

Outline

- $K \rightarrow \mu \nu \gamma$ decay
- ISTRA+ experiment
- Event selection
- Background rejection
- Signal extraction
- Spectrum fitting
- Results
- Conclusions

06-12.06.2010

$K \rightarrow \mu \nu \gamma$ theory: differential decay rate

 $\begin{aligned} \frac{d\Gamma_{K_{\mu\nu\gamma}}}{dxdy} &= A_{IB}f_{IB}(x,y) \\ &+ A_{SD}[(F_V + F_A)^2 f_{SD^+}(x,y) + (F_V - F_A)^2 f_{SD^-}(x,y)] \\ &- A_{INT}[(F_V + F_A)f_{INT^+}(x,y) + (F_V - F_A)f_{INT^-}(x,y)], \end{aligned}$

3 main terms: IB – dominant SD±, INT± - most interesting ($\rightarrow F_v, F_A$)

> Kinematical variables: $x=2^{*}E_{\gamma}(cm)/M_{k}$ $y=2^{*}E_{\mu}(cm)/M_{k}$

$$\begin{split} f_{IB}(x,y) &= \left[\frac{1-y+r}{x^2(x+y-1-r)}\right] \\ &\times \left[x^2+2(1-x)(1-r)-\frac{2xr(1-r)}{x+y-1-r}\right], \\ f_{SD^+} &= [x+y-1-r][(x+y-1)(1-x)-r], \\ f_{SD^-} &= [1-y+r][(1-x)(1-y)+r], \\ f_{INT^+} &= \left[\frac{1-y+r}{x(x+y-1-r)}\right][(1-x)(1-x-y)+r], \\ f_{INT^-} &= \left[\frac{1-y+r}{x(x+y-1-r)}\right][x^2-(1-x)(1-x-y)-r], \end{split}$$

$$\begin{split} r &= \left[\frac{M_{\mu}}{M_{K}}\right]^{2},\\ A_{IB} &= \Gamma_{K_{\mu 2}} \frac{\alpha}{2\pi} \frac{1}{(1-r)^{2}},\\ A_{SD} &= \Gamma_{K_{\mu 2}} \frac{\alpha}{8\pi} \frac{1}{r(1-r)^{2}} \left[\frac{M_{K}}{F_{K}}\right]^{2}\\ A_{INT} &= \Gamma_{K_{\mu 2}} \frac{\alpha}{2\pi} \frac{1}{(1-r)^{2}} \frac{M_{K}}{F_{K}}. \end{split}$$

06-12.06.2010

$K \rightarrow \mu \nu \gamma$ theory: differential decay rate

Х Х $\frac{d\Gamma_{K_{\mu\nu\gamma}}}{d} = A_{IB}f_{IB}(x,y)$ dxdv+ $A_{SD}[(F_V + F_A)^2 f_{SD+}(x, y) + (F_V - F_A)^2 f_{SD-}(x, y)]$ 0.7 0.6 0.6 0.5 $-A_{INT}[(F_V + F_A)f_{INT^+}(x, y) + (F_V - F_A)f_{INT^-}(x, y)],$ 0.4 0.3 0.3 IB SD+ 0.2 0.1 3 main terms: 0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 8.4 0.4 1 **IB** – dominant Χ SD±, INT± - most Х interesting ($\rightarrow F_v$, F_A) 0.6 0.5 0.4 **Kinematical** SD-0.3 0.3 **INT-**0.2 0.2 variables: 0.5 0.6 0.7 0.8 0.9 1 V 0.4 0.5 0.6 0.7 0.9 1 $x=2^{*}E_{v}(cm)/M_{k}$ $y=2^{*}E_{\mu}(cm)/M_{k}$ **Our strategy:** Focusing on INT- region 06-12.06.2010 V.Duk, Quarks-2010

$K \rightarrow \mu \nu \gamma$ theory: formfactors

$K \rightarrow \mu v \gamma$: main experimental results

experiment	collaboration	year	cuts	results
Barmin et al	ITEP	1988	P_{μ} < 231.5 MeV/c	BR(IB)
Demidov et al	ITEP	1990	P_{μ} < 231.5 MeV/c	BR(IB)
Akiba et al	E104 (KEK)	1985	214.5 < P _µ < 231.5 MeV/c	BR(IB)
Adler et al	E787 (BNL)	2000	P _μ > 218.4 MeV/c E _γ > 90 MeV	F _v + F _A , BR(SD+)

Formfactors:

E787(BNL) Phys.Rev.Lett.85(2000)2256 (Κ→μνγ) $|F_V + F_A| = 0.165 \pm 0.013$; -0.04< $F_V - F_A < 0.24$

E865(BNL) Phys.Rev.Lett.89(2002)061803 (K→eve⁺e⁻, K→µve⁺e⁻) $F_V + F_A = 0.147 \pm 0.026;$ $F_V - F_A = 0.077 \pm 0.028$

ISTRA+ collaboration

- Institute for High Energy Physics, Protvino (IHEP)
- Institute for Nuclear Resaerch, Moscow (INR)
- Joint Institute for Nuclear Research, Dubna (JINR)

ISTRA+: from $\pi \rightarrow e \nu \gamma$ to $K \rightarrow \mu \nu \gamma$

ISTRA+ setup

$p\sim -25~{ m GeV}$; $\Delta p/p\sim 1.5\%$; $K^-\sim 3\%$; $I\sim 3\cdot 10^6/1.9~{ m sec}$

 $T_0 = S1 \cdot S2 \cdot S3 \cdot S4 \cdot C0 \cdot C1 \cdot C2 \cdot \overline{S5}$ (prescaled by a factor of ~10) $T_1 = T_0 \cdot (\sum SP1 > MIP)$

C1-C4 – thresh. cherenkov counters; S1-S5 – scintillation counters; PC1-PC3 – proportional chambers; SP2 – veto calorimeter; SP1 – lead-glass calorimeter; DC – drift chambers; DT-drift tubes; MH – matrix scintilation godoscope

06-12.06.2010

ISTRA+ setup: beam part

C1-C4 – thresh. cherenkov counters; S1-S5 – scintillation counters; PC1-PC3 – proportional chambers; SP2 – veto calorimeter; SP1 – lead-glass calorimeter; DC – drift chambers; DT-drift tubes; MH – matrix scintilation godoscope

06-12.06.2010

ISTRA+ setup: decay volume

ISTRA+ setup: magnetic spectrometer

ISTRA+ setup: ECAL, HCAL

Event selection

- Track requirements (one primary track, one secondary track, cuts on track quality)
- Veto requirements (no signals above threshold)
- Vertex requirements (400 < z < 1600 cm, cut on vertex fit probability)
- Particle ID :

Photon: isolated shower in ECAL
Muon: 1) ADC sum in HCAL < 200
2) relative energy deposition in
last 3 layers of HCAL > 0.05

Trigger efficiency ε for photon

Background rejection and signal observation

- Main background:
- $K \rightarrow \mu \nu \pi^0 (K\mu 3)$

with 1 gamma lost (from $\pi^0 \rightarrow \gamma \gamma$)

• $K \rightarrow \pi \pi^0 (K\pi 2)$

with 1 gamma lost (from $\pi^0 \rightarrow \gamma \gamma$) and π misidentification

```
• Signal observation:

M(\mu \vee \gamma) = \sqrt{(P_{\mu} + P_{\nu} + P_{\gamma})^{2}} where

\vec{p}_{\nu} = \vec{p}_{\kappa} - \vec{p}_{\mu} - \vec{p}_{\gamma}; E_{\nu} = |\vec{p}_{\nu}|

M(\mu \vee \gamma) peaks at M_{\kappa} = 0.494 GeV for signal

Background rejection procedure: scanning

over (x,y) Dalits-plot and looking for a peak in M(\mu \vee \gamma)
```

Background rejection: (x,y) Dalits plot

Previous experiments: looking for signal near y kinematical border

ISTRA+: looking for signal near E_v kinematical border

Signal extraction

- (x,y) dalits-plot is divided into stripes with δx=0.05 width (x-stripes)
- Optimal cut on y is put in each x-stripe
- Simultaneous fit of $M(\mu v \gamma)$, y and $\cos \theta_{\mu\gamma}$ is done in x-stripes x

Signal extraction: simultaneous fit in x-stripes

06-12.06.2010

final x-spectrum

Spectrum fitting: x normalized on IB

06-12.06.2010

F_V-F_A: systematic error

06-12.06.2010

ISTRA+ kinematical region: complementary with previous experiments

06-12.06.2010

 F_V , F_A taken from theory

N_{exp}/N_{IB} 0.02 0.015 0.0

06-12.06.2010

F_V - F_A : comparison with ChPT O(p⁶)

ISTRA+ result: complementary with previous experiments

experiment	collaboration	year	cuts	results
Barmin et al	ITEP	1988	P_{μ} < 231.5 MeV/c	BR(IB)
Demidov et al	ITEP	1990	P_{μ} < 231.5 MeV/c	BR(IB)
Akiba et al	E104 (KEK)	1985	214.5 < P _µ < 231.5 MeV/c	BR(IB)
Adler et al	E787 (BNL)	2000	P _μ > 218.4 MeV/c E _γ > 90 MeV	F _V + F _A
Akimenko et al	ISTRA+	2010	E _γ < 136 MeV (x<0.55)	$F_v - F_A$

E787: 2800 events ISTRA+: 22000 events 06-12.06.2010 V.Duk, Quarks-2010

conclusion

- The K→ μ v γ decay is observed at ISTRA+ setup in a new kinematical region
- The event number observed is 22K (the largest statistics in the world)
- First measurement of INT- term gives
 F_V-F_A= 0.16 ± 0.04(stat) ± 0.05(syst)
- The sign of INT- is negative

THANK YOU!!!

06-12.06.2010

ChPT O(p⁶): additional fits

06-12.06.2010

Decay amplitude : general formulae

$$M = M_{IB} + M_{SD},$$

$$M_{IB} = ie \frac{G_F}{\sqrt{2}} sin \theta_c F_K m_e \epsilon_{\alpha}^* K^{\alpha},$$

$$M_{SD} = -ie \frac{G_F}{\sqrt{2}} sin \theta_c \epsilon_{\mu}^* L_{\nu} H^{\mu\nu},$$

$$\langle 0|\bar{s}\gamma^{\mu}\gamma_{5}u|K^{+}(p_{K})\rangle = -iF_{K}p_{K}^{\mu}, \langle \gamma(q)|\bar{u}\gamma^{\mu}\gamma_{5}s|K(p_{K})\rangle = e\frac{F_{A}}{m_{K}}\left[(p\cdot q)\epsilon^{*\mu} - (\epsilon^{*}\cdot p)q^{\mu}\right], \langle \gamma(q)|\bar{u}\gamma^{\mu}s|K(p_{K})\rangle = ie\frac{F_{V}}{m_{K}}\varepsilon^{\mu\alpha\beta\nu}\epsilon_{*\alpha}q_{\beta}p_{\nu},$$

$$K^{\alpha} = \bar{u}(p_{\nu})(1+\gamma_{5}) \left(\frac{p_{K}^{\alpha}}{p_{K}\cdot q} - \frac{2p_{e}^{\alpha} + \not{q}\gamma^{\alpha}}{2p_{e}\cdot q}\right) v(p_{e}),$$

$$L_{\nu} = \bar{u}(p_{\nu})\gamma_{\nu}(1-\gamma_{5})v(p_{e}),$$

$$H^{\mu\nu} = \frac{F_{A}}{m_{K}} \left(-g^{\mu\nu}p_{K}\cdot q + p_{K}^{\mu}q^{\nu}\right) + i\frac{F_{V}}{m_{K}}\epsilon^{\mu\nu\alpha\beta}q_{\alpha}p_{K\beta},$$

06-12.06.2010

formfactors in ChPT O(p⁶) : general formulae

$$\frac{F_V(p^2)}{4\sqrt{2}\pi^2 F_K} = \frac{m_K}{4\sqrt{2}\pi^2 F_K} \left\{ 1 - \frac{256}{3}\pi^2 m_K^2 C_7^r + 256\pi^2 (m_K^2 - m_\pi^2) C_{11}^r + \frac{64}{3}\pi^2 p^2 C_{22}^r - \frac{1}{16\pi^2 (\sqrt{2}F_K)^2} \left[\frac{3}{2} m_\eta^2 \ln \left(\frac{m_\eta^2}{\mu^2} \right) + \frac{7}{2} m_\pi^2 \ln \left(\frac{m_\pi^2}{\mu^2} \right) + 3m_K^2 \ln \left(\frac{m_K^2}{\mu^2} \right) - 2\int \left[x m_\pi^2 + (1 - x) m_K^2 - x(1 - x) p^2 \right] \ln \left(\frac{x m_\pi^2 + (1 - x) m_K^2 - x(1 - x) p^2}{\mu^2} \right) dx - 2\int \left[x m_\eta^2 + (1 - x) m_K^2 - x(1 - x) p^2 \right] \ln \left(\frac{x m_\eta^2 + (1 - x) m_K^2 - x(1 - x) p^2}{\mu^2} \right) dx - 4\int m_\pi^2 \ln \left(\frac{m_\pi^2}{\mu^2} \right) dx \right] \right\},$$
(9)

$$\begin{split} F_{A}(p^{2}) &= \left(\frac{4\sqrt{2}m_{K}}{F_{K}}(L_{9}^{r}+L_{10}^{r}) + \frac{m_{K}}{6F_{K}^{3}(2\pi)^{8}}[142.65(m_{K}^{2}-p^{2})-198.3] \right) \\ &- \frac{m_{K}}{4\sqrt{2}F_{K}^{3}\pi^{2}} \left\{ (4L_{3}^{r}+7L_{9}^{r}+7L_{10}^{r})m_{\pi}^{2}\ln\left(\frac{m_{\pi}^{2}}{m_{\rho}^{2}}\right) + 3\left(L_{9}^{r}+L_{10}^{r}\right)m_{\eta}^{2}\ln\left(\frac{m_{\eta}^{2}}{m_{\rho}^{2}}\right) \\ &+ 2\left(8L_{1}^{r}-4L_{2}^{r}+4L_{3}^{r}+7L_{9}^{r}+7L_{10}^{r}\right)m_{K}^{2}\ln\left(\frac{m_{K}^{2}}{m_{\rho}^{2}}\right) \right\} \\ &- \frac{4\sqrt{2}m_{K}}{3F_{K}^{3}} \left\{ 2m_{\pi}^{2}(18y_{18}^{r}-2y_{81}^{r}-6y_{82}^{r}+2y_{83}^{r}+3y_{84}^{r}-y_{85}^{r}+6y_{103}^{r}) \\ &+ 2m_{K}^{2}(18y_{17}^{r}+36y_{18}^{r}-4y_{81}^{r}-12y_{82}^{r}+4y_{83}^{r}+6y_{84}^{r}+4y_{85}^{r}-3y_{100}^{r}) \\ &+ 6y_{102}^{r}+12y_{103}^{r}-6y_{104}^{r}+3y_{109}^{r}) + \frac{3}{2}(m_{K}^{2}-p^{2})(2y_{100}^{r}-4y_{109}^{r}+y_{110}^{r}) \right\}, \end{split}$$

ChPT O(p⁴) value

06-12.06.2010

One-loop diagrams in ChPT O(p⁶)

Figure 1: One-loop diagrams that contribute to F_V in $P_{\ell 2\gamma}$