  $a_0(980)$  can be interpreted in our model as light tetraquarks composed from a scalar diquark and antidiquark  $(S\bar{S})$ . Therefore, the  $f_0(980)$  and  $a_0(980)$  tetraquarks contain, in comparison to the  $q\bar{q}$  picture, an additional pair of strange quarks which gives a natural explanation why their masses are heavier than the strange  $K_0^*(800)$  ( $\kappa$ ).

•  $a_0(1450)$  should be predominantly a tetraquark state composed from axial vector diquark and antidiquark  $(A\bar{A})$ . The exotic scalar state X(1420) from the "Further States" Section of PDG could be its isotensor partner. On the other hand  $s\bar{q}(1^3P_0)$  interpretation is favored for  $K_0^*(1430)$ . This picture naturally explains the experimentally observed proximity of masses of the unflavoured  $a_0(1450)$ and  $f_0(1500)$  with the strange  $K_0^*(1430)$ .

• Rather low mass values of the 1<sup>+</sup> tetraquark states are predicted:  $(\{ud\}[\bar{u}\bar{d}] \pm \{\bar{u}\bar{d}\}[ud])/\sqrt{2}$ , 672 MeV, and of their strange partner ( $[qs]\{\bar{u}\bar{d}\} \pm [\bar{q}\bar{s}]\{ud\}$ ), 1057 MeV. Such axial vector states are not observed experimentally.

# CONCLUSIONS

- Completely relativistic treatment of the light quark dynamics allowed us to get masses of the  $\pi$  and K mesons in agreement with experimental data in the considered model, where the chiral symmetry is explicitly broken by the constituent quark masses.
- The lightest scalar  $q\bar{q}$   $(1^{3}P_{0})$  states have masses above 1 GeV in our model.
- The calculated masses of light mesons reproduce the linear Regge trajectories both in the  $(J, M^2)$  and  $(n_r, M^2)$  planes. The slope of the orbital excitations  $\alpha$  was found to be in average 1.3 times larger than the slope of the trajectories of radial excitations  $\beta$ .
- Possible experimental candidates for the states populating the Regge trajectories were identified. Predictions for the masses of the missing states were presented. Our results in some cases differ from the previous phenomenological prescriptions. Future experimental data can help in discriminating between the theoretical predictions
- The chiral symmetry is not restored for highly excited states in our model. This should be expected since the Lorentz-scalar part of the confining potential explicitly breaks the chiral symmetry.
- Masses of the ground state light tetraquarks were calculated in the diquark-antidiquark picture and the dynamical approach based on the relativistic quark model. Both diquark and tetraquark masses were obtained by numerical solution of the quasipotential wave equations. The diquark structure was taken into account by using diquark-gluon form factors in terms of diquark wave functions.
- It was found that the lightest scalar mesons  $f_0(600)$  ( $\sigma$ ),  $K_0^*(800)$  ( $\kappa$ ),  $f_0(980)$  and  $a_0(980)$  can be naturally described in our model as diquark-antidiquark bound systems.