A simple way to take into account back reaction on pair creation ${ }^{1}$

Emil T. Akhmedov, Philipp Burda

ITEP \& MIPT,
Moscow, Russia

QUARKS'2010
Kolomna, Russia, June 7, 2010

Motivation

Why we should study problem of back reaction on classical background due to the quantim pair creation?

- Imprortance of the problem

For high intensity field dynamics, for BH physics, for cosmology...

- Manifistation of new physics Especially in the gravity context of the problem
- Absence of simple systematic way of consideration Even in the simplest case of scalar QED!

Formulation of the problem and Strategy

Let's assume that at $t=0$

- somehow a constant (everywhere in space) electric field was created (we neglect the boundary effects);
- there are no electrically charged particles present on top of the field $\left(\left.\phi(x)\right|_{t=0}=0\right)$
- one turns on interactions and the pair creation begins

Strategy:
One has to calculate the electric current which is created by pairs and to take into account the field due to this current.

$$
\partial^{\mu} F_{\mu \nu}(x, t)=\langle i n| j_{\nu}(x, t)|i n\rangle
$$

What is the most simple, but nevertheless illustrative example?
Scalar QED with Dirichlet boundary conditions at $t=0$

If one recall the definition of current for charged scalars

$$
\begin{aligned}
j_{\nu}(x) & =\phi^{*}(x)\left(\mathrm{i} e \stackrel{\leftrightarrow}{\partial}_{\nu}+2 e^{2} A_{\nu}\right) \phi(x)= \\
& =\left\{\left[\mathrm{ie}\left(\frac{\partial}{\partial y^{\nu}}-\frac{\partial}{\partial z^{\nu}}\right)+2 e^{2} A_{\nu}\right] \phi^{*}\left(y_{\mu}\right) \phi\left(z_{\mu}\right)\right\}_{y=z=x}
\end{aligned}
$$

then one could rewrite all through the in-in propagator of the theory

$$
\langle i n| j_{\nu}(x, t)|i n\rangle=\left\{\left[\mathrm{ie}\left(\partial_{y^{\nu}}-\partial_{z^{\nu}}\right)+2 e^{2} A_{\nu}\right] G_{i n-i n}^{h s}(y, z)\right\}_{y=z=x}
$$

where

$$
G_{i n-i n}^{h s}(y, z)=\langle i n| \phi^{*}(y) \phi(z)|i n\rangle
$$

is the in-in propagator in the background electric field on the half of $R^{3,1}(t \in[0,+\infty))$

Relationships of propagators

At the present moment our central equation reduced to the following form

$$
\partial^{\mu} F_{\mu \nu}(x)=\left\{\left[\mathrm{ie}\left(\partial_{y^{\nu}}-\partial_{z^{\nu}}\right)+2 e^{2} A_{\nu}\right] G_{i n-i n}^{h s}(y, z)\right\}_{y=z=x}
$$

For further simplifications let's express this in-in propagator for the half of $R^{3,1}$ through the in-out propagator for the full $R^{3,1}$. Two basic steps:

- From the consideration of Bogolubov transformation one can obtain, that for the full $R^{3,1}$ space

$$
G_{\text {in-in }}(z, y)=2 \operatorname{Re}\left[G_{\text {out-in }}(z, y)\right]
$$

- Using mirror sources one can connect propagators for full space and for half space

$$
G_{\text {out-in }}^{h s}(z, y)=G_{\text {out-in }}(z, y)-G_{\text {out-in }}(z, \bar{y})
$$

where $\bar{y}=\left(-y_{0}, \vec{y}\right)$ is the position of the mirror source

Summarize all above transformations and using Euclidean reformulation one arrived to the following version of our central equation

$$
\begin{aligned}
\partial_{\mu} F_{\mu \nu} & =-2\left[\mathrm{ie}\left(\frac{\partial}{\partial y^{\nu}}-\frac{\partial}{\partial z^{\nu}}\right)+2 e^{2} A_{\nu}\right] \times \\
& \times\left.\operatorname{Re}\left[\langle z| \frac{1}{-D_{\mu}^{2}+m^{2}}|y\rangle-\langle z| \frac{1}{-D_{\mu}^{2}+m^{2}}|\bar{y}\rangle\right]\right|_{y=z=x}
\end{aligned}
$$

here

$$
\begin{aligned}
& G_{\text {out }- \text { in }}(z, y)=\langle z| \frac{1}{-D_{\mu}^{2}+m^{2}}|y\rangle= \\
& \langle z| \int_{0}^{\infty} d T e^{-\left(-D_{\mu}^{2}+m^{2}\right) T}|y\rangle=\int_{0}^{\infty} d T e^{-m^{2} T}\langle z| e^{D_{\mu}^{2} T}|y\rangle= \\
& =\int_{0}^{\infty} d T e^{-m^{2} T} \int_{x(0)=y ; x(T)=z} \mathcal{D} x(\tau) e^{-\int_{0}^{T}\left(\frac{1}{4} \dot{x}^{2}+\mathrm{i} e A_{\mu} \dot{x}_{\mu}\right) d \tau}
\end{aligned}
$$

Computation for constant electric field

Let's put $F_{\mu \nu}=-\mathrm{i} E\left(x_{0}\right) \delta_{3[\mu} \delta_{\nu] 0}$ in the LHS of the equation $\left(\partial_{\mu} F_{\mu \nu} \rightarrow d E\left(x_{0}\right) / d x_{0}\right)$, and $A_{\mu}=E x_{0} \delta_{\mu 3}$ into the propagators:

$$
\langle z| \frac{1}{-D_{\mu}^{2}+m^{2}}|y\rangle=e^{-S_{c l}[z, y]} \int_{0}^{\infty} d T e^{-m^{2} T} \frac{e E T}{(4 \pi T)^{2} \sinh (e E T)},
$$

where

$$
\begin{aligned}
S_{c l}[z, y]= & \frac{\left(y_{1}-z_{1}\right)^{2}+\left(y_{2}-z_{2}\right)^{2}}{4 T}+\frac{e E \operatorname{coth}(e E T)}{4} \times \\
& \times\left[\left(y_{0}-z_{0}\right)^{2}+\left(y_{3}-z_{3}\right)^{2}\right]+\mathrm{i} \frac{e E}{2}\left(z_{0}+y_{0}\right)\left(z_{3}-y_{3}\right)
\end{aligned}
$$

Substituting all expressions into the equation one obtain

$$
\frac{d E}{d t}=-\operatorname{Re}\left(\mathrm{i} \frac{e^{3} E^{2} t}{8 \pi^{2}} \int_{0}^{\infty} d T e^{-m^{2} T} \frac{1}{T \sin (e E T)}\right) .
$$

Using that

$$
\operatorname{Im}\left(\int_{0}^{\infty} d T e^{-m^{2} T} \frac{1}{T \sin (e E T)}\right)=-\ln \left(1+e^{-\frac{m^{2} \pi}{e E}}\right),
$$

one finally arrived to the one loop answer for the decay rate of the background electric field in our approximation

$$
\frac{d E}{d t}=-\frac{e^{3} E^{2} t}{4 \pi^{2}} \ln \left(1+e^{-\frac{m^{2} \pi}{e E}}\right)
$$

Semiclassical consideration

One could restore the leading approximation of our one loop result on the general physical grounds:
Energy of the electric field per unit volume $E^{2} / 8 \pi$ is spent on the work on the creation of pairs, which is proportional to $e E z=e E t$, here z is the separation distance between the members of the pair reached during the observation time t and also to the $w(E) \propto e^{2} E^{2} e^{-\frac{m^{2} \pi}{e E}}$ approximate Schwinger's pair creation probability rate per unit time and unit volume. Hence, one could write

$$
\frac{d}{d t} E^{2} \propto-2 e E t w(E)
$$

and obtain from here the leading approximation of our result

$$
\frac{d E}{d t} \propto-2 e^{3} E^{2} t e^{-\frac{m^{2} \pi}{e E}}
$$

Discussion

$$
\frac{d E}{d t}=-\frac{e^{3} E^{2} t}{4 \pi^{2}} \ln \left(1+e^{-\frac{m^{2} \pi}{e E}}\right)
$$

- weak electric field $\left(e E \ll m^{2}\right)$ changes slowly in time, because in this limit $\ln \left(1+e^{-\frac{m^{2} \pi}{e E}}\right) \rightarrow 0$ and therefore $d E(t) / d t \rightarrow 0$
- In the strong field limit $\left(e E \gg m^{2}\right)$ there will be a fast decay $E(t) \propto 1 / t^{2}-$ it's just a hint, because in the case of the overcritical field we can not apply our approximation

Conclusions

- Simple and systematic way for acounting back reaction on pairs creation was analized
- Simplest model, which admit analytical investigation, was proposed
- One loop answer for the decay rate of the weak background field was obtained

Thank you for your attention!

