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Abstract

Neutrino mass matrix via a seesaw mechanism is constructed by assumming that
the underlying symmetry of both heavy Majorana and Dirac neutrino mass matrices
is the discrete subgroup ∆(27) symmetry of SU(3). Using the experimental data of
neutrino oscillations, the neutrino mass matrix exhibits maximal νµ − ντ mixing and
has a specific prediction on the effective neutrino mass in neutrinoless double beta
decay which can be tested in future experiment.
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1 Introduction

In the Standard Model of Electroweak interaction (also known as Glashow-Weinberg-
Salam model), neutrinos (as a Dirac particle) are massless due to nature of neutrinos
it self which only left-handed neutrinos or right-handed antineutrinos participate in
the weak interactions. Recently, there is a convincing evidence that neutrinos have a
non-zero mass. This evidence was based on the experimental facts that both solar and
atmospheric neutrinos undergo oscillations [1, 2, 3, 4, 5, 6]. The neutrino oscillation
implies that the neutrinos have a non-zero mass and mixing does exist in neutrino
sector.

A global analysis of neutrino oscillations data gives the best fit value to solar neu-
trino squared-mass differences [7],

∆m2
21 = (8.2+0.3

−0.3)× 10−5 eV2 (1)
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with

tan2 θ21 = 0.39+0.05
−0.04, (2)

and for the atmospheric neutrino squared-mass differences

∆m2
32 = (2.2+0.6

−0.4)× 10−3 eV2 (3)

with

tan2 θ32 = 1.0+0.35
−0.26, (4)

where ∆m2
ij = m2

i −m2
j (i, j = 1, 2, 3) with mi is the neutrino mass in eigenstates basis

νi (i = 1, 2, 3), and θij is the mixing angle between νi and νj . The mass eigenstates
basis are related to the weak (flavor) eigenstates basis (νe, νµ, ντ ) as follows,







νe
νµ
ντ






= V







ν1

ν2

ν3






(5)

where V is the mixing matrix.
In accordance with the non-zero neutrino squared-mass differences and neutrino

mixing, several models for the neutrino mass matrix together with the responsible
mechanisms for generating it patterns have been proposed by many authors [8, 9, 10,
11, 12, 13, 14, 15]. One of the most interesting mechanism that can generate a small
neutrino mass is the seesaw mechanism, in which the right-handed neutrino νR has
a large Majorana mass MN and the left-handed neutrino νL obtain a mass through
leakage of the order of (m/MN ) with m is the Dirac mass [12].

According to the seesaw mechanism [16], the neutrino mass matrix Mν is given by,

Mν ≈ −MDM−1

N MT
D (6)

where MD and MN are the Dirac and Majorana mass matrices respectively. The mass
matrix model of a massive Majorana neutrino MN that constrained by the solar and at-
mospheric neutrinos deficit and incorporating the seesaw mechanism and Peccei-Quinn
symmetry have been reported by Fukuyama and Nishiura [17]. It has been a guiding
principle that the presence of hierarchies or tiny quantities imply a certain protection
symmetry in undelying physics. The candidates of such symmetry in neutrino physics
may include U(1)L′ based on the conservation of Le−Lµ−Lτ = L′ and a µ−τ symme-
try based on the invariance of flavor neutrino mass term underlying the interchange of
νµ and ντ . As we have already known that maximal mixing in atmospheric neutrino,
as well as vanishing of the Ue3, is the consequences of a µ − τ symmetry [18, 19, 20].
The µ − τ symmetry also known as 2 − 3 symmetry. By evaluating the papers that
have been reported so far, the application of symmetry into neutrino mass matrix is
always in the neutrino mass matrix in flavor basis. It is also pointed out by Ma [21]
that it is more sense to consider the structure of MN for its imprint on Mν .

In order to consider the structure of the MN for its imprint on Mν , in this paper,
the neutrino mass matrix Mν is constructed via a seesaw mechanism with both heavy
Majorana and Dirac neutrino mass matrices are assumed to have a discrete subgroup
∆(27) of SU(3) as its underlying symmetry. This paper is organized as follows: In
Section 2, the discrete subgroup ∆(27) of SU(3) is used as the undelying symmetry
for both heavy Majorana and Dirac neutrino mass matrices. In Section 3, a seesaw
mechanism is used to obtain neutrino mass matrix and evaluate its phenomenological
consequences. Finally, the Section 4 is devoted to a conclusion.
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2 Majorana and Dirac Mass Matrices from ∆(27)

Symmetry

As previously stated in Section 1, the aim of the present Section is to construct the
heavy Majorana and Dirac neutrino mass matrices based on the discrete subgroup
∆(27) of SU(3) symmetry. In order to realize the goal of this section, first we write
down explicitly the irreducible representation of of ∆(27) symmetry. The next step
is to construct the heavy Majorana and Dirac neutrino mass matrices using ∆(27)
symmetry with three Higgs doublets and three Higgs triplets.

As one know that the non-Abelian discrete subgroup ∆(27) has 27 elements divided
into 11 equivalence classes. It has 9 one-dimensional irreducible representations 1i

(i = 1, 2, .., 9) and 2 three-dimensional ones 3 and 3̄. Its character table is given below,
where n is the number of elements, h is the order of each element, and ω =exp(2π/3)
with 1 + ω + ω2 = 0.

Table 1: Character table of ∆(27).

Class n h 11 12 13 14 15 16 17 18 19 3 3̄

C1 1 1 1 1 1 1 1 1 1 1 1 3 3

C2 1 3 1 1 1 1 1 1 1 1 1 3ω 3ω2

C3 1 3 1 1 1 1 1 1 1 1 1 3ω2 3ω

C4 3 3 1 ω ω2 1 ω2 ω 1 ω ω2 0 0

C5 3 3 1 ω2 ω 1 ω ω2 1 ω2 ω 0 0

C6 3 3 1 1 1 ω2 ω2 ω2 ω ω ω 0 0

C7 3 3 1 ω ω2 ω2 ω 1 ω ω2 1 0 0

C8 3 3 1 ω2 ω ω2 1 ω ω 1 ω2 0 0

C9 3 3 1 1 1 ω ω ω ω2 ω2 ω2 0 0

C10 3 3 1 ω2 ω ω ω2 1 ω2 ω 1 0 0

C11 3 3 1 ω ω2 ω 1 ω2 ω2 1 ω 0 0

The group multiplication rules are [22]

3× 3 = 3̄+ 3̄+ 3̄, (7)

and

3× 3̄ =
9

∑

i=1

1i, (8)

where

11 = 11̄ + 22̄ + 33̄, 12 = 11̄ + ω22̄ + ω233̄, 13 = 11̄ + ω222̄ + ω33̄, (9)

14 = 12̄ + 23̄ + 31̄, 15 = 12̄ + ω23̄ + ω231̄, 16 = 12̄ + ω223̄ + ω31̄, (10)

17 = 21̄ + 32̄ + 13̄, 18 = 21̄ + ω232̄ + ω13̄, 19 = 21̄ + ω32̄ + ω213̄. (11)

Let the lepton doublets (νi, li) transform as 3 under ∆(27) and the lepton singlet
lci as 3̄, then with three Higgs doublets transforming as 11,12,13, the charged lepton
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and the Dirac neutrino mass matrix are diagonal and has three independent masses.
Thus, the pattern of the Dirac neutrino mass matrix as following

MD =







a 0 0
0 b 0
0 0 c






. (12)

At the same time, with three Higgs triplets transforming as 3, when vacuum expec-
tation values of three Higgs triplets are (1,1,1), the general pattern of the heavy
Majorana neutrino mass matrix is given by

MN =







A B B
B A B
B B A






. (13)

3 Neutrino Mass Matrix via a Seesaw Mecha-

nism

Using the seesaw mechanism in Eq. (6), the Dirac neutrino mass matrices in Eq. (12),
and the heavy Majorana neutrino mass matrices in Eq. (13), we finally obtain the
neutrino mass matrix with pattern

Mν =







P Q R
Q S T
R T U






. (14)

If we write P = fx, Q = y, R = z, S = fz, T = x and U = fy, then the neutrino
mass matrix in Eq. (14) has the form

Mν =







fx y z
y fz x
z x fy






. (15)

Given the form of Eq. (15), in the limit θ13 = 0 requires y = z. Within this latter
assumption, the Eq. (15) becomes

Mν =







fx y y
y fy x
y x fy






, (16)

which exhibits maximal νµ − ντ mixing.
One can see that the eigenvalues of the neutrino mass matrix of Eq. (16) are given

by

λ1 = −x+ fy, (17)

λ2 =
1

2

[

f(x+ y) + x− ([f(y − x)]2 + 2fx(y − x) + x2 + 8y2)1/2
]

, (18)

λ3 =
1

2

[

f(x+ y) + x+ ([f(y − x)]2 + 2fx(y − x) + x2 + 8y2)1/2
]

. (19)
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Using experimental facts that ∆m2
21 << ∆m2

31, it is easy to see that the eigenvalue λ3

corresponds to m2, λ2 corresponds to m1, and λ1 corresponds to m3. We consider first
the case limit ∆m2

solar = ∆m2
21 → 0. In this case, we have

x ≈ − fy

f + 1
. (20)

If we insert the value of x as shown in Eq. (20) into Eq. (16), then we have neutrino
mass matrix with pattern

Mν ≈









−f2y
f+1

y y

y fy −fy
f+1

y −fy
f+1

fy









. (21)

If neutrino mass matrix Mν of Eq. (21) is diagonalized by mixing matrix V of Eq.
(5) with V given by [21]

V =







cos θ − sin θ 0
sin θ/

√
2 cos θ/

√
2 −1/

√
2

sin θ/
√
2 cos θ/

√
2 1/

√
2






, (22)

then we obtain,

tan θ ≈
√
2f2 −

√

2f4 + 4f2 + 8f + 4

2(f + 1)
. (23)

If θ is the θ21 in Eq. (2), then from Eq. (23) we can have the value of f ≈ −0.5546
or f ≈ 1.2453. From Eqs. (20) and (21), if we put the value of f into this matrix, then
the neutrino mass matrix in Eq. (21) becomes

Mν ≈ y







−0.6907 1 1
1 −0.5546 1.2453
1 1.2453 −0.5546






, (24)

for f ≈ −0.5546, and

Mν ≈ y







−0.6907 1 1
1 1.2453 −0.5546
1 −0.5546 1.2453






, (25)

for f ≈ 1.2453. It is also clear that both neutrino mass matrices in Eqs. (24) and (25)
have the same eigenvalues which correspond to neutrino masses: |m1| ≈ |m2| < |m3|.
One can see that ∆m2

21 ≈ 0 as previously assummed.
Using the advantages of the experimental data on neutrino oscillation as shown in

Eq. (3), from Eqs. (17)-(19), for both values of f we obtain the value if y ≈ 0.053705
which then gives the neutrino mass matrix

Mν ≈







−0.0371 0.0537 0.0537
0.0537 −0.0298 0.0669
0.0537 0.0669 −0.0298






, (26)
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for f ≈ −0.5546, and

Mν ≈







−0.0371 0.0537 0.0537
0.0537 0.0669 −0.0298
0.0537 −0.0298 0.0669






, (27)

for f ≈ 1.2453. From Eqs. (26) and (27), we obtained neutrino masses |m1| = |m2| =
0.0845 eV, and |m3| = 0.0967 eV which are incompatible with the experimental data
∆m2

21 6= 0.
Now, if we consider the values of ∆m2

21 = 8.2× 10−5 eV2 and ∆m2
31 = 2.2× 10−3

eV2 as constraints, then we should put |m2| = 0.0845 eV in order to maintain the
value of ∆m2

32, and it then implies that |m1| = 0.0840 eV. It is apparent from above
both neutrino mass matrices of Eqs, (26) and (27) that the effective neutrino mass mee

measured in neutrinoless double beta decay is simply given by the magnitude of the
νeνe entry of Mν , i.e.

∣

∣−f2y/(f + 1)
∣

∣ ≈ 0.0371 eV in both cases which can be tested
in future experiment.

4 Conclusion

Neutrino mass matrix Mν via a seesaw mechanism, with a discrete subgroup ∆(27)
of SU(3) to be assummed as the underlying symmetry for heavy Majorana and Dirac
neutrino mass matrices, can explain the maximal νµ − ντ mixing. Using the experi-
mental data as constraints for determining neutrino masses, we obtain neutrino masses
in normal hierarchy: |m1| = 0.0840 eV, |m2| = 0.0845 eV, and |m3| = 0.0967 eV. The
obtained neutrino mass matrix also has a specific prediction on the effective neutrino
mass in neutrinoless double beta decay which can be tested in future experiment.
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