CONDENSATION OF CHARGED BOSONS IN PLASMA PHYSICS AND COSMOLOGY

A.D. Dolgov

ITEP, 117218, Moscow, Russia INFN, Ferrara 40100, Italy University of Ferrara, Ferrara 40100, Italy

16th International Seminar on High Energy Physics QUARKS 2010

Kolomna, Russia June 6-12, 2010. **Based on:**

A.D. Dolgov, A. Lepidi, G. Piccinelli, JCAP 0902 (2009) 027;
Phys. Rev D, 80 (2009) 125009;
arXiv: 1005.2702 [astro-ph].
Similar results but another method:
G. Gabadadze, R.A. Rosen,
Phys. Lett. B 658 (2008) 266;
JCAP 0810 (2008) 030;
JCAP 1004 (2010) 028. **Textbook formula for screening:**

$$U(r) = rac{Q}{4\pi r} o rac{Q\,\exp(-m_D r)}{4\pi r},$$

because the time-time component of the photon propagator acquires "mass":

$$k^2
ightarrow k^2 + \Pi_{00}(k) = k^2 + m_D^2 \,,$$

where e.g. for relativistic fermions

$$m_D^2 = e^2 \left(T^2/3 + \mu^2/\pi^2
ight).$$

Strangely until recently effects on screening from condensate of a charged Bose field were not studied. Consider electrically neutral plasma with large electric charge density of fermions compensated by charged bosons Bosons condense when their chemical potential reaches maximum value:

 $\mu_B = m_B$.

Equilibrium distribution of condensed bosons:

$$f_B = C \delta^{(3)}({
m q}) + rac{1}{\exp{[(E-m_B)/T]}\pm 1}$$

annihilates collision integral for an arbitrary constant C.

$I_{coll} \sim \left[\Pi f_i(1 \pm f_f) - (i \leftrightarrow f)\right] d\tau$.

 $I_{coll} = 0$ for arbitrary T and C iff $\mu = m$. Equilibrium distributions are always determined by 2 parameters: T and μ if $\mu < m$ and by T and C if $\mu = m$.

In calculations neither imaginary time method which may be inconvenient in presence of condensate, nor Matsubara-Keldysh technique are used. We started from the quantum equations of motion, solved them up to e^2 order, and averaged the corresponding operators not only over vacuum but also over "non-empty" medium. **Operator Maxwell equations:**

 $\partial_
u F^{\mu
u}(x) = {\cal J}^\mu_{\,B}(x) + {\cal J}^\mu_{\,F}(x)\,,$

where bosonic current is

 $egin{split} \mathcal{J}^{\mu}_{B}(x) &= -i\,e[(\phi^{\dagger}(x)\partial^{\mu}\phi(x)) - \ (\partial^{\mu}\phi^{\dagger}(x))\phi(x)] + 2e^{2}A^{\mu}(x)|\phi(x)|^{2}\,, \end{split}$

plus fermionic current:

 ${\cal J}^{\mu}_{F}(x)=ear{\psi}\gamma_{\mu}\psi\,.$

Using equation of motion for quantum operator ϕ :

$$(\partial^2 + m^2)\phi(x) = {\mathcal J}_\phi(x)$$

express ϕ through A_{μ} :

$$\phi(x)=\phi_0(x)+\int d^4y\,G_B(x-y){\cal J}_\phi(y)\,,$$

 ϕ_0 is free field operator. In the lowest order in e take $\phi = \phi_0$ in $\mathcal{J}^{\mu}_B(x)$.

The r.h.s. of the Maxwell equations in e^2 order is linear (but non-local) in A_{μ} and bilinear in ϕ_0 and ψ_0 . Expand free fields as usually:

$$\phi_0(x) = \int d ilde q \left[a(q) e^{-iqx} + b^\dagger(q) e^{iqx}
ight] \, .$$

Average over medium:

 $egin{aligned} &\langle a^{\dagger}(\mathbf{q})a(\mathbf{q'})
angle = f_B(E_q)\delta^{(3)}(\mathbf{q}-\mathbf{q'}), \ &\langle a(\mathbf{q})a^{\dagger}(\mathbf{q'})
angle = [1+f_B(E_p)]\delta^{(3)}(\mathbf{q}-\mathbf{q'})\,. \end{aligned}$

Solving Fourier transformed linear Maxwell equation for A_0 :

$$\begin{split} \Pi_{00}(0,k) &= \frac{e^2}{2\pi^2} \int_0^\infty \frac{dq\,q^2}{E_B} [f_B(E_B,\mu_B) \\ &+ \bar{f}_B(E_B,\bar{\mu}_B)] [1 + \frac{E_B^2}{kq} \ln |\frac{2q+k}{2q-k}|] \,. \end{split}$$

Asymptotics of the screened potential of charged impurities is determined by the singularities of Π_{00} in complex *k*-plane. Two types of singularities:

1. Poles of $[k^2 + \Pi_{00}(k)]^{-1}$. E.g. Debye pole. Necessary to check that the position of the poles are at small k, such that the infrared asymptotics of Π_{00} is valid.

2. Singularities of $\Pi_{00}(k)$, originating from the pinch of the integration contour in q-plane by poles of f and by branch points of log.

Without condensate one obtains the usual k-independent Debye screening:

$$\Pi_{00}(0,k)=m_D^2$$

originating from a pole at imaginary axis of k.

With condensate the corrections to Π_{00} at low k are infrared singular:

$$rac{\Delta \Pi_{00}}{e^2} = rac{m_B^2 T}{2k} + rac{C}{(2\pi)^3 m_B} \left(1 + rac{4m_B^2}{k^2}
ight)$$

Both terms in the r.h.s. appear only if $\mu = m_B$.

Instead of exponential the screening becomes power law and oscillating, depending upon parameters, m_j :

$$\Pi_{00} = m_0^2 + m_1^3/k + m_2^4/k^2.$$

May this have something to do with confinement? Recent paper: P. Gaete, E. Spalucci, 0902.00905 – confinement in Higgs phase. Contribution from poles in the limit of large m_2r but when power law terms are subdominant:

$$U(r)_{pole} = rac{Q}{4\pi r} \exp{(-\sqrt{e/2}m_2r)} imes \cos{(\sqrt{e/2}m_2r)}.$$

Oscillating screening is known for degenerate fermions, Friedel oscillations. Observed in experiment.

Comment.

Friedel oscillations are usually considered at T = 0. In this case the integral over q is in finite interval and the singularity in k appears when log branch point coinsides with the upper limit of the integration.

T = 0 limit can be obtained in the "pinch" method by summing all the singularities. Contribution from the integral along imaginary axis, which is nonzero because Π_{00} contains an odd in k term. If $m_2 \neq 0$, the dominant term is

$$U(r)=-rac{12Qm_1^3}{\pi^2 e^2 r^6 m_2^8}.$$

If $T \neq 0$, $\mu = m_B$, but the condensate is not yet formed, the asymptotic decrease of the potential becomes:

 $U(r) = -\frac{Q}{\pi^2 e^2 r^4 m_1^3} = -\frac{2Q}{\pi^2 e^2 r^4 m_B^2 T}.$

Contribution from logarithmic cuts (analogous to Friedel oscillations for fermions). If the first "pinch" (between the poles of f(q) and logarithmic branch point) dominates:

 $U_1(r) = -rac{32\pi Q}{e^2 m_B r^2} rac{e^{-z}}{\ln^2(2\sqrt{2}z)} \sin z \,,$

where $z = 2r\sqrt{2\pi T m_B}$. NB: $U_1(r)$ is inversely proportional to e^2 and formally vanishes at $T \to 0$, but remains finite if $\sqrt{Tm_B}r \neq 0$. All pinches are comparable: $U(r) \approx -\frac{3Q}{2e^2T^2m_B^3r^6\ln^3(\sqrt{8m_BT}r)}$. $U \sim T^{-2}$ valid if $r \ll 1/\sqrt{16\pi Tm_B}$, i.e. if T = 0.1K and $m_B = 1$ GeV the distance should be bounded from above as $r \ll 3 \cdot 10^{-8}$ cm.

Condensation of vector bosons.

 W^{\pm} would condense in the early universe if lepton asymmetry was sufficiently high. Plasma neutrality was maintained by quarks and leptons. Depending on the sign of the pairwise spin-spin coupling W's would condense either in S = 0 (scalar) state or in S = 2 (ferromagnetic) state.

Magnetic spin-spin interaction through one photon exchange (similar to Breit equation):

$$U_{em}^{spin}(r) = rac{e^2
ho^2}{4\pi m_W^2} igg[rac{(S_1\cdot S_2)}{r^3} - \ 3rac{(S_1\cdot r)(S_2\cdot r)}{r^5} - rac{8\pi}{3}(S_1\cdot S_2)\delta^{(3)}(r) igg].$$

Here ρ is the ratio of magnetic moment of W to the standard one. For *S*-wave the energy is shifted by the last term only. Local quartic self-coupling of W:

$$U_{4W}^{(spin)} = rac{e^2}{8m_W^2 \sin^2 heta_W} (S_1 S_2) \delta^{(3)}(r).$$

The net result $U_{em} + U_{4W}$ is negative, so S = 2 state is energetically favorable and spontaneous magnetization in the early universe is possible.

Suppression due to screening.

The ij component of W propagator probably remains massless: $\Pi_{ij} \sim 1/q^2$. In Abelian QED it is true in perturbation theory, while in non-Abelian theories the screening may occur in higher orders of perturbation theory due to infrared singularities. The screening would diminish the long-range ferromagnetic spin-spin coupling while the local W^4 coupling is not screened. If the propagator is modified, and the wave function of W-bosons is constant in space, the spin-spin energy shift is:

 $\delta E \sim \int \frac{d^3 q \delta(q)}{(2\pi)^3} \frac{q^2 (S_1 S_2) - (q S_1)(q S_2)}{q^2 + \Pi_{ss}(q)}$

 $\delta E=0, ext{ if } \Pi_{ss}
eq 0 ext{ at } q=0.$

However, the integration over space should be done with an upper limit, l, equal to the average distance between the W bosons so instead of $\delta^{(3)}(q)$, we obtain:

 $\int_{0}^{l} d^{3}r e^{iqr} = \frac{4\pi}{q^{3}} \left[\sin(ql) - ql\cos(ql) \right].$

and the energy shift is non-zero:

$$\delta E = -rac{(S_1S_2)e^2}{l^3m_W^2}F(l)\,,$$

$$F(l) = \int_0^\infty rac{dx \left[x\,\sin x + l^2 \Pi_{ss} \cos x
ight]}{x^2 + l^2 \Pi_{ss} (x/l)}$$

If $l^2\Pi_{ss}$ is nonnegligible the e.m. part of the spin-spin interaction would be suppressed and the ferromagnet turns into an antiferromagnet. This might happen at T above the EW phase transition when the Higgs condensate is destroyed and $m_{W,Z}$ appear as a result of temperature and density corrections and are relatively small. The quantitative statement depends upon the (unknown) modification of the space-space part of the photon propagator in presence of the Bose condensate of charged W. Problem of large scale magnetic fields: $B \sim \mu G$ at several kpc. In the intergalactic space the fields are probably 2-3 orders of magnitude weaker, but still non-vanishing.

Dynamo operates only in galaxies. Maybe ferromagnetism of W might create seeds for large scale magnetic fields.