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Several approaches to 2D quantum geometry

• There exist several different approaches to the 2-D Quantum
Gravity. One of them is the continuous approach. In this ap-
proach the theory is determined by the functional integral over all
metrics. Calculation of this integral in conformal gauge leads to
the Liouville field theory. Therefore this approach is called the
Liouville Gravity.

• The other way to describe sum over 2d surfaces is the dis-
crete approach. It is based on the idea of approximation of two-
dimensional geometry by the ensemble of planar graphs of big size.
Technically the ensemble of graphs is usually defined by expansion
into a series of perturbation theory of integral over matrixes of
size N ×N . That is why this approach is called the Matrix Models
(further MM).

• There exist the third approach —2d Topological gravity. Witten
built axiomatics of this theory by studying intersection theory .
It was conjectured and checked (for genus-zero) that correlation
numbers in Topological gravity and in Matrix models coincide. It
should be mentioned that the coincidence takes place if correlation
numbers in OMM are calculated in KdV frame.
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The method of orthogonal polynomials

The partition function in One-Matrix Model

Z(vk, N) = log
∫
dMe−trV (vk,M)

where M is hermitian matrix N ×N and potential

V (vk,M) = N
p+1∑
k=1

vkM
2k

Expansion to Feynman diagrams in respect to the coupling con-

stants vk can be interpreted as genus expansion

Z =
∞∑
h=0

N2−2hZh,

h− genus of surfaces
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Now we want to compute the integral over M . The first step is

dioganlization the matrix M in the integral giving

Z(vk, N) = log
∫ N∏
i=1

dλi∆
2(λ)e−

∑
i V (vk,λi)

{λi} − eigenvalues of M

(1)

∆(λ) =
∏
i<j

(λi − λj)−Vandermonde determinant
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Introducing the set of orthogonal polynomials Pn(λ) = λn + ...,∫ ∞
−∞

dλe−V (λ)Pn(λ)Pm(λ) = snδnm.

one obtains for the partition function

Z = N
N−1∑
k=1

(1− k/N) log(sk/sk−1).

Using the relation

λPk(λ) = Pk+1(λ) +RkPk−1(λ)

One gets ∫
e−V PkλPk−1dλ = Rksk−1 = sk (2)

Rk = sk/sk−1

Therefore

Z = N
N−1∑
k=1

(1− k/N) logRk
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We obtain the relation for Rk using

ksk−1 =
∫
e−V P ′kPk−1 =

∫
e−V V ′PkPk−1.

V ′(λ) =
p+1∑
k=1

2kvkλ
2k−1

and applying 2n− 1 times the previous relation for λPk(λ)

λ2n−1Pk = λ2n−2(Pk+1 +RkPk−1) =

= λ2n−3(Pk+2 + (Rk+1)Pk + (Rk)Pk + (RkRk−1)Pk−2) = ...

Thus we arrive to the following formula for Rk

k

N
= W̃ (Rk, Rk±1, ..., Rk±p)

where

W̃ (Rk, Rk±1, ..., Rk±p) =

=
p+1∑
n=1

2nvn
∑

{σ2n−1}
Rk+m1

· ... ·Rk+mn

{σ2n−1} denotes all ”walks” which consist of 2n−1 steps, starting
in k and finishing in k − 1.
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Evaluation of Z0 and Z1

Propose existence of smooth function R(ξ,N) of variable ξ ∈ [0,1],

and R( kN , N) = Rk, and Taylor expansion for R(ξ +m/N,N)

R(ξ +m/N,N) = R(ξ,N) +
m

N
Rξ(ξ,N) +

m2

2N2
Rξξ(ξ,N) +O

( 1

N3

)
,

Thus

W̃ (R(ξ,N)) = W (R(ξ,N))+
1

N
W1(R(ξ,N))+

1

N2
W2(R(ξ,N))+O

( 1

N3

)
,

After calculation

W (R(ξ,N)) =
p+1∑
n=1

(2n)!

n!(n− 1)!
vnR

n(ξ,N),

W1(R(ξ,N)) = 0,

W2(R(ξ,N)) =
RRξξ

6
W ′′(R(ξ,N)) +

RR2
ξ

12
W ′′′(R(ξ,N))

6



As a result we have

Z = N
N−1∑
k=1

(1− k/N) logR(ξ,N)

where R(ξ,N) is solution of equation

ξ = W (R(ξ,N)) +
RRξξ

6N2
W ′′(R(ξ,N)) +

RR2
ξ

12N2
W ′′′(R(ξ,N)) +O

( 1

N4

)
,

Assuming also the expansion

R(ξ,N) = R(ξ) +
1

N
R1(ξ) +

1

N2
R2(ξ) + ...,

thus

ξ = W (R(ξ)),

R1(ξ) = 0,

R2(ξ) = −
R(ξ)

12W ′(R)

(
2RξξW

′′(R(ξ)) +R2
ξW
′′′(R(ξ))

)
.
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Passing from sum to integral in partition function, we use Euler-

Maclorein formula up to N0 terms

Z = N2
∫ 1

0
dξ(1− ξ) logR(ξ,N)−

N

2
(F (1)− F (1/N))+

+
1

12
(F ′(1)− F ′(1/N)) +O(1/N),

where F (ξ) = (1− ξ) logR(ξ,N).

Then for partition function in genus-zero and genus-one we obtain

Z0 =
∫ 1

0
dξ(1− ξ) logR,

Z1 = −
1

12

∫ 1

0
dξ(1− ξ)

2RξξW
′′(R) +R2

ξW
′′′(R)

W ′(R)
,

where R = R(ξ).
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The vicinity of p-critical point

The p-critical point are defined by the system of equations

W (Rc) = 1, W ′(Rc) = 0, ... W (p)(Rc) = 0.

This system of equations, which determine coefficients vck, k =

1, ..., p, and define the Rc.

Consider small deviations δvk = vk− vck, and new coordinates tk in

vicinity of the critical point

W (Rc) = 1 + tp+1, W ′(Rc) = tp, ...

W (p−1)(Rc) = t0, W (p)(Rc) = 0.

Denoting u = R−Rc one can obtain

ξ = W (u) = up+1 + t0u
p−1 +

p−1∑
k=1

tku
p−k−1 + 1.
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Making a substitution ξ = 1− y, one can get

P(u) + y = 0,

and the string polynomial P(u) defined as

P(u) = up+1 + t0u
p−1 +

p−1∑
k=1

tku
p−k−1

and u(y) is its solution.

Therefore for the partiton functions we obtain

Z0 =
1

Rc

∫ 1

0
dy y u(y),

Z1 = −
1

12

∫ 1

0
dy y

2P ′′(u)uyy + P ′′′(u)u2
y

P ′(u)
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These expressions can be efficiently simplified and

we arrive to the final answer

Z0 =
1

2

∫ u∗
0
P2(u)du

Z1 = −
logP ′(u∗)

12
where

u∗ = u∗(t0, t1, ..., tp−1)

is the ”‘maximal” root of the polynomial P(u).

These formalae are indeed the explict expressions of the generating

finctions for the correlation numbers in genus zero and genus one.
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The same expressions can be obtained from the double scal-

ing limit and Douglas string equation.The double scaling limit

arises when N goes to ∞, while µ and tk lead to 0 proportionally

(N−2ε2)
2

2p+3 and (N−2ε2)
k+2

2p+3 correspondingly,

and ε is some finite parameter. Making suitable replacement

of variables, using the rescaling and performing the substitution

Z/N2 → Z for simplicity, we arrive to the expression for the parti-

tion function in the double scaling limit Z[µ, tk, ε]

Z[µ, tk, ε] =
∞∑
h=0

ε2hZh[µ, tk],

where ε is the parameter, which is responsible for genus expansion.
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String equation

We can compute the partition functions Zh using the String equa-

tion which is the equation for function u(x, ε, µ, tk) , connected

with the partition function Z[µ, tk, ε] as

u(x, ε) =
d2Z

dx2

It looks as

[P̂ , Q̂] = 1

where

Q̂ = ε2d2 + u(x), d ≡
d

dx

P̂ = −
p+1∑
k=1

tp−1−kQ̂
k−1/2
+

are two differential operators

and Q̂
k−1/2
+ stands for the non-negative part of the pseudo-differential

operator Q̂k−1/2
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We look for u(x) in the form

u(x, ε) =
∞∑
h=0

ε2huh(x)

where, obviously, uh

uh(x) =
d2Zh
dx2

.

It is known, that

[Q̂
k−1/2
+ , Q̂] =

dSk
dx

,

where the coefficients Sk(u) obey the recursion relation

dSk+1

dx
= u

dSk
dx

+
1

2
uxSk +

ε2

4

d3Sk
dx3

,

with the boundary conditions S0 = 1
2 and Sk(k 6= 0) vanish at

u = 0.
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Use the equations above one can obtain

[P̂ , Q̂] = 1 =⇒
p+1∑
k=1

tp−1−kSk(u) = −x

The solution of the recursion relations, including the first three

terms is

Sk(u) =
Ck2k

22k+1

(
uk +

ε2k(k − 1)

6
uk−2uxx +

ε2k(k − 1)(k − 2)

12
uk−3u2

x

)
.

where Ck2k =
(2k)!

k!k!

Thus after rescaling the parameter tk → 22k+1

Ck2k
tk, we can obtain

that

P(u) + ε2
(

1

6
P ′′(u)uxx +

1

12
P ′′′(u)u2

x

)
= O(ε4),

where P(u) is the string polynomial and x = tp−1, t−2 = 1, t−1 =

0.
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Using the expansion for u(x, ε), we get to the zeroth order in the

ε, that u0(x) obeys

P(u0) = 0,

therefore

u0 = u∗(t1, ..., tp−2, x),

where u∗ is the real maximal root of polynomial P(u). To the

second order in the ε gives for the u1(t1, ..., tp−2, x) the following

expression

u1 = −
P ′′′(u∗)(u∗x)2 + 2P ′′(u∗)u∗xx

12P ′(u∗)
.
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Knowing u0 and u1 we can find corresponding the partition func-

tions Z0 and Z1, using the fact that if Z and u∗ are connected by

relation

∂2Z

∂x2
= f(u∗),

then

Z = −
∫ u∗

0
P(u)P ′(u)f(u)du.

This formula can be checked by straightforward calculation.

Integrating by parts and omitting the regular terms, we arrived to

the expressions obtained above

Z0 =
1

2

∫ u∗
0
P2(u)du

and

Z1 = −
logP ′(u∗)

12
.
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Evaluation of correlation numbers in genus-one in KdV frame

The singular part of the partition function on torus Z1(t0, t1, ...tp−1)

is

Z1 = −
logP ′(u∗)

12
,

where P(u) is the polynomial of degree p+1 (p is natural number)

P(u) = up+1 + t0u
p−1 +

p−1∑
k=1

tku
p−k−1,

Formula for correlation numbers is

〈Ok1
...Okn〉1 =

∂nZ1

∂tk1
...∂tkn

∣∣∣∣∣
t1=...=tp−1=0

〈Ok〉1 =
p+ k

24
u−k−2
c ,

〈Ok1
Ok2
〉1 =

(p+ 2 + k1 + k2)(k1 + k2) + 2p− k1k2

48
u
−k1−k2−4
c ,
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Comparison with Topological Gravity

E.Witten recursion relation

〈σk1
σk2

...σks〉0 = k1
∑

S=X∪Y
〈σk1−1

∏
i∈X

σkiσ0〉0〈σ0
∏
j∈Y

σkjσks−1
σks〉0,

〈σk1
σk2

...σks〉1 =
1

12
k1〈σk1−1σk2

...σksσ0σ0〉0+

+ k1
∑

S=X∪Y
〈σk1−1

∏
i∈X

σkiσ0〉0〈σ0
∏
j∈Y

σkj〉1,

It follows from basis recursion relation

〈σk1
σk2

σk3
〉0 = k1〈σk1−1σ0〉0〈σ0σk2

σk3
〉0,

〈σk〉1 =
1

12
k〈σk−1σ0σ0〉0 + k〈σk−1σ0〉0〈σ0〉1

and

∂

∂ak
〈N〉 = 〈σkN〉,
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In One-Matrix Model

σk ↔ Op−k−1, ak ↔ tp−k−1

We need to check

〈Op−k1−1Op−k2−1Op−k3−1〉0 = k1〈Op−k1
Op−1〉0〈Op−1Op−k2−1Op−k3−1〉0,

〈Op−k−1〉1 =
1

12
k〈Op−kOp−1Op−1〉0 + k〈Op−kOp−1〉0〈Op−1〉1

At arbitrary {tk} one can get

〈Ok1
Ok2
〉0 =

∂2Z0

∂tk1
∂tk2

=
(u∗)2p−k1−k2−1

2p− k1 − k2 − 1
,

〈Ok1
Ok2

Ok3
〉0 =

∂3Z0

∂tk1
∂tk2

∂tk3

= −
(u∗)3p−k1−k2−k3−3

P ′(u∗)
.

〈Ok〉1 =
∂Z1

∂tk
= −

p− k − 1

12P ′(u∗)
(u∗)p−k−2 +

P ′′(u∗)
12(P ′(u∗))2

(u∗)p−k−1

Use this expressions, we see that recursion relation are fulfilled.
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Evaluation of correlation numbers in CFT frame

KdV frame −→ CFT frame

l l

{tk} −→ ”resonanse” transformation tk = tk({λk}) −→ {λk}

As a result

P(u, {tk}) = up+1 + t0u
p−1 +

p−1∑
k=1

tku
p−k−1

↓

Q(x, {λk}) =
∞∑
n=0

p−1∑
k1...kn=1

λk1
...λkn
n!

dn−1

dxn−1
Lp−

∑
ki−n(x),

where

x = u/uc, uc = u∗({λk} = 0)

Ln(x)− Legendre polynomials.
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Formula for correlation numbers is

〈Ok1
...Okn〉1 =

∂nZ1

∂λk1
...∂λkn

∣∣∣∣∣
λ1=...=λp−1=0

First two correlation numbers in CFT frame

〈Ok〉1 =
(2p− k)(k + 1)

24
,

〈Ok1
Ok2
〉1 = −

(1 + k1)(1 + k2)
(
(k1 + k2 − 2p+ 2)(k1 + k2)− k1k2 − 4p

)
24

.

22



Conclusion

• We have derived the torus partition function Z1 in p-critical

One-Matrix Model. Using the explicit expression for the partition

function in genus-one we compute the correlation numbers in KdV,

as well as in CFT frames.

• The results in CFT frame should be compared against the

correlation numbers in the Minimal Liouville gravity, which have

not been computed yet. We expect the coincidence in genus-one

similarly one observed in genus-zero.

• The results in KdV frame have been compared with Witten’s

results for the correlation numbers of the 2d topological gravity

and found to coincide.
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