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History of APT

Euclidean Minkowskian
Q2 = ~q2 − q20 ≥ 0 s = q20 − ~q2 ≥ 0

RG+Analyticity
ghost-free αQED(Q

2)

Bogoliubov et al. 1959

pQCD+RG: resum π2-terms

Arctg (s), UV Non-Power Series

Radyush.,Krasn. &Pivov. 1982

DispRel +renormalons
IR finite αeff

s
(Q2)

Dokshitzer et al. 1995

pQCD+renormalons
Arctg (s) at LE region

Ball, Beneke & Braun 1994-95
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ghost-free αE(Q
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pQCD+RG+Analyticity

Transforms: D̂ = R̂−1
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Analytic (global) pQCD +Analyticity
Global couplings: An(Q

2) ⇔ An(s)

Non-Power perturbative expansions
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History of F(ractional)APT
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Global Fractional APT (FAPT)
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s
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2) ⇔ Aν(s)

A. B. & Mikhailov & Stefanis 2005–2006
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Analytization of αsν(1 + c1αs)
ν
′

: Bν,ν
′(Q2) ⇔ Bν,ν

′(s)

A. B. 2008–2009

Resummation in 2-loop global FAPT
with 2-loop evolution factors Bν,ν

′(Q2) ⇔ Bν,ν
′(s)

A. B. & Mikhailov & Stefanis 2010

Two-loop resummation in (F)APT – p. 7



Quarks’2010 @Kolomna (Russia)

Intro: PT in QCD

coupling αs(µ
2) = (4π/b0)as[L] with L = ln(µ2/Λ2)

RG equation
d as[L]

dL
= −a2

s − c1 a
3
s − . . .

1-loop solution generates Landau pole singularity:
as[L] = 1/L
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Intro: PT in QCD

coupling αs(µ
2) = (4π/b0)as[L] with L = ln(µ2/Λ2)

RG equation
d as[L]

dL
= −a2

s − c1 a
3
s − . . .

1-loop solution generates Landau pole singularity:
as[L] = 1/L

2-loop solution generates square-root singularity:
as[L] ∼ 1/

√
L + c1lnc1

PT series: D[L] = 1 + d1as[L] + d2a
2
s[L] + . . .

RG evolution: B(Q2) =
[
Z(Q2)/Z(µ2)

]
B(µ2)

reduces in 1-loop approximation to
Z ∼ aν[L]

∣∣∣
ν = ν0 ≡ γ0/(2b0)
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Problem in QCD PT: Minkowski region?

Quantities in Minkowski region =

∮∮∮
f(z)D(z)dz.

•
−s + iε

•

Im z

Re z = Q2•
−s − iε
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Problem in QCD PT: Minkowski region?

In
∮∮∮

f(z)D(z)dz one uses D(z) =
∑∑∑

m

dmαm
s (z).

•−s + iε
•

Im z

Re z = Q2•−s − iε
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Problem in QCD PT: Minkowski region?

This change of integration contour is legitimate if D(z)f(z)
is analytic inside

•
−s + iε

•

Im z

Re z = Q2•
−s − iε
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Problem in QCD PT: Minkowski region?

But αs(z) and hence D(z)f(z) have Landau pole
singularity just inside!

•
−s + iε

•

Im z

Re z = Q2•
−s − iε

z
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Problem in QCD PT: Minkowski region?

In APT effective couplings An(z) are analytic functions ⇒
Problem does not appear! Equivalence to CIPT for R(s).

•
−s + iε

•

Im z

Re z = Q2•
−s − iε
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Equivalence CIPT and APT for R(s)

CIPT
{∮∮∮

Γ2

D(z)dz

z

}
= APT

{∮∮∮

Γ3

D(z)dz

z

}

Re z = Q2
×

Γ1

•

Γ2

Γ3

•
−s+ iε

•
−s− iε

Im z
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Basics of APT

Different effective couplings in Euclidean (S&S) and
Minkowskian (R&K&P) regions
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Basics of APT

Different effective couplings in Euclidean (S&S) and
Minkowskian (R&K&P) regions

Based on RG + Causality
⇓ ⇓

UV asymptotics Spectrality

Euclidean: −q2 = Q2, L = lnQ2/Λ2, {An(L)}n∈N

Minkowskian: q2 = s, Ls = ln s/Λ2, {An(Ls)}n∈N

PT
∑∑∑
m

dmam
s (Q2) ⇒

∑∑∑
m

dmAm(Q2) APT

m is power ⇒ m is index
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Spectral representation

By analytization we mean “Källen–Lehmann”
representation

[
f(Q2)

]
an =

∫∫∫ ∞

0

ρf (σ)

σ + Q2 − iε
dσ

Then (note here pole remover ):

ρ(σ) =
1

L2
σ + π2

A1[L] =

∫∫∫ ∞

0

ρ(σ)

σ + Q2
dσ =

1

L
− 1

eL − 1

A1[Ls] =

∫∫∫ ∞

s

ρ(σ)

σ
dσ =

1

π
arccos

Ls√
π2 + L2

s
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Spectral representation

By analytization we mean “Källen–Lehmann” representation

[
f(Q2)

]
an =

∫∫∫ ∞

0

ρf (σ)

σ + Q2 − iε
dσ

with spectral density ρf(σ) = Im
[
f(−σ)

]
/π. Then:

An[L]=

∫∫∫ ∞

0

ρn(σ)

σ + Q2
dσ =

1

(n − 1)!

(
− d

dL

)n−1

A1[L]

An[Ls]=

∫∫∫ ∞

s

ρn(σ)

σ
dσ =

1

(n − 1)!

(
− d

dLs

)n−1

A1[Ls]

an
s [L] =

1

(n − 1)!

(
−

d

dL

)n−1

as[L]
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APT graphics: Distorting mirror

First, couplings: A1(s) and A1(Q
2)
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Q2 [GeV2]−s [GeV2]
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2)

�

1(s)
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APT graphics: Distorting mirror

Second, square-images: A2(s) and A2(Q
2)
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Problems of APT.
Resolution:

Fractional APT
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Problems of APT

In standard QCD PT we have not only power series
F [L] =

∑∑∑
m

fm am
s [L], but also:
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Problems of APT

In standard QCD PT we have not only power series
F [L] =

∑∑∑
m

fm am
s [L], but also:

RG-improvement to account for higher-orders →

Z[L] = exp

{∫∫∫ as[L] γ(a)

β(a)
da

}
1-loop−→ [as[L]]γ0/(2β0)

Factorization → [as[L]]nLm

Sudakov resummation → exp [−as[L] · f(x)]

New functions: (as)
ν , (as)

ν ln(as), (as)
ν Lm, e−as, . . .
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Constructing one-loop FAPT

In one-loop APT we have a very nice recurrence relation

An[L] =
1

(n − 1)!

(
− d

dL

)n−1

A1[L]

and the same in Minkowski domain

An[L] =
1

(n − 1)!

(
− d

dL

)n−1

A1[L] .

We can use it to construct FAPT.
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FAPT(E): Properties of Aν[L]

First, Euclidean coupling (L = L(Q2)):

Aν [L] =
1

Lν
− F (e−L, 1 − ν)

Γ(ν)

Here F (z, ν) is reduced Lerch transcendent. function. It is
analytic function in ν.
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FAPT(E): Properties of Aν[L]

First, Euclidean coupling (L = L(Q2)):

Aν [L] =
1

Lν
− F (e−L, 1 − ν)

Γ(ν)

Here F (z, ν) is reduced Lerch transcendent. function. It is
analytic function in ν. Properties:

A0[L] = 1;

A−m[L] = Lm for m ∈ N;

Am[L] = (−1)mAm[−L] for m ≥ 2 , m ∈ N;

Am[±∞] = 0 for m ≥ 2 , m ∈ N;
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FAPT(M): Properties of Aν[L]

Now, Minkowskian coupling (L = L(s)):

Aν [L] =
sin

[
(ν − 1)arccos

(
L/

√
π2 + L2

)]

π(ν − 1) (π2 + L2)
(ν−1)/2

Here we need only elementary functions.
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FAPT(M): Properties of Aν[L]

Now, Minkowskian coupling (L = L(s)):

Aν [L] =
sin

[
(ν − 1)arccos

(
L/

√
π2 + L2

)]

π(ν − 1) (π2 + L2)
(ν−1)/2

Here we need only elementary functions. Properties:

A0[L] = 1;

A−1[L] = L;

A−2[L] = L2 − π2

3
, A−3[L] = L

(
L2 − π2

)
, . . . ;

Am[L] = (−1)mAm[−L] for m ≥ 2 , m ∈ N;

Am[±∞] = 0 for m ≥ 2 , m ∈ N
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FAPT(E): Graphics of Aν[L] vs. L

Aν [L] =
1

Lν
− F (e−L, 1 − ν)

Γ(ν)

Graphics for fractional ν ∈ [2,3] :
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FAPT(M): Graphics of Aν[L] vs. L

Aν [L] =
sin

[
(ν − 1)arccos

(
L/

√
π2 + L2

)]

π(ν − 1) (π2 + L2)
(ν−1)/2

Compare with graphics in Minkowskian region :

-15 -10 -5 0 5 10 15

0

0.02

0.04

0.06

0.08

0.1

L

�

2.25(L)
�

2.5(L)

�

3(L)

�

2(L)

Two-loop resummation in (F)APT – p. 21



Quarks’2010 @Kolomna (Russia)

FAPT(E): Comparing Aν with (A1)
ν

∆E(L,ν) =
Aν [L] −

(
A1[L]

)ν

Aν [L]

Graphics for fractional ν =0.62, 1.62 and 2.62:

2 4 6 8 10
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-0.15

-0.1

-0.05

0

0.05

0.1

L

∆E[L, ν]
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FAPT(M): Comparing Aν with (A1)
ν

∆M(L,ν) =
Aν [L] −

(
A1[L]

)ν

Aν [L]

Minkowskian graphics for ν =0.62, 1.62 and 2.62:
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Comparison of PT, APT, and FAPT

Theory PT APT FAPT

Set
{
aν

}
ν∈R

{
Am,Am

}
m∈N

{
Aν,Aν

}
ν∈R

Series
∑∑∑
m

fm am
∑∑∑
m

fmAm
∑∑∑
m

fmAm

Inv. powers (a[L])−m — A−m[L] = Lm

Products aµaν = aµ+ν — —

Index deriv. aν lnka — DkAν

Logarithms aνLk — Aν−k
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Development of FAPT:

Heavy-Quark Thresholds
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Conceptual scheme of FAPT

PT:
[

a(Q2)
]

ν

S.D.: ρν(σ)

AM AE

A
ν
(s) A

ν
(Q2)

D̂
−→←−

R̂ = D̂−1
FAPT:

Here Nf is fixed and factorized out.
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Conceptual scheme of FAPT

PT:
[

αs(Q
2;Nf)

]ν

S.D.: ρν(σ;Nf)

AM AE

Aν(s;Nf) Aν(Q2;Nf)
D̂
−→←−

R̂ = D̂−1
FAPT:

Here Nf is fixed, but not factorized out.
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Conceptual scheme of FAPT

PT:
[

α glob
s (Q2)

]ν

S.D.: ρ glob
ν (σ)

AM AE

A
glob
ν (s) A

glob
ν (Q2)

D̂
−→
←−

R̂ = D̂−1

FAPT:

Here we see how “analytization” takes into account
Nf -dependence.
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Global FAPT: Single threshold case

Consider for simplicity only one threshold at s = m2
c

with transition Nf = 3 → Nf = 4.

Denote: L4 = ln (m2
c/Λ

2
3) and λ4 = ln (Λ2

3/Λ
2
4).
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Global FAPT: Single threshold case

Consider for simplicity only one threshold at s = m2
c

with transition Nf = 3 → Nf = 4.

Denote: L4 = ln (m2
c/Λ

2
3) and λ4 = ln (Λ2

3/Λ
2
4).

Then:

A
glob
ν [L]= θ (L < L4)

[
Aν [L; 3]−Aν [L4; 3] +Aν [L4+λ4; 4]

]

+ θ (L ≥ L4)Aν [L+λ4; 4]
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Global FAPT: Single threshold case

Consider for simplicity only one threshold at s = m2
c

with transition Nf = 3 → Nf = 4.

Denote: L4 = ln (m2
c/Λ

2
3) and λ4 = ln (Λ2

3/Λ
2
4).

Then:

A
glob
ν [L]= θ (L < L4)

[
Aν [L; 3]−Aν [L4; 3] +Aν [L4+λ4; 4]

]

+ θ (L ≥ L4)Aν [L+λ4; 4]

and

Aglob
ν [L]=Aν [L+λ4; 4] +

L4∫∫∫

−∞

ρν [Lσ; 3] − ρν [Lσ+λ4; 4]

1 + eL−Lσ
dLσ
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Graphical comparison: Fixed- Nf—Global

Aglob
ν [L] = Aν [L+ λ4; 4] +∆Aν [L] ;

∆A1[L]/Aglob
1 [L] — solid :

-10 -5 0 5 10

-0.2

-0.1

0

0.1

0.2

L

∆Ā
(2)
1 [L]

A
glob;(2)
1 [L]

Two-loop resummation in (F)APT – p. 28



Quarks’2010 @Kolomna (Russia)

Resummation
in

one-loop APT and FAPT
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Resummation in one-loop APT

Consider series D[L] = d0 +

∞∑∑∑

n=1

dnAn[L]
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Resummation in one-loop APT

Consider series D[L] = d0 +

∞∑∑∑

n=1

dnAn[L]

Let exist the generating function P (t) for coefficients:

dn = d1

∫∫∫ ∞

0

P (t) tn−1dt with
∫∫∫ ∞

0

P (t)dt = 1 .

We define a shorthand notation

〈〈f(t)〉〉P (t) ≡
∫∫∫ ∞

0

f(t)P (t)dt .

Then coefficients dn = d1 〈〈tn−1〉〉P (t).
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Resummation in one-loop APT

Consider series D[L] = d0 +

∞∑∑∑

n=1

dnAn[L]

with coefficients dn = d1 〈〈tn−1〉〉P (t).
We have one-loop recurrence relation:

An+1[L] =
1

Γ(n + 1)

(
− d

dL

)n

A1[L] .
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Resummation in one-loop APT

Consider series D[L] = d0 +

∞∑∑∑

n=1

dnAn[L]

with coefficients dn = d1 〈〈tn−1〉〉P (t).
We have one-loop recurrence relation:

An+1[L] =
1

Γ(n + 1)

(
− d

dL

)n

A1[L] .

Result:
D[L] = d0 + d1 〈〈A1[L − t]〉〉P (t)
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Resummation in one-loop APT

Consider series D[L] = d0 +

∞∑∑∑

n=1

dnAn[L]

with coefficients dn = d1 〈〈tn−1〉〉P (t).
We have one-loop recurrence relation:

An+1[L] =
1

Γ(n + 1)

(
− d

dL

)n

A1[L] .

Result:
D[L] = d0 + d1 〈〈A1[L − t]〉〉P (t)

and for Minkowski region:

R[L] = d0 + d1 〈〈A1[L − t]〉〉P (t)
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Resummation in Global Minkowskian APT

Consider series R[L] = d0 +

∞∑∑∑

n=1

dnA
glob
n [L]

with coefficients dn = d1 〈〈tn−1〉〉P (t).

Result:

R[L] = d0 + d1〈〈θ (L<L4)
[
∆4A1[t]+A1

[
L− t

β3
; 3

]]
〉〉P (t)

+ d1〈〈θ (L≥L4)A1

[
L+λ4−

t

β4
; 4

]
〉〉P (t) .

where

∆4A1[t] = A1

[
L4 + λ4 −

t

β4
; 4

]
−A1

[
L3 −

t

β3
; 3

]
.
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Resummation in Global Euclidean APT

In Euclidean domain the result is more complicated:

D[L] = d0 + d1〈〈

L4∫∫∫

−∞

ρ1 [Lσ; 3] dLσ

1 + eL−Lσ−t/β3
〉〉P (t)

+ 〈〈∆4[L, t]〉〉P (t) + d1〈〈

∞∫∫∫

L4

ρ1 [Lσ + λ4; 4] dLσ

1 + eL−Lσ−t/β4
〉〉P (t) .

where

∆4[L, t] =

1∫∫∫

0

ρ1 [L4 + λ4 − tx/β4; 4] t

β4

[
1 + eL−L4−tx̄/β4

] dx

−
1∫∫∫

0

ρ1 [L3 − tx/β3; 3] t

β3

[
1 + eL−L4−tx̄/β3

] dx.
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Resummation in FAPT

Consider seria Rν [L] = d0Aν [L] +

∞∑∑∑

n=1

dnAn+ν [L]

and Dν [L] = d0Aν [L] +

∞∑∑∑

n=1

dnAn+ν [L]

with coefficients dn = d1 〈〈tn−1〉〉P (t).

Result:

Rν [L] = d0Aν [L] + d1 〈〈A1+ν [L − t]〉〉Pν(t) ;

Dν [L] = d0Aν [L] + d1 〈〈A1+ν [L − t]〉〉Pν(t) .

where Pν(t) =

1∫∫∫

0

P

(
t

1 − z

)
ν zν−1 dz

1 − z
.
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Resummation in Global Minkowskian FAPT

Consider series Rν [L] = d0A
glob
ν +

∞∑∑∑

n=1

dnA
glob
n+ν [L]

with coefficients dn = d1 〈〈tn−1〉〉P (t).

Then result is complete analog of the Global APT(M) result
with natural substitutions:

A1[L] → A1+ν[L] and P (t) → Pν(t)

with Pν(t) =

1∫∫∫

0

P

(
t

1 − z

)
ν zν−1 dz

1 − z
.
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Resummation in Global Euclidean FAPT

Consider series Dν [L] = d0Aglob
ν +

∞∑∑∑

n=1

dnAglob
n+ν [L]

with coefficients dn = d1 〈〈tn−1〉〉P (t).

Then result is complete analog of the Global APT(E) result
with natural substitutions:

ρ1[L] → ρ1+ν [L] and P (t) → Pν(t)

with Pν(t) =

1∫∫∫

0

P

(
t

1 − z

)
ν zν−1 dz

1 − z
.

Two-loop resummation in (F)APT – p. 35



Quarks’2010 @Kolomna (Russia)

Resummation
in

two-loop APT and FAPT
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Resummation in two-loop APT

Consider series S[L] =

∞∑∑∑

n=1

〈〈tn−1〉〉P (t)Fn[L].

Here Fn[L] = A(2)
n [L] or A(2)

n [L].
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Resummation in two-loop APT

Consider series S[L] =

∞∑∑∑

n=1

〈〈tn−1〉〉P (t)Fn[L].

Here Fn[L] = A(2)
n [L] or A(2)

n [L].

We have two-loop recurrence relation (c1 = b1/b
2
0):

−
1

n

d

dL
Fn[L] = Fn+1[L] + c1Fn+2[L]
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Resummation in two-loop APT

Consider series S[L] =

∞∑∑∑

n=1

〈〈tn−1〉〉P (t)Fn[L].

Here Fn[L] = A(2)
n [L] or A(2)

n [L].

We have two-loop recurrence relation (c1 = b1/b
2
0):

−
1

n

d

dL
Fn[L] = Fn+1[L] + c1Fn+2[L]

Result (τ (t) = t− c1ln(1 + t/c1)):

S[L] =
〈〈

c1 F1[L]+tF1[L−τ (t)]
c1+t + c1 t

c1+t F2[L− τ (t)]
〉〉

P (t)

−
〈〈

c1 t
c1+t

∫∫∫ t

0
dt′

c1+t′
dF1[L+τ (t′)−τ (t)]

dL

〉〉
P (t)

.
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Resummation in two-loop global APT

Consider series ρ
(2)
Σ [L,Nf ] =

βf

∞∑∑∑

n=1

〈〈tn−1〉〉P (t) ρ
(2)
n [L,Nf ] =

∞∑∑∑

n=1

〈〈
[

t

βf

]n−1

〉〉P (t) ρ
(2)
n [L]
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Resummation in two-loop global APT

Thus (tf = t/βf ): ρ(2)
Σ [L,Nf ] =

∞∑∑∑

n=1

〈〈tn−1
f 〉〉P (t) ρ

(2)
n [L]

We have two-loop recurrence relation (c1 = b1/b
2
0):

− 1

n

d

dL
ρ
(2)
n [L] = ρ

(2)
n+1[L] + c1 ρ

(2)
n+2[L] .
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Resummation in two-loop global APT

Thus (tf = t/βf ): ρ(2)
Σ [L,Nf ] =

∞∑∑∑

n=1

〈〈tn−1
f 〉〉P (t) ρ

(2)
n [L]

We have two-loop recurrence relation (c1 = b1/b
2
0):

− 1

n

d

dL
ρ
(2)
n [L] = ρ

(2)
n+1[L] + c1 ρ

(2)
n+2[L] .

Result of summation is (tf = t/βf ):

ρ
(2)
Σ [L,Nf ] =

〈〈
c1 ρ

(2)
1 [L]+tf ρ

(2)
1 [L−τ (tf)]

c1+tf
+ c1 tf

c1+tf
ρ
(2)
2 [L− τ (tf)]

− c1 tf
c1+tf

∫∫∫ tf
0

dt′

c1+t′
dρ

(2)
1 [L+τ (t′)−τ (tf)]

dL

〉〉
P (t)

.
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Resummation in two-loop (global) FAPT

Consider series Sν [L] =

∞∑∑∑

n=1

〈〈tn−1〉〉P (t)Fn+ν [L].

Here Fν [L] = A(2)
ν [L] or A(2)

ν [L] (or ρ(2)
ν [L] — for global).
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Resummation in two-loop (global) FAPT

Consider series Sν [L] =

∞∑∑∑

n=1

〈〈tn−1〉〉P (t)Fn+ν [L].

Here Fν [L] = A(2)
ν [L] or A(2)

ν [L] (or ρ(2)
ν [L] — for global).

We have two-loop recurrence relation (c1 = b1/b
2
0):

−
1

n + ν

d

dL
Fn+ν [L] = Fn+1+ν[L] + c1Fn+2+ν[L] .
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Resummation in two-loop (global) FAPT

Consider series Sν [L] =

∞∑∑∑

n=1

〈〈tn−1〉〉P (t)Fn+ν [L].

Here Fν [L] = A(2)
ν [L] or A(2)

ν [L] (or ρ(2)
ν [L] — for global).

We have two-loop recurrence relation (c1 = b1/b
2
0):

−
1

n + ν

d

dL
Fn+ν [L] = Fn+1+ν[L] + c1Fn+2+ν[L] .

Result (τ (t) = t− c1ln(1 + t/c1)):

S[L] =
〈〈
F1+ν[L]− t2

c1+t

∫∫∫1
0 z

νdz Ḟ1+ν[L+ τ (t z)− τ (t)]

+ c1 t
c1+t

{
F2+ν [L]−

∫∫∫1
0 dz

t2 zν+1

c1+t z Ḟ2+ν [L+ τ (t z)− τ (t)]
}〉〉

P (t)
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Resummation in two-loop (global) FAPT

Consider series Sν0,ν1[L] =

∞∑∑∑

n=1

〈〈tn−1〉〉P (t)Fn+ν0,ν1[L].

Here Fn+ν0,ν1[L] = B(2)
n+ν0,ν1

[L] or B(2)
n+ν0,ν1

[L]

(or ρ(2)
n+ν0,ν1

[L] — for global),
where

Bν;ν1[L] = AE,M

[
aν
(2)[L]

(
1 + c1 a(2)

)ν1
[L]

]

is the analytic image of the two-loop evolution factor.
We have constructed formulas of resummation for Sν0,ν1[L]
as well.
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Higgs boson

decay

H0 → bb̄
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Higgs boson decay into bb̄-pair

This decay can be expressed in QCD by means of the
correlator of quark scalar currents JS(x) = : b̄(x)b(x):

Π(Q2) = (4π)2i

∫∫∫
dxeiqx〈0| T [ JS(x)JS(0) ] |0〉
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Higgs boson decay into bb̄-pair

This decay can be expressed in QCD by means of the
correlator of quark scalar currents JS(x) = : b̄(x)b(x):

Π(Q2) = (4π)2i

∫∫∫
dxeiqx〈0| T [ JS(x)JS(0) ] |0〉

in terms of discontinuity of its imaginary part

RS(s) = Im Π(−s− iε)/(2π s) ,

so that

ΓH→bb(MH) =
GF

4
√
2π

MH m2
b(MH)RS(s = M2

H) .
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FAPT(M) analysis of RS

Running mass m(Q2) is described by the RG equation

m2(Q2) = m̂2αν0
s (Q2)

[
1 +

c1b0αs(Q
2)

4π2

]ν1

.

with RG-invariant mass m̂2 (for b-quark m̂b ≈ 8.53 GeV)
and ν0 = 1.04, ν1 = 1.86.
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FAPT(M) analysis of RS

Running mass m(Q2) is described by the RG equation

m2(Q2) = m̂2αν0
s (Q2)

[
1 +

c1b0αs(Q
2)

4π2

]ν1

.

with RG-invariant mass m̂2 (for b-quark m̂b ≈ 8.53 GeV)
and ν0 = 1.04, ν1 = 1.86. This gives us

[
3 m̂2

b

]−1
D̃S(Q

2) = αν0
s (Q2) +

∑∑∑

m>0

dm

πm
αm+ν0

s (Q2) .
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FAPT(M) analysis of RS

Running mass m(Q2) is described by the RG equation

m2(Q2) = m̂2αν0
s (Q2)

[
1 +

c1b0αs(Q
2)

4π2

]ν1

.

with RG-invariant mass m̂2 (for b-quark m̂b ≈ 8.53 GeV)
and ν0 = 1.04, ν1 = 1.86. This gives us

[
3 m̂2

b

]−1
D̃S(Q

2) = αν0
s (Q2) +

∑∑∑

m>0

dm

πm
αm+ν0

s (Q2) .

In 1-loop FAPT(M) we obtain

R̃(1);N

S [L] = 3m̂2

[
A

(1);glob
ν0

[L] +

N∑∑∑

m>0

dm

πm
A

(1);glob
m+ν0

[L]

]
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FAPT(M) analysis of RS

Running mass m(Q2) is described by the RG equation

m2(Q2) = m̂2αν0
s (Q2)

[
1 +

c1b0αs(Q
2)

4π2

]ν1

.

with RG-invariant mass m̂2 (for b-quark m̂b ≈ 8.53 GeV)
and ν0 = 1.04, ν1 = 1.86. This gives us

[
3 m̂2

b

]−1
D̃S(Q

2) = αν0
s (Q2) +

∑∑∑

m>0

dm

πm
αm+ν0

s (Q2) .

In 2-loop FAPT(M) we obtain

R̃(2);N

S [L] = 3m̂2

[
B

(2);glob
ν0,ν1

[L] +

N∑∑∑

m>0

dm

πm
B

(2);glob
m+ν0,ν1

[L]

]
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Model for perturbative coefficients

Coefficients of our series, d̃m = dm/d1, with d1 = 17/3:

Model d̃1 d̃2 d̃3 d̃4 d̃5

pQCD 1 7.42 62.3 —
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Model for perturbative coefficients

Coefficients of our series, d̃m = dm/d1, with d1 = 17/3:

Model d̃1 d̃2 d̃3 d̃4 d̃5

pQCD 1 7.42 62.3 —
c = 2.5, β = −0.48 1 7.42 62.3

We use model d̃mod
n =

cn−1(β Γ(n) + Γ(n + 1))

β + 1

with parameters β and c estimated by known d̃n and with
use of Lipatov asymptotics.

Two-loop resummation in (F)APT – p. 44



Quarks’2010 @Kolomna (Russia)

Model for perturbative coefficients

Coefficients of our series, d̃m = dm/d1, with d1 = 17/3:

Model d̃1 d̃2 d̃3 d̃4 d̃5

pQCD 1 7.42 62.3 620 —
c = 2.5, β = −0.48 1 7.42 62.3 662 —

We use model d̃mod
n =

cn−1(β Γ(n) + Γ(n + 1))

β + 1

with parameters β and c estimated by known d̃n and with
use of Lipatov asymptotics.
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Model for perturbative coefficients

Coefficients of our series, d̃m = dm/d1, with d1 = 17/3:

Model d̃1 d̃2 d̃3 d̃4 d̃5

pQCD 1 7.42 62.3 620 —
c = 2.5, β = −0.48 1 7.42 62.3 662 —
c = 2.4, β = −0.52 1 7.50 61.1 625

We use model d̃mod
n =

cn−1(β Γ(n) + Γ(n + 1))

β + 1

with parameters β and c estimated by known d̃n and with
use of Lipatov asymptotics.
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Model for perturbative coefficients

Coefficients of our series, d̃m = dm/d1, with d1 = 17/3:

Model d̃1 d̃2 d̃3 d̃4 d̃5

pQCD 1 7.42 62.3 620 —
c = 2.5, β = −0.48 1 7.42 62.3 662 —
c = 2.4, β = −0.52 1 7.50 61.1 625 7826

We use model d̃mod
n =

cn−1(β Γ(n) + Γ(n + 1))

β + 1

with parameters β and c estimated by known d̃n and with
use of Lipatov asymptotics.
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Model for perturbative coefficients

Coefficients of our series, d̃m = dm/d1, with d1 = 17/3:

Model d̃1 d̃2 d̃3 d̃4 d̃5

pQCD 1 7.42 62.3 620 —
c = 2.5, β = −0.48 1 7.42 62.3 662 —
c = 2.4, β = −0.52 1 7.50 61.1 625 7826

“PMS” model — — 64.8 547 7782

We use model d̃mod
n =

cn−1(β Γ(n) + Γ(n + 1))

β + 1

with parameters β and c estimated by known d̃n and with
use of Lipatov asymptotics.
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FAPT(M) for ΓH→b̄b(mH): Truncation errors

We define relative errors of series truncation at N th term:

∆N [L] = 1− R̃(2;N)

S [L]/R̃(2;∞)

S [L]

10 10.5 11 11.5 12

0.005

0.01

0.015

0.02

0.025

0.03

0.035

L

∆2[L]

∆3[L]
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FAPT(M) for ΓH→b̄b(mH): Truncation errors

We define relative errors of series truncation at N th term:

∆N [L] = 1− R̃(2;N)

S [L]/R̃(2;∞)
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FAPT(M) for ΓH→b̄b(mH): Truncation errors

We define relative errors of series truncation at N th term:

∆N [L] = 1− R̃(2;N)

S [L]/R̃(2;∞)

S [L]
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FAPT(M) for ΓH→b̄b(mH): Truncation errors

Conclusion: If we need accuracy better than 0.5% —
only then we need to calculate the 5-th correction.
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FAPT(M) for ΓH→b̄b(mH): Truncation errors

Conclusion: If we need accuracy better than 0.5% —
only then we need to calculate the 5-th correction.

But profit will be tiny — instead of 0.5% one’ll obtain 0.3%!
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FAPT(M) for ΓH→b̄b(mH): Truncation errors

Conclusion: If we need accuracy of the order 0.5% —
then we need to take into account up to the 4-th correction.

Note: uncertainty due to P (t)-modelling is small ... 0.6%.
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FAPT(M) for ΓH→b̄b(mH): Truncation errors

Conclusion: If we need accuracy of the order 1% —
then we need to take into account up to the 3-rd correction
— in agreement with Kataev&Kim [0902.1442] .
Note: RG-invariant mass uncertainty ∼ 2%.
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FAPT(M) for ΓH→b̄b(mH): Truncation errors

Conclusion: If we need accuracy of the order 1% —
then we need to take into account up to the 3-rd correction
— in agreement with Kataev&Kim [0902.1442] .
Note: overall uncertainty ∼ 3% .
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Resummation for ΓH→b̄b(mH): Loop orders

Comparison of 1- (upper strip ) and 2- (lower strip ) loop
results.
We observe a 5% reduction of the two-loop estimate.

MH [GeV]

Γ∞

H→b̄b
[MeV]

Two-loop resummation in (F)APT – p. 46



Quarks’2010 @Kolomna (Russia)

Resummation
for

Adler function D(Q2)
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Adler function D(Q2) in vector channel

Adler function D(Q2) can be expressed in QCD by means
of the correlator of quark vector currents

ΠV(Q
2) =

(4π)2

3q2
i

∫∫∫
dxeiqx〈0| T [ Jµ(x)J

µ(0) ] |0〉

in terms of discontinuity of its imaginary part

RV(s) =
1

π
Im ΠV(−s− iε) ,

so that

D(Q2) = Q2

∫∫∫ ∞

0

RV(σ)

(σ + Q2)2
dσ .
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APT analysis of D(Q2) and RV(s)

QCD PT gives us

D(Q2) = 1+
∑∑∑

m>0

dm

πm

(
αs(Q

2)

π

)m

.
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APT analysis of D(Q2) and RV(s)

QCD PT gives us

D(Q2) = 1+
∑∑∑

m>0

dm

πm

(
αs(Q

2)

π

)m

.

In APT(E) we obtain

DN(Q2) = 1+

N∑∑∑

m>0

dm

πm
Aglob

m (Q2)
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APT analysis of D(Q2) and RV(s)

QCD PT gives us

D(Q2) = 1+
∑∑∑

m>0

dm

πm

(
αs(Q

2)

π

)m

.

In APT(E) we obtain

DN(Q2) = 1+

N∑∑∑

m>0

dm

πm
Aglob

m (Q2)

and in APT(M)

RV;N(s) = 1+

N∑∑∑

m>0

dm

πm
A

glob
m (s)
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Model for perturbative coefficients

Coefficients dm of the PT series:

Model d1 d2 d3 d4 d5

pQCD with Nf = 4 1 1.52 2.59 —
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Model for perturbative coefficients

Coefficients dm of the PT series:

Model d1 d2 d3 d4 d5

pQCD with Nf = 4 1 1.52 2.59 —

c = 3.467, β = 1.325 1 1.50 2.62

We use model dmod
n =

cn−1(βn+1 − n)

β2 − 1
Γ(n)

with parameters β and c estimated by known d̃n and with
use of Lipatov asymptotics.
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Model for perturbative coefficients

Coefficients dm of the PT series:

Model d1 d2 d3 d4 d5

pQCD with Nf = 4 1 1.52 2.59 27.4 —

c = 3.467, β = 1.325 1 1.50 2.62 27.8

We use model dmod
n =

cn−1(βn+1 − n)

β2 − 1
Γ(n)

with parameters β and c estimated by known d̃n and with
use of Lipatov asymptotics.
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Model for perturbative coefficients

Coefficients dm of the PT series:

Model d1 d2 d3 d4 d5

pQCD with Nf = 4 1 1.52 2.59 27.4 —

c = 3.467, β = 1.325 1 1.50 2.62 27.8

c = 3.456, β = 1.325 1 1.49 2.60 27.5

We use model dmod
n =

cn−1(βn+1 − n)

β2 − 1
Γ(n)

with parameters β and c estimated by known d̃n and with
use of Lipatov asymptotics.
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Model for perturbative coefficients

Coefficients dm of the PT series:

Model d1 d2 d3 d4 d5

pQCD with Nf = 4 1 1.52 2.59 27.4 —

c = 3.467, β = 1.325 1 1.50 2.62 27.8 1888

c = 3.456, β = 1.325 1 1.49 2.60 27.5 1865

We use model dmod
n =

cn−1(βn+1 − n)

β2 − 1
Γ(n)

with parameters β and c estimated by known d̃n and with
use of Lipatov asymptotics.
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Model for perturbative coefficients

Coefficients dm of the PT series:

Model d1 d2 d3 d4 d5

pQCD with Nf = 4 1 1.52 2.59 27.4 —

c = 3.467, β = 1.325 1 1.50 2.62 27.8 1888

c = 3.456, β = 1.325 1 1.49 2.60 27.5 1865

“INNA” model 1 1.44 [3,9] [20,48] [674,2786]

We use model dmod
n =

cn−1(βn+1 − n)

β2 − 1
Γ(n)

with parameters β and c estimated by known d̃n and with
use of Lipatov asymptotics.
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APT(E) for D(Q2): Truncation errors

We define relative errors of series truncation at N th term:

∆V
N [L] = 1−DN [L]/D∞[L]
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APT(E) for D(Q2): Truncation errors

Conclusion: The best accuracy (better than 0.1%) is
achieved for N2LO approximation.

2.5 5 7.5 10 12.5 15 17.5 20

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Q2 [GeV2]

∆V
1

∆V
2

∆V
3

Two-loop resummation in (F)APT – p. 51



Quarks’2010 @Kolomna (Russia)

APT(E) for D(Q2): Truncation errors

Conclusion: If we add more terms N3LO — truncation error
increases.
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APT(E) for D(Q2): Truncation errors

Conclusion: The best accuracy (better than 0.1%) is
achieved for N2LO approximation.
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APT(E) for D(Q2): Errors of modelling P (t)

We use model dmod
n =

cn−1(βn+1 − n)

β2 − 1
Γ(n)

with parameters β = 1.325 and c = 3.456 estimated by
known d̃n and with use of Lipatov asymptotics.

We apply it to resum APT series and obtain D(Q2).
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APT(E) for D(Q2): Errors of modelling P (t)

We use model dmod
n =

cn−1(βn+1 − n)

β2 − 1
Γ(n)

with parameters β = 1.325 and c = 3.456 estimated by
known d̃n and with use of Lipatov asymptotics.

We apply it to resum APT series and obtain D(Q2).

We deform our model for dn by using coefficients
βNNA = 1.322 and cNNA = 3.885

that deforms d4 = 27.5 → dNNA
4 = 20.4
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APT(E) for D(Q2): Errors of modelling P (t)

We use model dmod
n =

cn−1(βn+1 − n)

β2 − 1
Γ(n)

with parameters β = 1.325 and c = 3.456 estimated by
known d̃n and with use of Lipatov asymptotics.

We apply it to resum APT series and obtain D(Q2).

We deform our model for dn by using coefficients
βNNA = 1.322 and cNNA = 3.885

that deforms d4 = 27.5 → dNNA
4 = 20.4

We apply it to resum APT series and obtain DNNA(Q
2).
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APT(E) for D(Q2): Errors of modelling P (t)

Conclusion: The result of resummation is stable to the
variations of higher-order coefficients: deviation is of the
order of 0.1%.
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CONCLUSIONS

APT provides natural way to Minkowski region for
coupling and related quantities.
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CONCLUSIONS

APT provides natural way to Minkowski region for
coupling and related quantities.

FAPT provides effective tool to apply APT approach for
renormgroup improved perturbative amplitudes.
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CONCLUSIONS

APT provides natural way to Minkowski region for
coupling and related quantities.

FAPT provides effective tool to apply APT approach for
renormgroup improved perturbative amplitudes.

Both APT and FAPT produce finite resummed answers
for perturbative quantities if we know generating
function P (t) for PT coefficients.
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CONCLUSIONS

APT provides natural way to Minkowski region for
coupling and related quantities.

FAPT provides effective tool to apply APT approach for
renormgroup improved perturbative amplitudes.

Both APT and FAPT produce finite resummed answers
for perturbative quantities if we know generating
function P (t) for PT coefficients.

Using quite simple model generating function P (t) for
Higgs boson decay H → bb we see that at N3LO we
have accuracy of the order of:
1% — due to truncation error... ...
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CONCLUSIONS

APT provides natural way to Minkowski region for
coupling and related quantities.

FAPT provides effective tool to apply APT approach for
renormgroup improved perturbative amplitudes.

Both APT and FAPT produce finite resummed answers
for perturbative quantities if we know generating
function P (t) for PT coefficients.

Using quite simple model generating function P (t) for
Higgs boson decay H → bb we see that at N3LO we
have accuracy of the order of:
1% — due to truncation error ;
2% — due to RG-invariant mass uncertainty.
Agreement with Kataev&Kim [0902.1442] ...
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CONCLUSIONS

APT provides natural way to Minkowski region for
coupling and related quantities.

FAPT provides effective tool to apply APT approach for
renormgroup improved perturbative amplitudes.

Both APT and FAPT produce finite resummed answers
for perturbative quantities if we know generating
function P (t) for PT coefficients.

Using quite simple model generating function P (t) for
Higgs boson decay H → bb we see that at N3LO we
have accuracy of the order of:
1% — due to truncation error ...

...and for Adler function D(Q2) — we have accuracy of
the order 0.1% already at N2LO.
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