Superdense dark matter clumps from superheavy particles

V. Berezinsky (Laboratori Nazionali del Gran Sasso; Center for Astroparticle Physics at LNGS, Italy)

V. Dokuchaev, Yu. Eroshenko (INR RAS, Russia)

M. Kachelries, M.Aa. Solberg (Institutt for fysikk, NTNU Trondheim, Norway)

Superheavy dark matter particles

Thermal relic $\Omega_x \propto 1/\sigma_{ann}$, $\Omega_{CDM} h^2 \approx 0.1 \Rightarrow \langle \sigma_{ann} v \rangle \approx 3 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}$

Unitarity bounds $\sigma_{ann} \propto m_{\chi}^{-2} \Rightarrow m_{\chi} \le 100 \text{ TeV}$ (Griest, Kamionkowski 1990), (Hui 2001)

Superheavy particles (Berezinsky, Kachelries and Vilenkin 1997), (Kuzmin and Rubakov 1998)

Gravitational production of superheavy particles at the end of inflation *(Chung, Kolb and Riotto 1999), (Kuzmin and Tkachev 1998), (Lyth and Roberts 1998)*

Annihilation of superheavy DM particles $\dot{N}_{ann} \propto (\rho/m_{\chi})^2 \langle \sigma_{ann} v \rangle \propto m_{\chi}^{-4}$, backgrounds $\propto E^{-\alpha}$, $\alpha \leq 3$

- dense central region of DM clumps (Blasi, Dick, Kolb 2002)
- formation of superdense clumps (Kolb and Tkachev 1994), (Scott and Sivertsson 2009)

Superheavy supersymmetry (Berezinsky, Kachelries and Solberg, 2008)

$$M_{SUSY} \gg m_Z \qquad \langle \sigma_{ann} v \rangle \approx 2 \times 10^{-42} (m_X / 10^{11} \, \text{GeV})^{-2} \, \text{cm}^3 \, \text{s}^{-1}$$

Kinetic decoupling of superheavy DM particles

The mass spectrum of DM clumps has a low-mass cutoff $M_{_{min}}$ due to the leakage of particles from a clump. This mass is strongly model dependent.

Cutof the mass spectrum of DM clumps for standard (~100 GeV) neutralinos $M_{min} \sim 10^{-6} M_{\odot}$ Cutof for ultra-cold WIMPs (*Scott and Sivertsson 2009*), (*Gelmini and Gondolo 2008*)

 $1/\tau_{rel} \sim H(t_d) \Rightarrow$ temperature T_d of kinetic decoupling

For
$$M_{\text{SUSY}} = 10^{12} \,\text{GeV}$$
:
 $T_d \simeq \begin{cases} 2 \times 10^{11} \,\text{GeV} \\ 2 \,\text{GeV} \end{cases}$ $M_d \simeq \begin{cases} 6 \times 10^{-12} \,\text{g} & \text{bino} \\ 6 \times 10^{21} \,\text{g} & \text{higgsino} \end{cases}$

The mass of DM inside horizon $M = 3.4 \times 10^{16} (T/100 \,\text{GeV})^{-3} (N_{eff}/100)^{-3/4} g$

$$M \ll M_d, M \gg M_d$$

Peculiar velocities just after the horizon crossing $v_{pH} \simeq \delta_H c/3$

Free streaming. For bino $M_{fs} \simeq 4.6 \times 10^{-11} g \simeq 260 m_{\chi}$

In the case of a higgsino $M_{fs} \ll m_{\chi}$ and the free-streaming plays no role

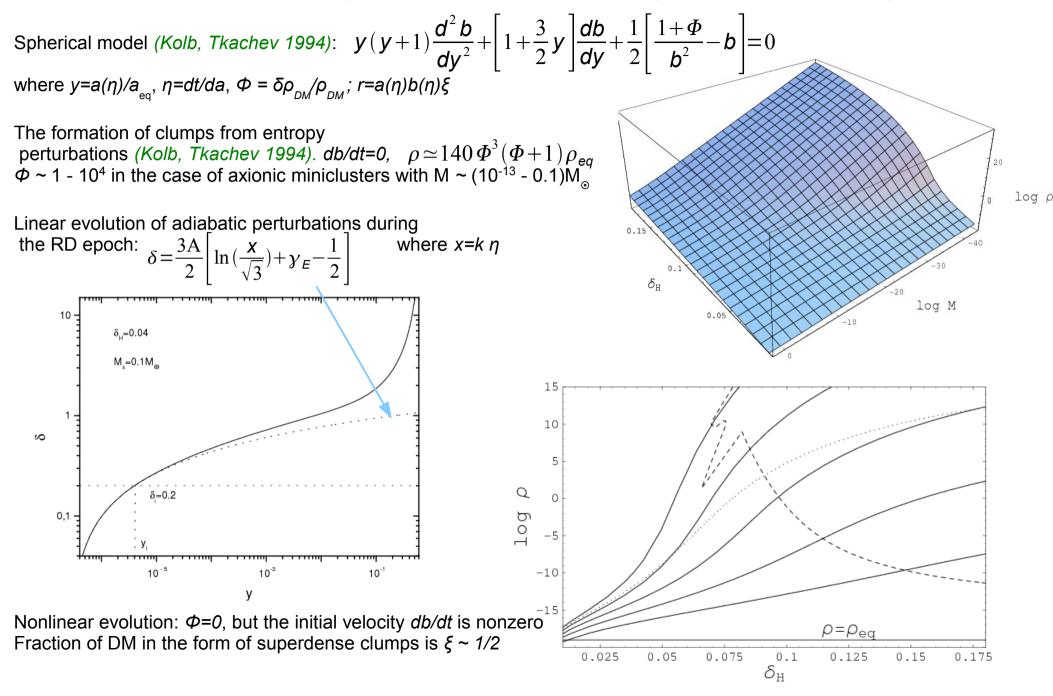
Non-standard spiky density perturbation spectrum

$$\sigma_{H}(\boldsymbol{M}) \simeq 9.5 \times 10^{-5} \left(\frac{\boldsymbol{M}}{10^{56}} \boldsymbol{g}\right)^{(1-n_{p})/4}$$

(Green, Liddle 1997)

7-year WMAP data $n_p = 0.963 \pm 0.014 \implies$ the variance $\sigma_H(M)$ is too small for the formation of clumps at the RD stage.

<u>Clumps</u> can be produced effectively at radiation dominated cosmological stage only from nonstandard spectra


Flat segment in the inflationary potential (Starobinsky 1992), (Ivanov, Naselsky, Novikov 1994)

 $\delta_H \sim M_{Pl}^{-3} V^{3/2} / V'$ $V' = dV(\phi) / d\phi \rightarrow 0 \Rightarrow$ peak in the perturbation spectrum

Inflationary models with several scalar fields (Yokoyama 1995), (Garcia-Bellido, Linde, Wands 1996)

Evidence for excess power at small scales $\sim 10h^{-1}$ kpc from the study of Lyman- α (*Demiansk, Doroshkevich 2003*)

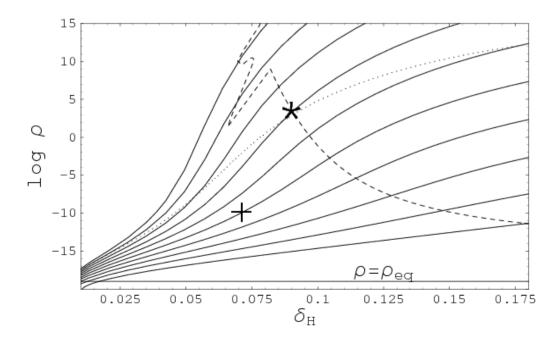
Formation of superdense DM clumps at the RD epoch

Relaxation in clumps, "gravithermal catastrophe"

Universal power-law density profile with exponent β =1.7 – 1.9 (*Gurevich, Zybin 1988*)

Core radius = ? Maximal central density = ?

EW scattering ~1/m². Gravitational two-body scattering ~m² may becomes the dominant process for the superheavy particles!

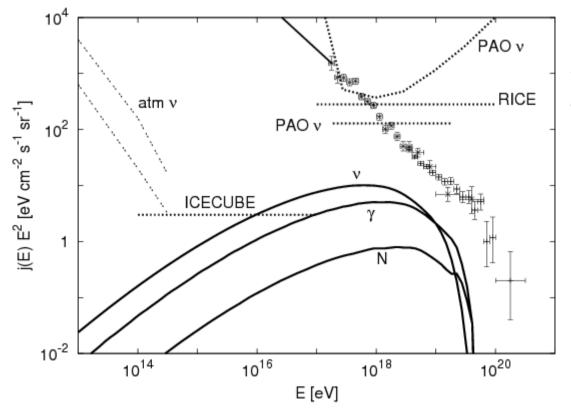

Two-body gravitational relaxation: $t_{rel,gr} \simeq \frac{1}{4\pi} \frac{v^3}{G^2 m^2 n \ln(0.4N)}$ (Spitzer, Saslaw 1966) After the core collapsed, the singular profile $\rho \propto r^{-2}$ extends formally down to very small radius R_{a}

- EW elastic scattering of SHDM particles.
 The core remains transparent for superheavy neutralinos.
- Particle annihilation in core (Berezinsky, Gurevich, Zybin 1992) (Berezinsky, Bottino, Mignola 1997)

$$\mathbf{x}_{c}^{2} \equiv \mathbf{R}_{c}/\mathbf{R} \simeq \frac{\langle \sigma \mathbf{v} \rangle \rho^{1/2}}{\mathbf{G}^{1/2}} \sim 7.4 \times 10^{-13}$$

Fermi degeneration

$$p_{F} = (3\pi^{2})^{1/3} (\rho_{c}/m)^{1/3} = m V_{c}$$
$$x_{c}^{2} \simeq \pi^{2} \frac{\overline{\rho}}{m^{4}} \left(\frac{GM}{R}\right)^{-3/2} \sim 10^{-11}$$



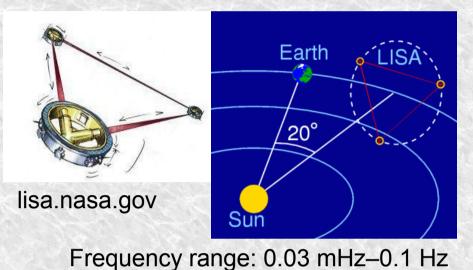
Annihiation signals

Flux $I_i(E)$ of particles i = N, γ , ν from DM annihilations summed over all DM clumps in the

Galactic halo: $I_i(E) = \frac{1}{2} \dot{N}_{ann} F \frac{1}{m} \frac{dN_i}{dx}$

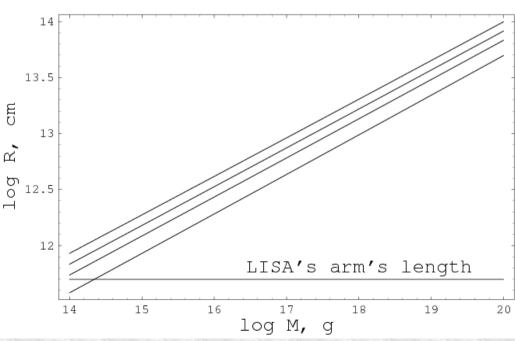
where dN_i/dx is the differential number of particles of type *i* produced per annihilation with energy E=xm

Spectra and fragmentation functions dN_i/dx are from (Berezinsky, Kachelries 2001) and (Aloisio, Berezinsky, Kachelries 2004)


Search for clumps by gravitational waves' detectors

Primordial black holes (Seto, Cooray 2004)

Asteroids (Tricarico 2009)


Compact DM objects of unknown nature: (Adams, Bloom, 2004, "Direct Detection of Dark Matter with Space-based Laser Interferometers", arXiv:astro-ph/0405266v2)

Superdense clumps should be included in this list of objects.

Mass interval for LISA 10^{16} g < *M* < 10^{20} g (*Seto, Cooray 2004*) 10^{14} g < *M* < 10^{20} g (*Adams, Bloom 2004*)

Standard power-law spectrum with $n_p = 0.949, 0.963, 0.977$ and 1

Conclusions

 Superdense clumps can be produced during the radiation dominated epoch from spikes in the spectrum of adiabatic perturbations.

- Being produced very early, superdense clumps do not belong to hierarchical structures for a long time, and therefore they are not destroyed during the formation of large-scale structures.
- Ordinary 100 GeV neutralinos are excluded as the constituents of superdense clumps, because they overproduce the diffuse gamma-ray spectrum.
- The limit on the superdense clumps is imposed by primordial black holes which originated from the same perturbation spectrum.
- For very heavy constituent particles and large intrinsic densities of the clumps a gravithermal catastrophe may develop in clumps. As a result the initial density profile turns into an isothermal one, and the large initial core collapses into a tiny, very dense new core.
- Superdense clumps can lead to detectable gamma radiation even in the case of superheavy DM particles.
- Superdense clumps can be in principle observed when the clumps are passing by gravitational wave detectors.

Details can be found in arXiv:1002.3444v2 and arXiv:1002.3445v2