Two-Ioop resummation in (F)APT

A. P. Bakulev

Bogoliubov Lab. Theor. Phys., JINR (Dubna, Russia)

OUTLINE

- Intro: Analytic Perturbation Theory (APT) in QCD
- Problems of APT and their resolution in FAPT:
- Technical development of FAPT: thresholds
- Resummation in APT and FAPT
- Applications: Higgs decay $H^{0} \rightarrow b \bar{b}$
- Conclusions

Collaborators \& Publications

Collaborators:

S. Mikhailov (Dubna) and N. Stefanis (Bochum) Publications:

- A. B., Mikhailov, Stefanis — PRD 72 (2005) 074014
- A. B., Mikhailov, Stefanis - PRD 75 (2007) 056005
- A. B.\&Mikhailov — arXiv:0803.3013 [hep-ph]
- A. B. — Phys. Part. Nucl. 40 (2009) 715
- A. B., Mikhailov, Stefanis - arXiv:1004.4125 [hep-ph]

Analytic Perturbation Theory

 in
QCD

History of APT

> Euclidean
> $Q^{2}=\vec{q}^{2}-q_{0}^{2} \geq 0$

Minkowskian

$s=q_{0}^{2}-\vec{q}^{2} \geq 0$
pQCD+RG: resum π^{2}-terms Arctg(s), UV Non-Power Series Radyush., Krasn. \& Pivov. 1982

pQCD+renormalons

$\operatorname{Arctg}(s)$ at $\mathbf{L E}$ region
Ball, Beneke \& Braun 1994-95
Integral Transformation:
$\mathcal{R}\left[\bar{\alpha}_{s}\right] \rightarrow \operatorname{Arctg}(s)$
Jones \& Solovtsov 1995

History of APT

RG+Analyticity ghost-free $\alpha_{\mathrm{E}}\left(Q^{2}\right)$
Shirkov \& Solovtsov 1996

Integral Transformation:

$$
\mathcal{R}\left[\bar{\alpha}_{s}\right] \rightarrow \operatorname{Arctg}(s)
$$

Jones \& Solovtsov 1995
pQCD+RG+Analyticity
Transforms: $\hat{\mathcal{D}}=\hat{\mathcal{R}}^{-1}$
Couplings: $\alpha_{\mathrm{E}}\left(Q^{2}\right) \Leftrightarrow \alpha_{\mathrm{M}}(s)$
Milton \& Solovtsov 1996-97
Analytic (global) pQCD+Analyticity
Global couplings: $\mathcal{A}_{n}\left(Q^{2}\right) \Leftrightarrow \mathfrak{A}_{n}(s)$
Non-Power perturbative expansions Shirkov 1999-2001

History of F(ractional)APT

$$
\begin{array}{cr}
\text { Euclidean } & \text { Minkowskian } \\
Q^{2}=\vec{q}^{2}-q_{0}^{2} \geq 0 & s=q_{0}^{2}-\vec{q}^{2} \geq 0
\end{array}
$$

Global Fractional APT (FAPT)

Analytization of $\alpha_{s}^{\nu}: \mathcal{A}_{\nu}\left(Q^{2}\right) \Leftrightarrow \mathfrak{A}_{\nu}(s)$
A. B. \& Mikhailov \& Stefanis 2005-2006

History of F(ractional)APT

Euclidean
 $Q^{2}=\vec{q}^{2}-q_{0}^{2} \geq 0$
 Minkowskian
 $$
s=q_{0}^{2}-\vec{q}^{2} \geq 0
$$

Analytization of $\alpha_{s}^{\nu}: \mathcal{A}_{\nu}\left(Q^{2}\right) \Leftrightarrow \mathfrak{A}_{\nu}(s)$
Analytization of $\alpha_{s}^{\nu} \times \log ^{m}: \mathcal{L}_{\nu, m}\left(Q^{2}\right) \Leftrightarrow \mathfrak{L}_{\nu, m}(s)$
A. B. \& Mikhailov \& Stefanis 2005-2006

History of F(ractional)APT

$$
\begin{array}{cc}
\text { Euclidean } & \text { Minkowskian } \\
Q^{2}=\vec{q}^{2}-q_{0}^{2} \geq 0 & s=q_{0}^{2}-\vec{q}^{2} \geq 0
\end{array}
$$

Analytization of $\alpha_{s}^{\nu}: \mathcal{A}_{\nu}\left(Q^{2}\right) \Leftrightarrow \mathfrak{A}_{\nu}(s)$
Analytization of $\alpha_{s}^{\nu} \times \log ^{m}: \mathcal{L}_{\nu, m}\left(Q^{2}\right) \Leftrightarrow \mathfrak{L}_{\nu, m}(s)$
A. B. \& Mikhailov \& Stefanis 2005-2006

Resummation in 1-Ioop APT
S. Mikhailov 2004

History of F(ractional)APT

$$
\begin{array}{cc}
\text { Euclidean } & \text { Minkowskian } \\
Q^{2}=\vec{q}^{2}-q_{0}^{2} \geq 0 & s=q_{0}^{2}-\vec{q}^{2} \geq 0
\end{array}
$$

Analytization of $\alpha_{s}^{\nu}: \mathcal{A}_{\nu}\left(Q^{2}\right) \Leftrightarrow \mathfrak{A}_{\nu}(s)$
Analytization of $\alpha_{s}^{\nu} \times \log ^{m}: \mathcal{L}_{\nu, m}\left(Q^{2}\right) \Leftrightarrow \mathfrak{L}_{\nu, m}(s)$
A. B. \& Mikhailov \& Stefanis 2005-2006

Resummation in 1-loop global FAPT

A. B. \& Mikhailov 2008

History of F(ractional)APT

Euclidean
 $Q^{2}=\vec{q}^{2}-q_{0}^{2} \geq 0$
 Minkowskian
 $$
s=q_{0}^{2}-\vec{q}^{2} \geq 0
$$

Analytization of $\alpha_{s}^{\nu}: \mathcal{A}_{\nu}\left(Q^{2}\right) \Leftrightarrow \mathfrak{A}_{\nu}(s)$
Analytization of $\alpha_{s}^{\nu} \times \log ^{m}: \mathcal{L}_{\nu, m}\left(Q^{2}\right) \Leftrightarrow \mathfrak{L}_{\nu, m}(s)$
A. B. \& Mikhailov \& Stefanis 2005-2006

Resummation in 1-loop global FAPT

A. B. \& Mikhailov 2008

Analytization of $\alpha_{s} \nu\left(1+c_{1} \alpha_{s}\right)^{\nu^{\prime}}: \mathcal{B}_{\nu, \nu^{\prime}}\left(Q^{2}\right) \Leftrightarrow \mathfrak{B}_{\nu, \nu^{\prime}}(s)$ A. B. 2008-2009

History of F(ractional)APT

Euclidean
 $Q^{2}=\vec{q}^{2}-q_{0}^{2} \geq 0$
 Minkowskian
 $$
s=q_{0}^{2}-\vec{q}^{2} \geq 0
$$

Analytization of $\alpha_{s}^{\nu}: \mathcal{A}_{\nu}\left(Q^{2}\right) \Leftrightarrow \mathfrak{A}_{\nu}(s)$
Analytization of $\alpha_{s}^{\nu} \times \log ^{m}: \mathcal{L}_{\nu, m}\left(Q^{2}\right) \Leftrightarrow \mathfrak{L}_{\nu, m}(s)$
A. B. \& Mikhailov \& Stefanis 2005-2006

Resummation in 1-loop global FAPT

A. B. \& Mikhailov 2008

Analytization of $\alpha_{s} \nu\left(1+c_{1} \alpha_{s}\right)^{\nu^{\prime}}: \mathcal{B}_{\nu, \nu^{\prime}}\left(Q^{2}\right) \Leftrightarrow \mathfrak{B}_{\nu, \nu^{\prime}}(s)$ A. B. 2008-2009

Resummation in 2-loop global FAPT

with 2-loop evolution factors $\mathcal{B}_{\nu, \nu^{\prime}}\left(Q^{2}\right) \Leftrightarrow \mathfrak{B}_{\nu, \nu^{\prime}}(s)$ A. B. \& Mikhailov \& Stefanis 2010

Intro: PT in QCD

- coupling $\alpha_{s}\left(\mu^{2}\right)=\left(4 \pi / b_{0}\right) a_{s}[L]$ with $L=\ln \left(\mu^{2} / \Lambda^{2}\right)$
- RG equation $\frac{d a_{s}[L]}{d L}=-a_{s}^{2}-c_{1} a_{s}^{3}-\ldots$
- 1-loop solution generates Landau pole singularity: $a_{s}[L]=1 / L$

Intro: PT in QCD

- coupling $\alpha_{s}\left(\mu^{2}\right)=\left(4 \pi / b_{0}\right) a_{s}[L]$ with $L=\ln \left(\mu^{2} / \Lambda^{2}\right)$
- RG equation $\frac{d a_{s}[L]}{d L}=-a_{s}^{2}-c_{1} a_{s}^{3}-\ldots$
- 1-loop solution generates Landau pole singularity: $a_{s}[L]=1 / L$
- 2-loop solution generates square-root singularity: $a_{s}[L] \sim 1 / \sqrt{L+c_{1} \ln c_{1}}$

Intro: PT in QCD

- coupling $\alpha_{s}\left(\mu^{2}\right)=\left(4 \pi / b_{0}\right) a_{s}[L]$ with $L=\ln \left(\mu^{2} / \Lambda^{2}\right)$
- RG equation $\frac{d a_{s}[L]}{d L}=-a_{s}^{2}-c_{1} a_{s}^{3}-\ldots$
- 1-loop solution generates Landau pole singularity: $a_{s}[L]=1 / L$
- 2-loop solution generates square-root singularity: $a_{s}[L] \sim 1 / \sqrt{L+c_{1} \ln c_{1}}$
- PT series: $D[L]=1+d_{1} a_{s}[L]+d_{2} a_{s}^{2}[L]+\ldots$

Intro: PT in QCD

- coupling $\alpha_{s}\left(\mu^{2}\right)=\left(4 \pi / b_{0}\right) a_{s}[L]$ with $L=\ln \left(\mu^{2} / \Lambda^{2}\right)$
- RG equation $\frac{d a_{s}[L]}{d L}=-a_{s}^{2}-c_{1} a_{s}^{3}-\ldots$
- 1-loop solution generates Landau pole singularity: $a_{s}[L]=1 / L$
- 2-loop solution generates square-root singularity: $a_{s}[L] \sim 1 / \sqrt{L+c_{1} \ln c_{1}}$
- PT series: $D[L]=1+d_{1} a_{s}[L]+d_{2} a_{s}^{2}[L]+\ldots$
- RG evolution: $B\left(Q^{2}\right)=\left[Z\left(Q^{2}\right) / Z\left(\mu^{2}\right)\right] B\left(\mu^{2}\right)$
reduces in 1-loop approximation to

$$
\left.Z \sim a^{\nu}[\boldsymbol{L}]\right|_{\nu=\nu_{0} \equiv \gamma_{0} /\left(2 b_{0}\right)}
$$

Problem in QCD PT: Minkowski region?

Quantities in Minkowski region $=\oint f(z) D(z) d z$.

Problem in QCD PT: Minkowski region?

In $\oint f(z) D(z) d z$ one uses $D(z)=\sum_{m} d_{m} \alpha_{s}^{m}(z)$.

Problem in QCD PT: Minkowski region?

This change of integration contour is legitimate if $D(z) f(z)$ is analytic inside

Problem in QCD PT: Minkowski region?

But $\alpha_{s}(z)$ and hence $D(z) f(z)$ have Landau pole singularity just inside!

Problem in QCD PT: Minkowski region?

In APT effective couplings $\mathcal{A}_{n}(z)$ are analytic functions \Rightarrow Problem does not appear! Equivalence to CIPT for $R(s)$.

Equivalence CIPT and APT for $R(s)$

$\operatorname{CIPT}\left\{\oint_{\Gamma_{2}} \frac{D(z) d z}{z}\right\}=\operatorname{APT}\left\{\oint_{\Gamma_{3}} \frac{D(z) d z}{z}\right\}$

Basics of APT

- Different effective couplings in Euclidean (S\&S) and Minkowskian (R\&K\&P) regions

Basics of APT

- Different effective couplings in Euclidean (S\&S) and Minkowskian (R\&K\&P) regions
- Based on RG
\Downarrow
UV asymptotics

Basics of APT

- Different effective couplings in Euclidean (S\&S) and Minkowskian (R\&K\&P) regions

UV asymptotics
Spectrality

- Euclidean: $-q^{2}=Q^{2}, L=\ln Q^{2} / \Lambda^{2},\left\{\mathcal{A}_{n}(L)\right\}_{n \in \mathbb{N}}$
- Minkowskian: $q^{2}=s, L_{s}=\ln s / \Lambda^{2},\left\{\mathfrak{A}_{n}\left(L_{s}\right)\right\}_{n \in \mathbb{N}}$

Basics of APT

- Different effective couplings in Euclidean (S\&S) and Minkowskian (R\&K\&P) regions
- Based on $\begin{gathered}\text { RG } \\ \Downarrow\end{gathered}$

UV asymptotics

Causality

Spectrality

- Euclidean: $-q^{2}=Q^{2}, L=\ln Q^{2} / \Lambda^{2},\left\{\mathcal{A}_{n}(L)\right\}_{n \in \mathbb{N}}$
- Minkowskian: $q^{2}=s, L_{s}=\ln s / \Lambda^{2},\left\{\mathfrak{A}_{n}\left(L_{s}\right)\right\}_{n \in \mathbb{N}}$
- $\mathrm{PT} \sum_{m} d_{m} a_{s}^{m}\left(Q^{2}\right) \Rightarrow \sum_{m} d_{m} \mathcal{A}_{m}\left(Q^{2}\right) \quad \mathrm{APT}$
m is power $\quad \Rightarrow \quad m$ is index

Spectral representation

By analytization we mean "Källen-Lehmann" representation

$$
\left[f\left(Q^{2}\right)\right]_{\mathrm{an}}=\int_{0}^{\infty} \frac{\rho_{f}(\sigma)}{\sigma+Q^{2}-i \epsilon} d \sigma
$$

Then (note here pole remover):

$$
\begin{aligned}
\rho(\sigma) & =\frac{1}{L_{\sigma}^{2}+\pi^{2}} \\
\mathcal{A}_{1}[L] & =\int_{0}^{\infty} \frac{\rho(\sigma)}{\sigma+Q^{2}} d \sigma=\frac{1}{L}-\frac{1}{e^{L}-1} \\
\mathfrak{A}_{1}\left[L_{s}\right] & =\int_{s}^{\infty} \frac{\rho(\sigma)}{\sigma} d \sigma=\frac{1}{\pi} \arccos \frac{L_{s}}{\sqrt{\pi^{2}+L_{s}^{2}}}
\end{aligned}
$$

Spectral representation

By analytization we mean "Källen-Lehmann" representation

$$
\left[f\left(Q^{2}\right)\right]_{\mathrm{an}}=\int_{0}^{\infty} \frac{\rho_{f}(\sigma)}{\sigma+Q^{2}-i \epsilon} d \sigma
$$

with spectral density $\rho_{f}(\sigma)=\operatorname{Im}[f(-\sigma)] / \pi$. Then:

$$
\begin{aligned}
\mathcal{A}_{n}[L]=\int_{0}^{\infty} \frac{\rho_{n}(\sigma)}{\sigma+Q^{2}} d \sigma & =\frac{1}{(n-1)!}\left(-\frac{d}{d L}\right)^{n-1} \mathcal{A}_{1}[L] \\
\mathfrak{A}_{n}\left[L_{s}\right]=\int_{s}^{\infty} \frac{\rho_{n}(\sigma)}{\sigma} d \sigma & =\frac{1}{(n-1)!}\left(-\frac{d}{d L_{s}}\right)^{n-1} \mathfrak{A}_{1}\left[L_{s}\right] \\
a_{s}^{n}[L]= & \frac{1}{(n-1)!}\left(-\frac{d}{d L}\right)^{n-1} a_{s}[L]
\end{aligned}
$$

APT graphics: Distorting mirror

First, couplings: $\quad \mathfrak{A}_{1}(s)$ and $\quad \mathcal{A}_{1}\left(Q^{2}\right)$

APT graphics: Distorting mirror

Second, square-images: $\mathfrak{A}_{2}(s)$ and $\mathcal{A}_{2}\left(Q^{2}\right)$

Problems of APT. Resolution: Fractional APT

Problems of APT

In standard QCD PT we have not only power series
$F[L]=\sum_{m} f_{m} a_{s}^{m}[L]$, but also:

Problems of APT

In standard QCD PT we have not only power series
$\boldsymbol{F}[\boldsymbol{L}]=\sum_{m} f_{m} a_{s}^{m}[L]$, but also:

- RG-improvement to account for higher-orders \rightarrow

$$
Z[L]=\exp \left\{\int^{a_{s}[L]} \frac{\gamma(a)}{\beta(a)} d a\right\} \xrightarrow{\text {-loop }}\left[a_{s}[L]\right]^{\gamma_{0} /\left(2 \beta_{0}\right)}
$$

Problems of APT

In standard QCD PT we have not only power series
$\boldsymbol{F}[\boldsymbol{L}]=\sum_{m} f_{m} a_{s}^{m}[L]$, but also:

- RG-improvement to account for higher-orders \rightarrow

$$
Z[L]=\exp \left\{\int^{a_{s}[L]} \frac{\gamma(a)}{\beta(a)} d a\right\} \xrightarrow{1 \text {-loop }}\left[a_{s}[L]\right]^{\gamma_{0} /\left(2 \beta_{0}\right)}
$$

- Factorization $\rightarrow\left[a_{s}[L]\right]^{n} L^{m}$

Problems of APT

In standard QCD PT we have not only power series
$F[L]=\sum_{m} f_{m} a_{s}^{m}[L]$, but also:

- RG-improvement to account for higher-orders \rightarrow

$$
Z[L]=\exp \left\{\int^{a_{s}[L]} \frac{\gamma(a)}{\beta(a)} d a\right\} \xrightarrow{1-\text { loop }}\left[a_{s}[L]\right]^{\gamma_{0} /\left(2 \beta_{0}\right)}
$$

- Factorization $\rightarrow\left[a_{s}[L]\right]^{n} L^{m}$
- Sudakov resummation $\rightarrow \exp \left[-a_{s}[L] \cdot f(x)\right]$

Problems of APT

In standard QCD PT we have not only power series
$F[\boldsymbol{L}]=\sum_{m} f_{m} a_{s}^{m}[L]$, but also:

- RG-improvement to account for higher-orders \rightarrow

$$
Z[L]=\exp \left\{\int^{a_{s}[L]} \frac{\gamma(a)}{\beta(a)} d a\right\} \xrightarrow{1-\text { loop }}\left[a_{s}[L]\right]^{\gamma_{0} /\left(2 \beta_{0}\right)}
$$

- Factorization $\rightarrow\left[a_{s}[L]\right]^{n} L^{m}$
- Sudakov resummation $\rightarrow \exp \left[-a_{s}[L] \cdot f(x)\right]$

New functions: $\left(a_{s}\right)^{\nu},\left(a_{s}\right)^{\nu} \ln \left(a_{s}\right),\left(a_{s}\right)^{\nu} L^{m}, e^{-a_{s}}, \ldots$

Constructing one-Ioop FAPT

In one-loop APT we have a very nice recurrence relation

$$
\mathcal{A}_{n}[L]=\frac{1}{(n-1)!}\left(-\frac{d}{d L}\right)^{n-1} \mathcal{A}_{1}[L]
$$

and the same in Minkowski domain

$$
\mathfrak{A}_{n}[L]=\frac{1}{(n-1)!}\left(-\frac{d}{d L}\right)^{n-1} \mathfrak{A}_{1}[L] .
$$

We can use it to construct FAPT.

FAPT(E): Properties of $\mathcal{A}_{\nu}[L]$

First, Euclidean coupling $\left(L=L\left(Q^{2}\right)\right)$:

$$
\mathcal{A}_{\nu}[L]=\frac{1}{L^{\nu}}-\frac{F\left(e^{-L}, 1-\nu\right)}{\Gamma(\nu)}
$$

Here $F(z, \nu)$ is reduced Lerch transcendent. function. It is analytic function in ν.

FAPT(E): Properties of $\mathcal{A}_{\nu}[L]$

First, Euclidean coupling $\left(L=L\left(Q^{2}\right)\right)$:

$$
\mathcal{A}_{\nu}[L]=\frac{1}{L^{\nu}}-\frac{\boldsymbol{F}\left(e^{-L}, 1-\nu\right)}{\Gamma(\nu)}
$$

Here $F(z, \nu)$ is reduced Lerch transcendent. function. It is analytic function in ν. Properties:

- $\mathcal{A}_{0}[L]=1$;
- $\mathcal{A}_{-m}[L]=L^{m}$ for $m \in \mathbb{N}$;
- $\mathcal{A}_{m}[L]=(-1)^{m} \mathcal{A}_{m}[-L]$ for $m \geq 2, m \in \mathbb{N}$;
- $\mathcal{A}_{m}[\pm \infty]=0$ for $m \geq 2, m \in \mathbb{N}$;

FAPT(M): Properties of $\mathfrak{A}_{\nu}[L]$

Now, Minkowskian coupling $(L=L(s))$:

$$
\mathfrak{A}_{\nu}[L]=\frac{\sin \left[(\nu-1) \arccos \left(L / \sqrt{\pi^{2}+L^{2}}\right)\right]}{\pi(\nu-1)\left(\pi^{2}+L^{2}\right)^{(\nu-1) / 2}}
$$

Here we need only elementary functions.

FAPT(M): Properties of $\mathfrak{A}_{\nu}[L]$

Now, Minkowskian coupling $(L=L(s))$:

$$
\mathfrak{A}_{\nu}[L]=\frac{\sin \left[(\nu-1) \arccos \left(L / \sqrt{\pi^{2}+L^{2}}\right)\right]}{\pi(\nu-1)\left(\pi^{2}+L^{2}\right)^{(\nu-1) / 2}}
$$

Here we need only elementary functions. Properties:

- $\mathfrak{A}_{0}[L]=1$;
- $\mathfrak{A}_{-1}[L]=L$;
- $\mathfrak{A}_{-2}[L]=L^{2}-\frac{\pi^{2}}{3}, \quad \mathfrak{A}_{-3}[L]=L\left(L^{2}-\pi^{2}\right), \ldots$;
- $\mathfrak{A}_{m}[L]=(-1)^{m} \mathfrak{A}_{m}[-L]$ for $m \geq 2, m \in \mathbb{N}$;
- $\mathfrak{A}_{m}[\pm \infty]=0$ for $m \geq 2, m \in \mathbb{N}$

FAPT(E): Graphics of $\mathcal{A}_{\nu}[L]$ vs. L

$$
\mathcal{A}_{\nu}[\boldsymbol{L}]=\frac{1}{\boldsymbol{L}^{\nu}}-\frac{\boldsymbol{F}\left(e^{-L}, 1-\nu\right)}{\Gamma(\nu)}
$$

Graphics for fractional $\nu \in[2,3]$:

FAPT(M): Graphics of $\mathfrak{A}_{\nu}[L]$ vs. L

$$
\mathfrak{A}_{\nu}[L]=\frac{\sin \left[(\nu-1) \arccos \left(L / \sqrt{\pi^{2}+L^{2}}\right)\right]}{\pi(\nu-1)\left(\pi^{2}+L^{2}\right)^{(\nu-1) / 2}}
$$

Compare with graphics in Minkowskian region:

FAPT(E): Comparing \mathcal{A}_{ν} with $\left(\mathcal{A}_{1}\right)^{\nu}$

$$
\Delta_{\mathrm{E}}(\boldsymbol{L}, \nu)=\frac{\mathcal{A}_{\nu}[\boldsymbol{L}]-\left(\mathcal{A}_{1}[\boldsymbol{L}]\right)^{\nu}}{\mathcal{A}_{\nu}[\boldsymbol{L}]}
$$

Graphics for fractional $\nu=0.62,1.62$ and 2.62:

FAPT(M): Comparing \mathfrak{A}_{ν} with $\left(\mathfrak{A}_{1}\right)^{\nu}$

$$
\Delta_{\mathrm{M}}(\boldsymbol{L}, \nu)=\frac{\mathfrak{A}_{\nu}[\boldsymbol{L}]-\left(\mathfrak{A}_{1}[\boldsymbol{L}]\right)^{\nu}}{\mathfrak{A}_{\nu}[\boldsymbol{L}]}
$$

Minkowskian graphics for $\nu=\mathbf{0 . 6 2}, 1.62$ and 2.62:

Comparison of PT, APT, and FAPT

Theory
PT
APT
FAPT
Set $\quad\left\{a^{\nu}\right\}_{\nu \in \mathbb{R}} \quad\left\{\mathcal{A}_{m}, \mathfrak{A}_{m}\right\}_{m \in \mathbb{N}} \quad\left\{\mathcal{A}_{\nu}, \mathfrak{A}_{\nu}\right\}_{\nu \in \mathbb{R}}$
Series $\quad \sum_{m} f_{m} a^{m} \quad \sum_{m} f_{m} \mathcal{A}_{m} \quad \sum_{m} f_{m} \mathcal{A}_{m}$
Inv. powers
$(a[L])^{-m}$
$\mathcal{A}_{-m}[\boldsymbol{L}]=\boldsymbol{L}^{m}$

Products $\quad a^{\mu} a^{\nu}=a^{\mu+\nu}$
Index deriv. $\quad a^{\nu} \ln ^{k} a$
$-\quad \mathcal{D}^{k} \mathcal{A}_{\nu}$
Logarithms
$a^{\nu} L^{k}$
$\mathcal{A}_{\nu-k}$

Development of FAPT:

Heavy-Quark Thresholds

Conceptual scheme of FAPT

Here N_{f} is fixed and factorized out.

Conceptual scheme of FAPT

Here N_{f} is fixed, but not factorized out.

Conceptual scheme of FAPT

Here we see how "analytization" takes into account N_{f}-dependence.

Global FAPT: Single threshold case

- Consider for simplicity only one threshold at $s=m_{c}^{2}$ with transition $N_{f}=3 \rightarrow N_{f}=4$.
- Denote: $L_{4}=\ln \left(m_{c}^{2} / \Lambda_{3}^{2}\right)$ and $\lambda_{4}=\ln \left(\Lambda_{3}^{2} / \Lambda_{4}^{2}\right)$.

Global FAPT: Single threshold case

- Consider for simplicity only one threshold at $s=m_{c}^{2}$ with transition $N_{f}=3 \rightarrow N_{f}=4$.
- Denote: $L_{4}=\ln \left(m_{c}^{2} / \Lambda_{3}^{2}\right)$ and $\lambda_{4}=\ln \left(\Lambda_{3}^{2} / \Lambda_{4}^{2}\right)$.

Then:

$$
\begin{aligned}
\mathfrak{A}_{\nu}^{\text {glob }}[L] & =\theta\left(L<L_{4}\right)\left[\overline{\mathfrak{A}}_{\nu}[L ; 3]-\overline{\mathfrak{A}}_{\nu}\left[L_{4} ; 3\right]+\overline{\mathfrak{A}}_{\nu}\left[L_{4}+\lambda_{4} ; 4\right]\right] \\
& +\theta\left(L \geq L_{4}\right) \overline{\mathfrak{A}}_{\nu}\left[L+\lambda_{4} ; 4\right]
\end{aligned}
$$

Global FAPT: Single threshold case

- Consider for simplicity only one threshold at $s=m_{c}^{2}$ with transition $N_{f}=3 \rightarrow N_{f}=4$.
- Denote: $L_{4}=\ln \left(m_{c}^{2} / \Lambda_{3}^{2}\right)$ and $\lambda_{4}=\ln \left(\Lambda_{3}^{2} / \Lambda_{4}^{2}\right)$.

Then:

$$
\begin{aligned}
\mathfrak{A}_{\nu}^{\text {glob }}[L] & =\theta\left(L<L_{4}\right)\left[\overline{\mathfrak{A}}_{\nu}[L ; 3]-\overline{\mathfrak{A}}_{\nu}\left[L_{4} ; 3\right]+\overline{\mathfrak{A}}_{\nu}\left[L_{4}+\lambda_{4} ; 4\right]\right] \\
& +\theta\left(L \geq L_{4}\right) \overline{\mathfrak{A}}_{\nu}\left[L+\lambda_{4} ; 4\right]
\end{aligned}
$$

and

$$
\mathcal{A}_{\nu}^{\text {glob }}[L]=\overline{\mathcal{A}}_{\nu}\left[L+\lambda_{4} ; 4\right]+\int_{-\infty}^{L_{4}} \frac{\bar{\rho}_{\nu}\left[L_{\sigma} ; 3\right]-\bar{\rho}_{\nu}\left[L_{\sigma}+\lambda_{4} ; 4\right]}{1+e^{L-L_{\sigma}}} d L_{\sigma}
$$

Graphical comparison: Fixed- N_{f}-Global

$$
\mathcal{A}_{\nu}^{\text {glob }}[L]=\overline{\mathcal{A}}_{\nu}\left[L+\lambda_{4} ; 4\right]+\Delta \overline{\mathcal{A}}_{\nu}[L] ;
$$

$\Delta \overline{\mathcal{A}}_{1}[L] / \mathcal{A}_{1}^{\text {glob }}[L]$ — solid:

Resummation

in
 one-Ioop APT and FAPT

Resummation in one-loop APT

Consider series $\quad \mathcal{D}[L]=d_{0}+\sum_{n=1}^{\infty} d_{n} \mathcal{A}_{n}[L]$

Resummation in one-loop APT

Consider series $\quad \mathcal{D}[L]=d_{0}+\sum_{n=1}^{\infty} d_{n} \mathcal{A}_{n}[L]$
Let exist the generating function $P(t)$ for coefficients:

$$
d_{n}=d_{1} \int_{0}^{\infty} P(t) t^{n-1} d t \text { with } \int_{0}^{\infty} P(t) d t=1
$$

We define a shorthand notation

$$
\langle\langle f(t)\rangle\rangle_{P(t)} \equiv \int_{0}^{\infty} f(t) P(t) d t
$$

Then coefficients $d_{n}=d_{1}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)}$.

Resummation in one-loop APT

Consider series $\quad \mathcal{D}[L]=d_{0}+\sum_{n=1}^{\infty} d_{n} \mathcal{A}_{n}[\boldsymbol{L}]$ with coefficients $d_{n}=d_{1}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)}$.
We have one-loop recurrence relation:

$$
\mathcal{A}_{n+1}[L]=\frac{1}{\Gamma(n+1)}\left(-\frac{d}{d L}\right)^{n} \mathcal{A}_{1}[L] .
$$

Resummation in one-loop APT

Consider series $\quad \mathcal{D}[L]=d_{0}+\sum_{n=1}^{\infty} d_{n} \mathcal{A}_{n}[L]$
with coefficients $d_{n}=d_{1}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)}$.
We have one-loop recurrence relation:

$$
\mathcal{A}_{n+1}[L]=\frac{1}{\Gamma(n+1)}\left(-\frac{d}{d L}\right)^{n} \mathcal{A}_{1}[L] .
$$

Result:

$$
\mathcal{D}[L]=d_{0}+d_{1}\left\langle\left\langle\mathcal{A}_{1}[L-t]\right\rangle\right\rangle_{P(t)}
$$

Resummation in one-loop APT

Consider series $\quad \mathcal{D}[L]=d_{0}+\sum_{n=1}^{\infty} d_{n} \mathcal{A}_{n}[\boldsymbol{L}]$
with coefficients $d_{n}=d_{1}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)}$.
We have one-loop recurrence relation:

$$
\mathcal{A}_{n+1}[L]=\frac{1}{\Gamma(n+1)}\left(-\frac{d}{d L}\right)^{n} \mathcal{A}_{1}[L] .
$$

Result:

$$
\mathcal{D}[L]=d_{0}+d_{1}\left\langle\left\langle\mathcal{A}_{1}[L-t]\right\rangle\right\rangle_{P(t)}
$$

and for Minkowski region:

$$
\mathcal{R}[L]=d_{0}+d_{1}\left\langle\left\langle\mathfrak{A}_{1}[L-t]\right\rangle\right\rangle_{P(t)}
$$

Resummation in Global Minkowskian APT

Consider series $\quad \mathcal{R}[\boldsymbol{L}]=d_{0}+\sum_{n=1}^{\infty} d_{n} \mathfrak{A}_{n}^{\text {glob }}[\boldsymbol{L}]$
with coefficients $d_{n}=d_{1}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)}$.
Result:
$\mathcal{R}[L]=d_{0}+d_{1}\left\langle\left\langle\theta\left(L<L_{4}\right)\left[\Delta_{4} \overline{\mathfrak{A}}_{1}[t]+\overline{\mathfrak{A}}_{1}\left[L-\frac{t}{\boldsymbol{\beta}_{3}} ; 3\right]\right]\right\rangle\right\rangle_{P(t)}$

$$
+d_{1}\left\langle\left\langle\theta\left(L \geq L_{4}\right) \overline{\mathfrak{A}}_{1}\left[L+\lambda_{4}-\frac{t}{\beta_{4}} ; 4\right]\right\rangle\right\rangle_{P(t)} .
$$

where

$$
\Delta_{4} \overline{\mathfrak{A}}_{1}[t]=\overline{\mathfrak{A}}_{1}\left[L_{4}+\lambda_{4}-\frac{t}{\beta_{4}} ; 4\right]-\overline{\mathfrak{A}}_{1}\left[L_{3}-\frac{t}{\beta_{3}} ; 3\right] .
$$

Resummation in Global Euclidean APT

In Euclidean domain the result is more complicated:

$$
\begin{aligned}
\mathcal{D}[L] & =d_{0}+d_{1}\left\langle\left\langle\int_{-\infty}^{L_{4}} \frac{\bar{\rho}_{1}\left[L_{\sigma} ; 3\right] d L_{\sigma}}{1+e^{L-L_{\sigma}-t / \beta_{3}}}\right\rangle\right\rangle_{P(t)} \\
& +\left\langle\left\langle\Delta_{4}[L, t]\right\rangle\right\rangle_{P(t)}+d_{1}\left\langle\left\langle\int_{L_{4}}^{\infty} \frac{\bar{\rho}_{1}\left[L_{\sigma}+\lambda_{4} ; 4\right] d L_{\sigma}}{1+e^{L-L_{\sigma}-t / \beta_{4}}}\right\rangle\right\rangle_{P(t)} .
\end{aligned}
$$

where

$$
\begin{aligned}
\Delta_{4}[L, t] & =\int_{0}^{1} \frac{\bar{\rho}_{1}\left[L_{4}+\lambda_{4}-t x / \beta_{4} ; 4\right] t}{\beta_{4}\left[1+e^{L-L_{4}-t \bar{x} / \beta_{4}}\right]} d x \\
& -\int_{0}^{1} \frac{\bar{\rho}_{1}\left[L_{3}-t x / \beta_{3} ; 3\right] t}{\beta_{3}\left[1+e^{L-L_{4}-t \bar{x} / \beta_{3}}\right]} d x .
\end{aligned}
$$

Resummation in FAPT

$\begin{array}{ll}\text { Consider seria } & \mathcal{R}_{\nu}[\boldsymbol{L}]=d_{0} \mathfrak{A}_{\nu}[\boldsymbol{L}]+\sum_{n=1}^{\infty} d_{n} \mathfrak{A}_{n+\nu}[\boldsymbol{L}] \\ \text { and } & \mathcal{D}_{\nu}[\boldsymbol{L}]=d_{0} \mathcal{A}_{\nu}[\boldsymbol{L}]+\sum_{n=1}^{\infty} d_{n} \mathcal{A}_{n+\nu}[\boldsymbol{L}]\end{array}$
with coefficients $d_{n}=d_{1}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)}$.
Result:

$$
\begin{aligned}
\mathcal{R}_{\nu}[\boldsymbol{L}] & =d_{0} \mathfrak{A}_{\nu}[\boldsymbol{L}]+d_{1}\left\langle\left\langle\mathfrak{A}_{1+\nu}[\boldsymbol{L}-\boldsymbol{t}]\right\rangle\right\rangle_{P_{\nu}(t)} \\
\mathcal{D}_{\nu}[\boldsymbol{L}] & =d_{0} \mathcal{A}_{\nu}[\boldsymbol{L}]+d_{\mathbf{1}}\left\langle\left\langle\mathcal{A}_{1+\nu}[\boldsymbol{L}-t]\right\rangle\right\rangle_{P_{\nu}(t)}
\end{aligned}
$$

where $P_{\nu}(t)=\int_{0}^{1} P\left(\frac{t}{1-z}\right) \nu z^{\nu-1} \frac{d z}{1-z}$.

Resummation in Global Minkowskian FAPT

Consider series $\quad \mathcal{R}_{\nu}[L]=d_{0} \mathfrak{A}_{\nu}^{\text {glob }}+\sum_{n=1}^{\infty} d_{n} \mathfrak{A}_{n+\nu}^{\text {glob }}[\boldsymbol{L}]$ with coefficients $d_{n}=d_{1}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)}$.

Then result is complete analog of the Global APT(M) result with natural substitutions:

$$
\overline{\mathfrak{A}}_{1}[L] \rightarrow \overline{\mathfrak{A}}_{1+\nu}[L] \quad \text { and } \quad P(t) \rightarrow P_{\nu}(t)
$$

with $P_{\nu}(t)=\int_{0}^{1} P\left(\frac{t}{1-z}\right) \nu z^{\nu-1} \frac{d z}{1-z}$.

Resummation in Global Euclidean FAPT

Consider series $\quad \mathcal{D}_{\nu}[\boldsymbol{L}]=d_{0} \mathcal{A}_{\nu}^{\text {glob }}+\sum_{n=1}^{\infty} d_{n} \mathcal{A}_{n+\nu}^{\text {glob }}[\boldsymbol{L}]$ with coefficients $d_{n}=d_{1}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)}$.

Then result is complete analog of the Global APT(E) result with natural substitutions:

$$
\bar{\rho}_{1}[L] \rightarrow \bar{\rho}_{1+\nu}[L] \quad \text { and } \quad P(t) \rightarrow P_{\nu}(t)
$$

with $P_{\nu}(t)=\int_{0}^{1} P\left(\frac{t}{1-z}\right) \nu z^{\nu-1} \frac{d z}{1-z}$.

Resummation

in
 two-loop APT and FAPT

Resummation in two-loop APT

Consider series $\quad \mathcal{S}[\boldsymbol{L}]=\sum_{n=1}^{\infty}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)} \mathcal{F}_{n}[\boldsymbol{L}]$.
Here $\mathcal{F}_{n}[L]=\mathcal{A}_{n}^{(2)}[\boldsymbol{L}]$ or $\mathfrak{A}_{n}^{(2)}[L]$.

Resummation in two-loop APT

Consider series $\quad \mathcal{S}[\boldsymbol{L}]=\sum_{n=1}^{\infty}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)} \mathcal{F}_{n}[\boldsymbol{L}]$.
Here $\mathcal{F}_{n}[L]=\mathcal{A}_{n}^{(2)}[\boldsymbol{L}]$ or $\mathfrak{A}_{n}^{(2)}[L]$.
We have two-loop recurrence relation $\left(c_{1}=b_{1} / b_{0}^{2}\right)$:

$$
-\frac{1}{n} \frac{d}{d L} \mathcal{F}_{n}[L]=\mathcal{F}_{n+1}[L]+c_{1} \mathcal{F}_{n+2}[L]
$$

Resummation in two-loop APT

Consider series $\quad \mathcal{S}[L]=\sum_{n=1}^{\infty}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)} \mathcal{F}_{n}[L]$.
Here $\mathcal{F}_{n}[\boldsymbol{L}]=\mathcal{A}_{n}^{(2)}[\boldsymbol{L}]$ or $\mathfrak{A}_{n}^{(2)}[\boldsymbol{L}]$.
We have two-loop recurrence relation $\left(c_{1}=b_{1} / b_{0}^{2}\right)$:

$$
-\frac{1}{n} \frac{d}{d L} \mathcal{F}_{n}[L]=\mathcal{F}_{n+1}[L]+c_{1} \mathcal{F}_{n+2}[L]
$$

Result $\left(\tau(t)=t-c_{1} \ln \left(1+t / c_{1}\right)\right)$:

$$
\begin{aligned}
\mathcal{S}[\boldsymbol{L}] & =\left\langle\left\langle\frac{c_{1} \mathcal{F}_{1}[L]+t \mathcal{F}_{1}[L-\tau(t)]}{c_{1}+t}+\frac{c_{1} t}{c_{1}+t} \mathcal{F}_{2}[L-\tau(t)]\right\rangle\right\rangle_{P(t)} \\
& -\left\langle\left\langle\frac{c_{1} t}{c_{1}+t} \int_{0}^{t} \frac{d t^{\prime}}{c_{1}+t^{\prime}} \frac{d \mathcal{F}_{1}\left[L+\tau\left(t^{\prime}\right)-\tau(t)\right]}{d L}\right\rangle\right\rangle_{P(t)} .
\end{aligned}
$$

Resummation in two-loop global APT

Consider series $\rho_{\Sigma}^{(2)}\left[L, N_{f}\right]=$

$$
\beta_{f} \sum_{n=1}^{\infty}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)} \bar{\rho}_{n}^{(2)}\left[L, N_{f}\right]=\sum_{n=1}^{\infty}\left\langle\left\langle\left[\frac{t}{\beta_{f}}\right]^{n-1}\right\rangle\right\rangle_{P(t)} \rho_{n}^{(2)}[L]
$$

Resummation in two-loop global APT

Thus $\left(t_{f}=t / \beta_{f}\right): \rho_{\Sigma}^{(2)}\left[L, N_{f}\right]=\sum_{n=1}^{\infty}\left\langle\left\langle t_{f}^{n-1}\right\rangle\right\rangle_{P(t)} \rho_{n}^{(2)}[L]$
We have two-loop recurrence relation $\left(c_{1}=b_{1} / b_{0}^{2}\right)$:

$$
-\frac{1}{n} \frac{d}{d L} \rho_{n}^{(2)}[L]=\rho_{n+1}^{(2)}[L]+c_{1} \rho_{n+2}^{(2)}[L] .
$$

Resummation in two-loop global APT

Thus $\left(t_{f}=t / \beta_{f}\right): \rho_{\Sigma}^{(2)}\left[L, N_{f}\right]=\sum_{n=1}^{\infty}\left\langle\left\langle t_{f}^{n-1}\right\rangle\right\rangle_{P(t)} \rho_{n}^{(2)}[L]$
We have two-loop recurrence relation $\left(c_{1}=b_{1} / b_{0}^{2}\right)$:

$$
-\frac{1}{n} \frac{d}{d L} \rho_{n}^{(2)}[L]=\rho_{n+1}^{(2)}[L]+c_{1} \rho_{n+2}^{(2)}[L] .
$$

Result of summation is $\left(t_{f}=t / \beta_{f}\right)$:

$$
\begin{aligned}
\rho_{\Sigma}^{(2)}\left[L, N_{f}\right]= & \left\langle\left\langle\frac{c_{1} \rho_{1}^{(2)}[L]+t_{f} \rho_{1}^{(2)}\left[L-\tau\left(t_{f}\right)\right]}{c_{1}+t_{f}}+\frac{c_{1} t_{f}}{c_{1}+t_{f}} \rho_{2}^{(2)}\left[L-\tau\left(t_{f}\right)\right]\right.\right. \\
& \left.\left.-\frac{c_{1} t_{f}}{c_{1}+t_{f}} \int_{0}^{t_{f}} \frac{d t^{\prime}}{c_{1}+t^{\prime}} \frac{d \rho_{1}^{(2)}\left[L+\tau\left(t^{\prime}\right)-\tau\left(t_{f}\right)\right]}{d L}\right\rangle\right\rangle_{P(t)} .
\end{aligned}
$$

Resummation in two-loop (global) FAPT

Consider series $\quad \mathcal{S}_{\nu}[\boldsymbol{L}]=\sum_{n=1}^{\infty}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)} \mathcal{F}_{n+\nu}[\boldsymbol{L}]$.
Here $\mathcal{F}_{\nu}[\boldsymbol{L}]=\mathcal{A}_{\nu}^{(2)}[\boldsymbol{L}]$ or $\mathfrak{A}_{\nu}^{(2)}[\boldsymbol{L}]$ (or $\rho_{\nu}^{(2)}[\boldsymbol{L}]$ — for global).

Resummation in two-loop (global) FAPT

Consider series $\mathcal{S}_{\nu}[\boldsymbol{L}]=\sum_{n=1}^{\infty}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)} \mathcal{F}_{n+\nu}[\boldsymbol{L}]$.
Here $\mathcal{F}_{\nu}[\boldsymbol{L}]=\mathcal{A}_{\nu}^{(2)}[\boldsymbol{L}]$ or $\mathfrak{A}_{\nu}^{(2)}[\boldsymbol{L}]$ (or $\rho_{\nu}^{(2)}[\boldsymbol{L}]$ — for global).
We have two-loop recurrence relation ($c_{1}=b_{1} / b_{0}^{2}$):

$$
-\frac{1}{n+\nu} \frac{d}{d L} \mathcal{F}_{n+\nu}[\boldsymbol{L}]=\mathcal{F}_{n+1+\nu}[\boldsymbol{L}]+c_{1} \mathcal{F}_{n+2+\nu}[\boldsymbol{L}] .
$$

Resummation in two-loop (global) FAPT

Consider series $\mathcal{S}_{\nu}[\boldsymbol{L}]=\sum_{n=1}^{\infty}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)} \mathcal{F}_{n+\nu}[\boldsymbol{L}]$.
Here $\mathcal{F}_{\nu}[\boldsymbol{L}]=\mathcal{A}_{\nu}^{(2)}[\boldsymbol{L}]$ or $\mathfrak{A}_{\nu}^{(2)}[\boldsymbol{L}]$ (or $\rho_{\nu}^{(2)}[\boldsymbol{L}]$ — for global).
We have two-loop recurrence relation $\left(c_{1}=b_{1} / b_{0}^{2}\right)$:

$$
-\frac{1}{n+\nu} \frac{d}{d \boldsymbol{L}} \mathcal{F}_{n+\nu}[\boldsymbol{L}]=\mathcal{F}_{n+1+\nu}[\boldsymbol{L}]+c_{1} \mathcal{F}_{n+2+\nu}[\boldsymbol{L}] .
$$

Result $\left(\tau(t)=t-c_{1} \ln \left(1+t / c_{1}\right)\right)$:

$$
\begin{aligned}
& \mathcal{S}[L]=\left\langle\left\langle\mathcal{F}_{1+\nu}[L]-\frac{t^{2}}{c_{1}+t} \int_{0}^{1} z^{\nu} d z \dot{\mathcal{F}}_{1+\nu}[L+\tau(t z)-\tau(t)]\right.\right. \\
& \left.\left.+\frac{c_{1} t}{c_{1}+t}\left\{\mathcal{F}_{2+\nu}[L]-\int_{0}^{1} d z \frac{t^{2} z^{\nu+1}}{c_{1}+t z} \dot{\mathcal{F}}_{2+\nu}[L+\tau(t z)-\tau(t)]\right\}\right\rangle\right\rangle_{P(t)}
\end{aligned}
$$

Resummation in two-loop (global) FAPT

Consider series $\quad \mathcal{S}_{\nu_{0}, \nu_{1}}[\boldsymbol{L}]=\sum_{n=1}^{\infty}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)} \mathcal{F}_{n+\nu_{0}, \nu_{1}}[\boldsymbol{L}]$.
Here $\mathcal{F}_{n+\nu_{0}, \nu_{1}}[L]=\mathcal{B}_{n+\nu_{0}, \nu_{1}}^{(2)}[L]$ or $\mathfrak{B}_{n+\nu_{0}, \nu_{1}}^{(2)}[L]$
(or $\rho_{n+\nu_{0}, \nu_{1}}^{(2)}[L]$ - for global),
where

$$
\mathcal{B}_{\nu ; \nu_{1}}[\boldsymbol{L}]=\mathbf{A}_{\mathrm{E}, \mathrm{M}}\left[a_{(2)}^{\nu}[\boldsymbol{L}]\left(1+c_{1} a_{(2)}\right)^{\nu_{1}}[\boldsymbol{L}]\right]
$$

is the analytic image of the two-loop evolution factor. We have constructed formulas of resummation for $\mathcal{S}_{\nu_{0}, \nu_{1}}[\boldsymbol{L}]$ as well.

Higgs boson

decay

$$
H^{0} \rightarrow b \stackrel{\rightharpoonup}{b}
$$

Higgs boson decay into b̄ -pair

This decay can be expressed in QCD by means of the correlator of quark scalar currents $J_{\mathrm{S}}(x)=: \bar{b}(x) b(x)$:

$$
\Pi\left(Q^{2}\right)=(4 \pi)^{2} i \int d x e^{i q x}\langle 0| T\left[J_{\mathbf{S}}(x) J_{\mathbf{S}}(0)\right]|0\rangle
$$

Higgs boson decay into b \bar{b}-pair

This decay can be expressed in QCD by means of the correlator of quark scalar currents $J_{\mathbf{S}}(x)=: \bar{b}(x) b(x)$:

$$
\Pi\left(Q^{2}\right)=(4 \pi)^{2} i \int d x e^{i q x}\langle 0| T\left[J_{\mathbf{S}}(x) J_{\mathbf{S}}(0)\right]|0\rangle
$$

in terms of discontinuity of its imaginary part

$$
R_{\mathbf{S}}(s)=\operatorname{Im} \Pi(-s-i \epsilon) /(2 \pi s)
$$

so that

$$
\Gamma_{\mathrm{H} \rightarrow b \bar{b}}\left(M_{\mathrm{H}}\right)=\frac{G_{F}}{4 \sqrt{2} \pi} M_{\mathrm{H}} m_{b}^{2}\left(M_{\mathrm{H}}\right) R_{\mathrm{S}}\left(s=M_{\mathrm{H}}^{2}\right) .
$$

FAPT(M) analysis of R_{S}

Running mass $m\left(Q^{2}\right)$ is described by the RG equation

$$
m^{2}\left(Q^{2}\right)=\hat{m}^{2} \alpha_{s}^{\nu_{0}}\left(Q^{2}\right)\left[1+\frac{c_{1} b_{0} \alpha_{s}\left(Q^{2}\right)}{4 \pi^{2}}\right]^{\nu_{1}}
$$

with RG-invariant mass \hat{m}^{2} (for b-quark $\hat{m}_{b} \approx 8.53 \mathrm{GeV}$) and $\nu_{0}=1.04, \nu_{1}=1.86$.

FAPT(M) analysis of R_{S}

Running mass $m\left(Q^{2}\right)$ is described by the RG equation

$$
m^{2}\left(Q^{2}\right)=\hat{m}^{2} \alpha_{s}^{\nu_{0}}\left(Q^{2}\right)\left[1+\frac{c_{1} b_{0} \alpha_{s}\left(Q^{2}\right)}{4 \pi^{2}}\right]^{\nu_{1}} .
$$

with RG-invariant mass \hat{m}^{2} (for b-quark $\hat{m}_{b} \approx 8.53 \mathrm{GeV}$) and $\nu_{0}=1.04, \nu_{1}=1.86$. This gives us

$$
\left[3 \hat{m}_{b}^{2}\right]^{-1} \widetilde{D}_{\mathrm{S}}\left(Q^{2}\right)=\alpha_{s}^{\nu_{0}}\left(Q^{2}\right)+\sum_{m>0} \frac{d_{m}}{\pi^{m}} \alpha_{s}^{m+\nu_{0}}\left(Q^{2}\right)
$$

FAPT(M) analysis of R_{S}

Running mass $m\left(Q^{2}\right)$ is described by the RG equation

$$
m^{2}\left(Q^{2}\right)=\hat{m}^{2} \alpha_{s}^{\nu_{0}}\left(Q^{2}\right)\left[1+\frac{c_{1} b_{0} \alpha_{s}\left(Q^{2}\right)}{4 \pi^{2}}\right]^{\nu_{1}}
$$

with RG-invariant mass \hat{m}^{2} (for b-quark $\hat{m}_{b} \approx 8.53 \mathrm{GeV}$) and $\nu_{0}=1.04, \nu_{1}=1.86$. This gives us

$$
\left[3 \hat{m}_{b}^{2}\right]^{-1} \widetilde{D}_{\mathbf{S}}\left(Q^{2}\right)=\alpha_{s}^{\nu_{0}}\left(Q^{2}\right)+\sum_{m>0} \frac{d_{m}}{\pi^{m}} \alpha_{s}^{m+\nu_{0}}\left(Q^{2}\right)
$$

In 1-loop FAPT(M) we obtain

$$
\widetilde{\mathcal{R}}_{\mathrm{S}}^{(1) ; N}[\boldsymbol{L}]=3 \hat{m}^{2}\left[\mathfrak{A}_{\nu_{0}}^{(1) ; g \mathrm{glob}}[\boldsymbol{L}]+\sum_{m>0}^{N} \frac{d_{m}}{\pi^{m}} \mathfrak{A}_{m+\nu_{0}}^{(1) ; \text { glob }}[\boldsymbol{L}]\right]
$$

FAPT(M) analysis of R_{S}

Running mass $m\left(Q^{2}\right)$ is described by the RG equation

$$
m^{2}\left(Q^{2}\right)=\hat{m}^{2} \alpha_{s}^{\nu_{0}}\left(Q^{2}\right)\left[1+\frac{c_{1} b_{0} \alpha_{s}\left(Q^{2}\right)}{4 \pi^{2}}\right]^{\nu_{1}}
$$

with RG-invariant mass \hat{m}^{2} (for b-quark $\hat{m}_{b} \approx 8.53 \mathrm{GeV}$) and $\nu_{0}=1.04, \nu_{1}=1.86$. This gives us

$$
\left[3 \hat{m}_{b}^{2}\right]^{-1} \widetilde{D}_{\mathbf{S}}\left(Q^{2}\right)=\alpha_{s}^{\nu_{0}}\left(Q^{2}\right)+\sum_{m>0} \frac{d_{m}}{\pi^{m}} \alpha_{s}^{m+\nu_{0}}\left(Q^{2}\right)
$$

In 2-loop FAPT(M) we obtain

$$
\widetilde{\mathcal{R}}_{\mathrm{S}}^{(2) ; N}[\boldsymbol{L}]=3 \hat{m}^{2}\left[\mathfrak{B}_{\nu_{0}, \nu_{1}}^{(2) ; \text { glob }}[L]+\sum_{m>0}^{N} \frac{d_{m}}{\pi^{m}} \mathfrak{B}_{m+\nu_{0}, \nu_{1}}^{(2) ; \text {;gob }}[L]\right]
$$

Model for perturbative coefficients

Coefficients of our series, $\tilde{d}_{m}=d_{m} / d_{1}$, with $d_{1}=17 / 3$:
Model
$\begin{array}{lllll}\tilde{d}_{1} & \tilde{d}_{2} & \tilde{d}_{3} & \tilde{d}_{4} & \tilde{d}_{5}\end{array}$
pQCD
17.4262 .3

Model for perturbative coefficients

Coefficients of our series, $\tilde{d}_{m}=d_{m} / d_{1}$, with $d_{1}=17 / 3$:

Model	\tilde{d}_{1}	\tilde{d}_{2}	\tilde{d}_{3}	\tilde{d}_{4}	\tilde{d}_{5}
pQCD	1	7.42	62.3	-	
$c=2.5, \beta=-0.48$	1	7.42	62.3		

We use model $\tilde{d}_{n}^{\text {mod }}=\frac{c^{n-1}(\beta \Gamma(n)+\Gamma(n+1))}{\beta+1}$ with parameters β and c estimated by known \tilde{d}_{n} and with use of Lipatov asymptotics.

Model for perturbative coefficients

Coefficients of our series, $\tilde{d}_{m}=d_{m} / d_{1}$, with $d_{1}=17 / 3$:

Model	\tilde{d}_{1}	\tilde{d}_{2}	\tilde{d}_{3}	\tilde{d}_{4}	\tilde{d}_{5}
pQCD	1	7.42	62.3	620	-
$c=2.5, \beta=-0.48$	1	7.42	62.3	662	-

We use model $\tilde{d}_{n}^{\text {mod }}=\frac{c^{n-1}(\beta \Gamma(n)+\Gamma(n+1))}{\beta+1}$ with parameters β and c estimated by known \tilde{d}_{n} and with use of Lipatov asymptotics.

Model for perturbative coefficients

Coefficients of our series, $\tilde{d}_{m}=d_{m} / d_{1}$, with $d_{1}=17 / 3$:

Model	\tilde{d}_{1}	\tilde{d}_{2}	\tilde{d}_{3}	\tilde{d}_{4}	\tilde{d}_{5}
pQCD	1	7.42	62.3	620	-
$c=2.5, \beta=-0.48$	1	7.42	62.3	662	-
$c=2.4, \beta=-0.52$	1	7.50	61.1	625	

We use model $\tilde{d}_{n}^{\text {mod }}=\frac{c^{n-1}(\beta \Gamma(n)+\Gamma(n+1))}{\beta+1}$ with parameters β and c estimated by known \tilde{d}_{n} and with use of Lipatov asymptotics.

Model for perturbative coefficients

Coefficients of our series, $\tilde{d}_{m}=d_{m} / d_{1}$, with $d_{1}=17 / 3$:

Model	\tilde{d}_{1}	\tilde{d}_{2}	\tilde{d}_{3}	\tilde{d}_{4}	\tilde{d}_{5}
pQCD	1	7.42	62.3	620	-
$c=2.5, \beta=-0.48$	1	7.42	62.3	662	-
$c=2.4, \beta=-0.52$	1	7.50	61.1	625	7826

We use model $\tilde{d}_{n}^{\text {mod }}=\frac{c^{n-1}(\beta \Gamma(n)+\Gamma(n+1))}{\beta+1}$ with parameters β and c estimated by known \tilde{d}_{n} and with use of Lipatov asymptotics.

Model for perturbative coefficients

Coefficients of our series, $\tilde{d}_{m}=d_{m} / d_{1}$, with $d_{1}=17 / 3$:

Model	\tilde{d}_{1}	\tilde{d}_{2}	\tilde{d}_{3}	\tilde{d}_{4}	\tilde{d}_{5}
pQCD	1	7.42	62.3	620	-
$c=2.5, \beta=-0.48$	1	7.42	62.3	662	-
$c=2.4, \beta=-0.52$	1	7.50	61.1	625	7826
"PMS" model	-	-	64.8	547	7782

We use model $\tilde{d}_{n}^{\text {mod }}=\frac{c^{n-1}(\beta \Gamma(n)+\Gamma(n+1))}{\beta+1}$ with parameters β and c estimated by known \tilde{d}_{n} and with use of Lipatov asymptotics.

FAPT(M) for $\Gamma_{H \rightarrow \bar{b} b}\left(m_{H}\right)$: Truncation errors

We define relative errors of series truncation at N th term:

$$
\Delta_{N}[L]=1-\widetilde{\mathcal{R}}_{\mathrm{S}}^{(2 ; N)}[L] / \widetilde{\mathcal{R}}_{\mathrm{S}}^{(2 ; \infty)}[\boldsymbol{L}]
$$

FAPT(M) for $\Gamma_{H \rightarrow \bar{b} b}\left(m_{H}\right)$: Truncation errors

We define relative errors of series truncation at N th term:

$$
\Delta_{N}[L]=1-\widetilde{\mathcal{R}}_{\mathrm{S}}^{(2 ; N)}[L] / \widetilde{\mathcal{R}}_{\mathrm{S}}^{(2 ; \infty)}[\boldsymbol{L}]
$$

FAPT(M) for $\Gamma_{H \rightarrow \bar{b} b}\left(m_{H}\right)$: Truncation errors

We define relative errors of series truncation at N th term:

$$
\Delta_{N}[L]=1-\widetilde{\mathcal{R}}_{\mathrm{S}}^{(2 ; N)}[L] / \widetilde{\mathcal{R}}_{\mathrm{S}}^{(2 ; \infty)}[\boldsymbol{L}]
$$

FAPT(M) for $\Gamma_{H \rightarrow \bar{b} b}\left(m_{H}\right)$: Truncation errors

Conclusion: If we need accuracy better than 0.5% only then we need to calculate the 5 -th correction.

FAPT(M) for $\Gamma_{H \rightarrow \bar{b} b}\left(m_{H}\right)$: Truncation errors

Conclusion: If we need accuracy better than 0.5% only then we need to calculate the 5 -th correction.

But profit will be tiny — instead of 0.5% one'll obtain 0.3% !

FAPT(M) for $\Gamma_{H \rightarrow \bar{b} b}\left(m_{H}\right)$: Truncation errors

Conclusion: If we need accuracy of the order 0.5% then we need to take into account up to the 4-th correction.

Note: uncertainty due to $P(t)$-modelling is small $\lesssim 0.6 \%$.

FAPT(M) for $\Gamma_{H \rightarrow \bar{b} b}\left(m_{H}\right)$: Truncation errors

Conclusion: If we need accuracy of the order 1\% then we need to take into account up to the 3-rd correction - in agreement with Kataev\&Kim [0902.1442]. Note: RG-invariant mass uncertainty $\sim 2 \%$.

FAPT(M) for $\Gamma_{H \rightarrow \bar{b} b}\left(m_{H}\right)$: Truncation errors

Conclusion: If we need accuracy of the order 1\% then we need to take into account up to the 3-rd correction - in agreement with Kataev\&Kim [0902.1442]. Note: overall uncertainty $\sim 3 \%$.

Resummation for $\Gamma_{H \rightarrow \bar{b} b}\left(m_{H}\right)$: Loop orders

Comparison of 1- (upper strip) and 2- (lower strip) loop results.
We observe a 5% reduction of the two-loop estimate.

Resummation

 for
Adler function $D\left(Q^{2}\right)$

Adler function $D\left(Q^{2}\right)$ in vector channel

Adler function $D\left(Q^{2}\right)$ can be expressed in QCD by means of the correlator of quark vector currents

$$
\Pi_{\mathrm{V}}\left(Q^{2}\right)=\frac{(4 \pi)^{2}}{3 q^{2}} i \int d x e^{i q x}\langle 0| T\left[J_{\mu}(x) J^{\mu}(0)\right]|0\rangle
$$

in terms of discontinuity of its imaginary part

$$
R_{\mathrm{V}}(s)=\frac{1}{\pi} \operatorname{Im} \Pi_{\mathrm{V}}(-s-i \epsilon)
$$

so that

$$
D\left(Q^{2}\right)=Q^{2} \int_{0}^{\infty} \frac{R_{\mathrm{V}}(\sigma)}{\left(\sigma+Q^{2}\right)^{2}} d \sigma
$$

APT analysis of $D\left(Q^{2}\right)$ and $R_{V}(s)$

QCD PT gives us

$$
D\left(Q^{2}\right)=1+\sum_{m>0} \frac{d_{m}}{\pi^{m}}\left(\frac{\alpha_{s}\left(Q^{2}\right)}{\pi}\right)^{m}
$$

APT analysis of $D\left(Q^{2}\right)$ and $R_{V}(s)$

QCD PT gives us

$$
D\left(Q^{2}\right)=1+\sum_{m>0} \frac{d_{m}}{\pi^{m}}\left(\frac{\alpha_{s}\left(Q^{2}\right)}{\pi}\right)^{m}
$$

In APT(E) we obtain

$$
\mathcal{D}_{N}\left(Q^{2}\right)=1+\sum_{m>0}^{N} \frac{d_{m}}{\pi^{m}} \mathcal{A}_{m}^{\mathrm{glob}}\left(Q^{2}\right)
$$

APT analysis of $D\left(Q^{2}\right)$ and $R_{V}(s)$

QCD PT gives us

$$
D\left(Q^{2}\right)=1+\sum_{m>0} \frac{d_{m}}{\pi^{m}}\left(\frac{\alpha_{s}\left(Q^{2}\right)}{\pi}\right)^{m}
$$

In APT(E) we obtain

$$
\mathcal{D}_{N}\left(Q^{2}\right)=1+\sum_{m>0}^{N} \frac{d_{m}}{\pi^{m}} \mathcal{A}_{m}^{\text {glob }}\left(Q^{2}\right)
$$

and in APT(M)

$$
\mathcal{R}_{\mathrm{V} ; N}(s)=1+\sum_{m>0}^{N} \frac{d_{m}}{\pi^{m}} \mathfrak{A}_{m}^{\text {glob }}(s)
$$

Model for perturbative coefficients

Coefficients d_{m} of the PT series:

Model	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}
pQCD with $N_{f}=4$	1	1.52	2.59		-

Model for perturbative coefficients

Coefficients d_{m} of the PT series:

Model	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}
with $N_{f}=4$	1	1.52	2.59		-
$67, \beta=1.325$	1	1.50	2.62		

We use model $d_{n}^{\text {mod }}=\frac{c^{n-1}\left(\beta^{n+1}-n\right)}{\beta^{2}-1} \Gamma(n)$
with parameters β and c estimated by known \tilde{d}_{n} and with use of Lipatov asymptotics.

Model for perturbative coefficients

Coefficients d_{m} of the PT series:

Model	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}
pQCD with $N_{f}=4$	1	1.52	2.59	27.4	-
$c=3.467, \beta=1.325$	1	1.50	2.62	27.8	

We use model $d_{n}^{\text {mod }}=\frac{c^{n-1}\left(\beta^{n+1}-n\right)}{\beta^{2}-1} \Gamma(n)$
with parameters β and c estimated by known \tilde{d}_{n} and with use of Lipatov asymptotics.

Model for perturbative coefficients

Coefficients d_{m} of the PT series:

Model	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}
pQCD with $N_{f}=4$	1	1.52	2.59	27.4	-
$c=3.467, \beta=1.325$	1	1.50	2.62	27.8	
$c=3.456, \beta=1.325$	1	1.49	2.60	27.5	

We use model $d_{n}^{\text {mod }}=\frac{c^{n-1}\left(\beta^{n+1}-n\right)}{\beta^{2}-1} \Gamma(n)$
with parameters β and c estimated by known \tilde{d}_{n} and with use of Lipatov asymptotics.

Model for perturbative coefficients

Coefficients d_{m} of the PT series:

Model	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}
pQCD with $N_{f}=4$	1	1.52	2.59	27.4	-
$c=3.467, \beta=1.325$	1	1.50	2.62	27.8	1888
$c=3.456, \beta=1.325$	1	1.49	2.60	27.5	1865

We use model $d_{n}^{\text {mod }}=\frac{c^{n-1}\left(\beta^{n+1}-n\right)}{\beta^{2}-1} \Gamma(n)$
with parameters β and c estimated by known \tilde{d}_{n} and with use of Lipatov asymptotics.

Model for perturbative coefficients

Coefficients d_{m} of the PT series:

Model	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}
pQCD with $N_{f}=4$	1	1.52	2.59	27.4	-
$c=3.467, \beta=1.325$	1	1.50	2.62	27.8	1888
$c=3.456, \beta=1.325$	1	1.49	2.60	27.5	1865
"INNA" model	1	1.44	$[3,9]$	$[20,48][674,2786]$	

We use model $d_{n}^{\text {mod }}=\frac{c^{n-1}\left(\beta^{n+1}-n\right)}{\beta^{2}-1} \Gamma(n)$
with parameters β and c estimated by known \tilde{d}_{n} and with use of Lipatov asymptotics.

APT(E) for $\mathcal{D}\left(Q^{2}\right)$: Truncation errors

We define relative errors of series truncation at N th term:

$$
\Delta_{N}^{\mathrm{v}}[\boldsymbol{L}]=1-\mathcal{D}_{N}[\boldsymbol{L}] / \mathcal{D}_{\infty}[\boldsymbol{L}]
$$

$A P T(E)$ for $\mathcal{D}\left(Q^{2}\right)$: Truncation errors

Conclusion: The best accuracy (better than 0.1%) is achieved for $\mathbf{N}^{2} \mathrm{LO}$ approximation.

APT(E) for $\mathcal{D}\left(Q^{2}\right)$: Truncation errors

Conclusion: If we add more terms $\mathbf{N}^{3} \mathrm{LO}$ — truncation error increases.

$A P T(E)$ for $\mathcal{D}\left(Q^{2}\right)$: Truncation errors

Conclusion: The best accuracy (better than 0.1%) is achieved for $\mathbf{N}^{2} \mathrm{LO}$ approximation.

APT(E) for $\mathcal{D}\left(Q^{2}\right)$: Errors of modelling $P(t)$

We use model $d_{n}^{\text {mod }}=\frac{c^{n-1}\left(\beta^{n+1}-n\right)}{\beta^{2}-1} \Gamma(n)$
with parameters $\beta=1.325$ and $c=3.456$ estimated by known \tilde{d}_{n} and with use of Lipatov asymptotics.

We apply it to resum APT series and obtain $\mathcal{D}\left(Q^{2}\right)$.

$A P T(E)$ for $\mathcal{D}\left(Q^{2}\right)$: Errors of modelling $P(t)$

We use model $d_{n}^{\text {mod }}=\frac{c^{n-1}\left(\beta^{n+1}-n\right)}{\beta^{2}-1} \Gamma(n)$
with parameters $\beta=1.325$ and $c=3.456$ estimated by known \tilde{d}_{n} and with use of Lipatov asymptotics.

We apply it to resum APT series and obtain $\mathcal{D}\left(Q^{2}\right)$.
We deform our model for d_{n} by using coefficients $\beta_{\mathrm{NNA}}=1.322$ and $c_{\mathrm{NNA}}=3.885$
that deforms $d_{4}=27.5 \rightarrow d_{4}^{\mathrm{NNA}}=20.4$

$A P T(E)$ for $\mathcal{D}\left(Q^{2}\right)$: Errors of modelling $P(t)$

We use model $d_{n}^{\bmod }=\frac{c^{n-1}\left(\beta^{n+1}-n\right)}{\beta^{2}-1} \Gamma(n)$
with parameters $\beta=1.325$ and $c=3.456$ estimated by known \tilde{d}_{n} and with use of Lipatov asymptotics.

We apply it to resum APT series and obtain $\mathcal{D}\left(Q^{2}\right)$.
We deform our model for d_{n} by using coefficients $\beta_{\mathrm{NNA}}=1.322$ and $c_{\mathrm{NNA}}=3.885$
that deforms $d_{4}=27.5 \rightarrow d_{4}^{\text {NNA }}=20.4$
We apply it to resum APT series and obtain $\mathcal{D}_{\text {NNA }}\left(Q^{2}\right)$.

APT(E) for $\mathcal{D}\left(Q^{2}\right)$: Errors of modelling $P(t)$

Conclusion: The result of resummation is stable to the variations of higher-order coefficients: deviation is of the order of 0.1%.

CONCLUSIONS

- APT provides natural way to Minkowski region for coupling and related quantities.

CONCLUSIONS

- APT provides natural way to Minkowski region for coupling and related quantities.
- FAPT provides effective tool to apply APT approach for renormgroup improved perturbative amplitudes.

CONCLUSIONS

- APT provides natural way to Minkowski region for coupling and related quantities.
- FAPT provides effective tool to apply APT approach for renormgroup improved perturbative amplitudes.
- Both APT and FAPT produce finite resummed answers for perturbative quantities if we know generating function $P(t)$ for PT coefficients.

CONCLUSIONS

- APT provides natural way to Minkowski region for coupling and related quantities.
- FAPT provides effective tool to apply APT approach for renormgroup improved perturbative amplitudes.
- Both APT and FAPT produce finite resummed answers for perturbative quantities if we know generating function $P(t)$ for PT coefficients.
- Using quite simple model generating function $P(t)$ for Higgs boson decay $H \rightarrow \bar{b} b$ we see that at \mathbf{N}^{3} LO we have accuracy of the order of:
1% - due to truncation error... ...

CONCLUSIONS

- APT provides natural way to Minkowski region for coupling and related quantities.
- FAPT provides effective tool to apply APT approach for renormgroup improved perturbative amplitudes.
- Both APT and FAPT produce finite resummed answers for perturbative quantities if we know generating function $P(t)$ for PT coefficients.
- Using quite simple model generating function $P(t)$ for Higgs boson decay $H \rightarrow \bar{b} b$ we see that at \mathbf{N}^{3} LO we have accuracy of the order of:
1% - due to truncation error ;
2% - due to RG-invariant mass uncertainty. Agreement with Kataev\&Kim [0902.1442]...

CONCLUSIONS

- APT provides natural way to Minkowski region for coupling and related quantities.
- FAPT provides effective tool to apply APT approach for renormgroup improved perturbative amplitudes.
- Both APT and FAPT produce finite resummed answers for perturbative quantities if we know generating function $P(t)$ for PT coefficients.
- Using quite simple model generating function $P(t)$ for Higgs boson decay $H \rightarrow \bar{b} b$ we see that at \mathbf{N}^{3} LO we have accuracy of the order of:
1% - due to truncation error ...
- ...and for Adler function $\mathcal{D}\left(Q^{2}\right)$ - we have accuracy of the order 0.1% already at \mathbf{N}^{2} LO.

