A simple way to take into account back reaction on pair creation¹

Emil T. Akhmedov, Philipp Burda

ITEP & MIPT, Moscow, Russia

QUARKS'2010 Kolomna, Russia, June 7, 2010

ション ふゆ アメリア メリア しょうめん

¹Phys.Lett.B687:267-270,2010

Motivation

Why we should study problem of back reaction on classical background due to the quantim pair creation?

- Imprortance of the problem
 For high intensity field dynamics, for BH physics, for cosmology...
- Manifistation of new physics
 Especially in the gravity context of the problem
- Absence of simple systematic way of consideration Even in the simplest case of *scalar QED*!

うして ふゆう ふほう ふほう うらつ

Formulation of the problem and Strategy

Let's assume that at t = 0

- somehow a constant (everywhere in space) electric field was created (we neglect the boundary effects);
- ▶ there are no electrically charged particles present on top of the field ($\phi(x)|_{t=0} = 0$)
- one turns on interactions and *the pair creation begins* Strategy:

One has to calculate the electric current which is created by pairs and to take into account the field due to this current.

$$\partial^{\mu}F_{\mu\nu}(x,t) = \langle in|j_{\nu}(x,t)|in\rangle$$

What is the most simple, but nevertheless illustrative example?

Scalar QED with Dirichlet boundary conditions at t = 0

If one recall the definition of current for charged scalars

$$\begin{aligned} j_{\nu}(x) &= \phi^{*}(x) \left(\mathrm{i}e \overleftrightarrow{\partial}_{\nu} + 2e^{2}A_{\nu} \right) \phi(x) = \\ &= \left\{ \left[\mathrm{i}e \left(\frac{\partial}{\partial y^{\nu}} - \frac{\partial}{\partial z^{\nu}} \right) + 2e^{2}A_{\nu} \right] \phi^{*}(y_{\mu})\phi(z_{\mu}) \right\}_{y=z=x} \end{aligned}$$

then one could rewrite all through the *in-in propagator* of the theory

$$\langle in|j_{\nu}(x,t)|in\rangle = \left\{ \left[ie\left(\partial_{y^{\nu}} - \partial_{z^{\nu}}\right) + 2e^{2}A_{\nu} \right] G_{in-in}^{hs}(y,z) \right\}_{y=z=x}$$

where

$$G^{hs}_{in-in}(y,z) = \langle in | \phi^*\!(y) \phi(z) | in \rangle$$

is the in-in propagator in the background electric field on the half of $R^{3,1}$ ($t\in[0,+\infty)$)

Relationships of propagators

At the present moment our central equation reduced to the following form

$$\partial^{\mu}F_{\mu\nu}(x) = \left\{ \left[ie\left(\partial_{y^{\nu}} - \partial_{z^{\nu}}\right) + 2e^{2}A_{\nu} \right] G_{in-in}^{hs}(y,z) \right\}_{y=z=x}$$

For further simplifications let's express this *in-in propagator* for the half of $R^{3,1}$ through the *in-out propagator* for the full $R^{3,1}$. Two basic steps:

► From the consideration of Bogolubov transformation one can obtain, that for the full *R*^{3,1} space

$$G_{in-in}(z,y) = 2\operatorname{Re}\left[G_{out-in}(z,y)\right]$$

 Using *mirror sources* one can connect propagators for full space and for half space

$$G^{hs}_{out-in}(z,y) = G_{out-in}(z,y) - G_{out-in}(z,\overline{y})$$

where $\overline{y}=(-y_0,\vec{y})$ is the position of the mirror source

Summarize all above transformations and using Euclidean reformulation one arrived to the following version of our central equation

$$\partial_{\mu} F_{\mu\nu} = -2 \left[ie \left(\frac{\partial}{\partial y^{\nu}} - \frac{\partial}{\partial z^{\nu}} \right) + 2e^{2}A_{\nu} \right] \times \\ \times \operatorname{Re} \left[\left\langle z \left| \frac{1}{-D_{\mu}^{2} + m^{2}} \right| y \right\rangle - \left\langle z \left| \frac{1}{-D_{\mu}^{2} + m^{2}} \right| \bar{y} \right\rangle \right] \right|_{y=z=x}$$

here

$$\begin{split} G_{out-in}(z,y) &= \left\langle z \left| \frac{1}{-D_{\mu}^{2} + m^{2}} \right| y \right\rangle = \\ \left\langle z \left| \int_{0}^{\infty} dT e^{-(-D_{\mu}^{2} + m^{2})T} \right| y \right\rangle &= \int_{0}^{\infty} dT e^{-m^{2}T} \left\langle z \left| e^{D_{\mu}^{2}T} \right| y \right\rangle = \\ &= \int_{0}^{\infty} dT e^{-m^{2}T} \int_{x(0)=y; x(T)=z} \mathcal{D}x(\tau) \ e^{-\int_{0}^{T} (\frac{1}{4}\dot{x}^{2} + \mathrm{i}eA_{\mu}\dot{x}_{\mu})d\tau}. \end{split}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Computation for constant electric field

Let's put $F_{\mu\nu} = -iE(x_0)\delta_{3[\mu}\delta_{\nu]0}$ in the LHS of the equation $(\partial_{\mu}F_{\mu\nu} \rightarrow dE(x_0)/dx_0)$, and $A_{\mu} = Ex_0\delta_{\mu3}$ into the propagators:

$$\left\langle z \left| \frac{1}{-D_{\mu}^{2} + m^{2}} \right| y \right\rangle = e^{-S_{cl}[z,y]} \int_{0}^{\infty} dT e^{-m^{2}T} \frac{eET}{(4\pi T)^{2} \sinh(eET)},$$

where

$$S_{cl}[z,y] = \frac{(y_1 - z_1)^2 + (y_2 - z_2)^2}{4T} + \frac{e E \operatorname{coth}(e E T)}{4} \times \\ \times \left[(y_0 - z_0)^2 + (y_3 - z_3)^2 \right] + \mathrm{i} \frac{eE}{2} (z_0 + y_0) (z_3 - y_3)$$

(ロ) (型) (E) (E) (E) (O)

Substituting all expressions into the equation one obtain

$$\frac{dE}{dt} = -\operatorname{Re}\left(\mathrm{i}\frac{e^3 E^2 t}{8\pi^2} \int_0^\infty dT e^{-m^2 T} \frac{1}{T\sin(eET)}\right).$$

Using that

$$\operatorname{Im}\left(\int_0^\infty dT e^{-m^2 T} \frac{1}{T\sin(eET)}\right) = -\ln\left(1 + e^{-\frac{m^2 \pi}{eE}}\right),$$

one finally arrived to the one loop answer for the decay rate of the background electric field in our approximation

$$\frac{dE}{dt} = -\frac{e^3 E^2 t}{4\pi^2} \ln\left(1 + e^{-\frac{m^2 \pi}{eE}}\right)$$

ション ふゆ アメリア メリア しょうめん

Semiclassical consideration

One could restore the leading approximation of our one loop result on the general physical grounds: Energy of the electric field per unit volume $E^2/8\pi$ is spent on the work on the creation of pairs, which is proportional to e E z = e E t, here z is the separation distance between the members of the pair reached during the observation time t and also to the $w(E) \propto e^2 E^2 e^{-\frac{m^2\pi}{eE}}$ approximate Schwinger's pair creation probability rate per unit time and unit volume. Hence, one could write

$$\frac{d}{dt}E^2 \propto -2e\,E\,t\,w(E),$$

and obtain from here the leading approximation of our result

$$\frac{dE}{dt} \propto -2e^3 E^2 t \, e^{-\frac{m^2 \pi}{eE}}$$

Discussion

$$\frac{dE}{dt} = -\frac{e^3 E^2 t}{4\pi^2} \ln\left(1 + e^{-\frac{m^2 \pi}{eE}}\right)$$

- ▶ weak electric field ($eE << m^2$) changes slowly in time, because in this limit $\ln\left(1 + e^{-\frac{m^2\pi}{eE}}\right) \rightarrow 0$ and therefore $dE(t)/dt \rightarrow 0$
- In the strong field limit ($eE >> m^2$) there will be a fast decay $E(t) \propto 1/t^2$ it's just a hint, because in the case of the overcritical field we can not apply our approximation

Conclusions

- Simple and systematic way for acounting back reaction on pairs creation was analized
- Simplest model, which admit analytical investigation, was proposed

(ロ) (型) (E) (E) (E) (O)

 One loop answer for the decay rate of the weak background field was obtained

Thank you for your attention!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●