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Textbook formula for screening:

U(r) =
Q

4πr
→
Q exp(−mDr)

4πr
,

because the time-time component of
the photon propagator acquires “mass”:

k2→ k2 + Π00(k) = k2 +m2
D ,

where e.g. for relativistic fermions

m2
D = e2

(
T 2/3 + µ2/π2

)
.
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Strangely until recently effects on
screening from condensate of a charged
Bose field were not studied.
Consider electrically neutral plasma
with large electric charge density of
fermions compensated by charged bosons.
Bosons condense when their chemical
potential reaches maximum value:

µB = mB .
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Equilibrium distribution of condensed
bosons:

fB = Cδ(3)(q) +
1

exp [(E −mB)/T ]± 1

annihilates collision integral for an
arbitrary constant C.
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Icoll ∼
[
Πfi(1± ff)− (i↔ f)

]
dτ .

Icoll = 0 for arbitrary T and C iff
µ = m. Equilibrium distributions are
always determined by 2 parameters:
T and µ if µ < m and by T and C if
µ = m.
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In calculations neither imaginary time
method which may be inconvenient in
presence of condensate, nor Matsubara-
Keldysh technique are used. We started
from the quantum equations of mo-
tion, solved them up to e2 order, and
averaged the corresponding operators
not only over vacuum but also over
“non-empty” medium.
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Operator Maxwell equations:

∂νF
µν(x) = J µB(x) +J µF (x) ,

where bosonic current is

J µB(x) = −i e[(φ†(x)∂µφ(x))−
(∂µφ†(x))φ(x)] + 2e2Aµ(x)|φ(x)|2 ,
plus fermionic current:

J µF (x) = eψ̄γµψ .
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Using equation of motion for quan-
tum operator φ:

(∂2 +m2)φ(x) = J φ(x)

express φ through Aµ:

φ(x) = φ0(x) +

∫∫∫
d4yGB(x− y)J φ(y) ,

φ0 is free field operator. In the lowest
order in e take φ = φ0 in J µB(x).
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The r.h.s. of the Maxwell equations
in e2 order is linear (but non-local) in
Aµ and bilinear in φ0 and ψ0.
Expand free fields as usually:

φ0(x) =

∫∫∫
dq̃
[
a(q)e−iqx + b†(q)eiqx

]
.

Average over medium:

〈a†(q)a(q′)〉 = fB(Eq)δ
(3)(q− q′),

〈a(q)a†(q′)〉 = [1 + fB(Ep)]δ
(3)(q− q′) .
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Solving Fourier transformed linear
Maxwell equation for A0:

Π00(0, k) =
e2

2π2

∫∫∫ ∞
0

dq q2

EB
[fB(EB, µB)

+f̄B(EB, µ̄B)][1 +
E2
B

kq
ln |

2q + k

2q − k
|] .

Asymptotics of the screened potential
of charged impurities is determined
by the singularities of Π00 in complex
k-plane.
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Two types of singularities:

1. Poles of [k2 + Π00(k)]−1. E.g. De-
bye pole. Necessary to check that the
position of the poles are at small k,
such that the infrared asymptotics of
Π00 is valid.
2. Singularities of Π00(k), originating
from the pinch of the integration con-
tour in q-plane by poles of f and by
branch points of log.
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Without condensate one obtains the
usual k-independent Debye screening:

Π00(0, k) = m2
D

originating from a pole at imaginary
axis of k.
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With condensate the corrections to
Π00 at low k are infrared singular:

∆Π00

e2
=
m2
BT

2k
+

C

(2π)3mB

(
1 +

4m2
B

k2

)
Both terms in the r.h.s. appear only
if µ = mB.
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Instead of exponential the screening
becomes power law and oscillating, de-
pending upon parameters, mj:

Π00 = m2
0 +m3

1/k+m4
2/k

2.

May this have something to do with
confinement? Recent paper: P. Gaete,
E. Spalucci, 0902.00905 – confinement
in Higgs phase.
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Contribution from poles in the limit
of largem2r but when power law terms
are subdominant:

U(r)pole =
Q

4πr
exp (−

√
e/2m2r)×

cos (
√
e/2m2r).

Oscillating screening is known for
degenerate fermions, Friedel oscilla-
tions. Observed in experiment.
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Comment.
Friedel oscillations are usually consid-
ered at T = 0. In this case the in-
tegral over q is in finite interval and
the singularity in k appears when log
branch point coinsides with the upper
limit of the integration.
T = 0 limit can be obtained in the
“pinch” method by summing all the
singularities.
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Contribution from the integral along
imaginary axis, which is nonzero be-
cause Π00 contains an odd in k term.
If m2 6= 0, the dominant term is

U(r) = −
12Qm3

1

π2e2r6m8
2

.

If T 6= 0, µ = mB, but the condensate
is not yet formed, the asymptotic de-
crease of the potential becomes:

U(r) = −
Q

π2e2r4m3
1

= −
2Q

π2e2r4m2
BT

.
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Contribution from logarithmic cuts (anal-
ogous to Friedel oscillations for fermions).

If the first “pinch” (between the poles
of f(q) and logarithmic branch point)
dominates:

U1(r) = −
32πQ

e2mBr
2

e−z

ln2(2
√

2z)
sin z ,

where z = 2r
√

2πTmB.
NB: U1(r) is inversely proportional to
e2 and formally vanishes at T → 0,
but remains finite if

√
TmBr 6= 0 .
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All pinches are comparable:

U(r) ≈ −
3Q

2e2T 2m3
Br

6 ln3(
√

8mBTr)
.

U ∼ T−2 valid if r � 1/
√

16πTmB,
i.e. if T = 0.1K and mB = 1GeV
the distance should be bounded from
above as r� 3 · 10−8 cm.
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Condensation of vector bosons.
W± would condense in the early uni-
verse if lepton asymmetry was suffi-
ciently high. Plasma neutrality was
maintained by quarks and leptons.
Depending on the sign of the pairwise
spin-spin couplingW ’s would condense
either in S = 0 (scalar) state or in
S = 2 (ferromagnetic) state.
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Magnetic spin-spin interaction through
one photon exchange (similar to Breit
equation):

U
spin
em (r) =

e2ρ2

4πm2
W

[
(S1 · S2)

r3
−

3
(S1 · r)(S2 · r)

r5
−

8π

3
(S1 · S2)δ(3)(r)

]
.

Here ρ is the ratio of magnetic mo-
ment of W to the standard one.
For S-wave the energy is shifted by
the last term only.
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Local quartic self-coupling of W :

U
(spin)
4W =

e2

8m2
W sin2 θW

(S1S2)δ(3)(r).

The net result Uem+U4W is negative,
so S = 2 state is energetically favor-
able and spontaneous magnetization
in the early universe is possible.
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Suppression due to screening.
The ij component of W propagator
probably remains massless: Πij ∼ 1/q2.
In Abelian QED it is true in pertur-
bation theory, while in non-Abelian
theories the screening may occur in
higher orders of perturbation theory
due to infrared singularities. The screen-
ing would diminish the long-range fer-
romagnetic spin-spin coupling while
the local W 4 coupling is not screened.
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If the propagator is modified, and the
wave function ofW -bosons is constant
in space, the spin-spin energy shift is:

δE ∼
∫∫∫
d3qδ(q)

(2π)3

q2(S1S2)− (qS1)(qS2)

q2 + Πss(q)

δE = 0, if Πss 6= 0 at q = 0.
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However, the integration over space
should be done with an upper limit, l,
equal to the average distance between
the W bosons so instead of δ(3)(q), we
obtain:∫∫∫ l

0
d3reiqr =

4π

q3
[sin (ql)− ql cos (ql)] .

and the energy shift is non-zero:

δE = −
(S1S2)e2

l3m2
W

F (l) ,

F (l) =

∫∫∫ ∞
0

dx
[
x sinx+ l2Πss cosx

]
x2 + l2Πss(x/l)

.
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If l2Πss is nonnegligible the e.m. part
of the spin-spin interaction would be
suppressed and the ferromagnet turns
into an antiferromagnet. This might
happen at T above the EW phase tran-
sition when the Higgs condensate is
destroyed and mW,Z appear as a re-
sult of temperature and density cor-
rections and are relatively small.
The quantitative statement depends
upon the (unknown) modification of
the space-space part of the photon prop-
agator in presence of the Bose con-
densate of charged W .
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Problem of large scale magnetic fields:
B ∼ µG at several kpc. In the inter-
galactic space the fields are probably
2-3 orders of magnitude weaker, but
still non-vanishing.
Dynamo operates only in galaxies.
Maybe ferromagnetism of W might
create seeds for large scale magnetic
fields.
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