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OUTLINE

✦ galileon and covariant galileon
✦ accretion onto a black hole
✦DGP scalar in the neighborhood of a black hole
✦ another form of galileon near black hole
✦Carter-Penrose diagrams, communicating with a parallel 

universe
✦ conclusion
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Galileon

Scalar field with the “Galilean” symmetry (motivated by Dvali-
Gabadadze-Porrati model of gravity),

π(x)→ π(x) + bµxµ + c

Nicolis et al’09

L1, L2, L3, L4, L5Galilean-invariant terms

However the analysis was made for flat space-time 
(no perturbations of metric)

Equations of motion contain only second derivatives of π
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Galileon

Lπ =
i=5∑

i=1

aiLi,

L1 = π, L2 = ∂µπ∂µπ, L3 = (∂π)2 !π

Covariant galileon Deffayet et al’09

L4 = − (π;απ;α)
[
2 (!π)2 − 2 (π;µνπ;µν)− 1

2
π;µπ;µR

]

L5 = ... {complicated expression}
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Testing Galileon in black hole background

Black 
Hole
Black 
Hole

Galileon accreting on black 
holes.

One may expect 
interesting effects (e.g. 
phantom, ghost 
condensate, k-essence...)
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DGP scalar

Decoupling limit in DGP model (a part of Galileon)

Sπ =
∫

d4x
√
−g

[
(∂π)2 + a3 (∂π)2 !π

]
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DGP scalar

Decoupling limit in DGP model (a part of Galileon)

Sπ =
∫

d4x
√
−g

[
(∂π)2 + a3 (∂π)2 !π

]

convenient rescaling,

xµ → rgx
µ, π → C2rgπ,
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DGP scalar

Decoupling limit in DGP model (a part of Galileon)

Sπ =
∫

d4x
√
−g

[
(∂π)2 + a3 (∂π)2 !π

]

convenient rescaling,

xµ → rgx
µ, π → C2rgπ,

Sπ = r4
gC4

∫
d4x
√
−g

[
(∂π)2 + κ (∂π)2 !π

]
, κ = C2a3/rg

∇µjµ, jµ ≡ 2π,µ + κ
(
2π,µ!π − ∂µ (∂π)2

)
Eom:
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accretion of DGP scalar

Metric in Eddington-Finkelstein
coordinates: ds2 = −fdv2 + 2dvdr + r2dΩ

Ansatz: π(v, r) = v −
∫

dr

f
+ ψ(r)

Boundary condition:

Eom can be integrated once to give,

2fψ′ + κ

(
−f ′

f
+ ff ′ψ′2 +

4f2ψ′2

r

)
=

A

r2

C2 = ∂tπ|r=∞ = ∂vπ|r=∞
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solutions for accretion of DGP scalar (I)

ψ′
1,2 = −

r2f ±
√

r4f2 + κr (Af + κr2f ′) (rf ′ + 4f)
κrf (rf ′ + 4f)

How to choose the “correct” physical solution?

Analyze the positions of singularities in solution  
and the sound horizon.

Gµν∇µ∇νδπ = 0, Gµν = (1 + 2κ!π) gµν − 2κ∇µ∇νπ.
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solutions for accretion of DGP scalar (II)
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Different models
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canonical term +     

r

π′(r)

L4
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Carter-Penrose diagrams (I)

i−
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can demonstrate, for example, that a hole which is formed from an initially inhomogeneous

collapse “shakes off” any lumpiness by emitting gravitational radiation. This is an example

of a “no-hair theorem.” If we are interested in the form of the black hole after it has settled

down, we thus need only to concern ourselves with charged and rotating holes. In both cases

there exist exact solutions for the metric, which we can examine closely.
But first let’s take a brief detour to the world of black hole evaporation. It is strange to

think of a black hole “evaporating,” but in the real world black holes aren’t truly black —

they radiate energy as if they were a blackbody of temperature T = h̄/8πkGM , where M is

the mass of the hole and k is Boltzmann’s constant. The derivation of this effect, known as

Hawking radiation, involves the use of quantum field theory in curved spacetime and is way

outside our scope right now. The informal idea is nevertheless understandable. In quantum
field theory there are “vacuum fluctuations” — the spontaneous creation and annihilation

of particle/antiparticle pairs in empty space. These fluctuations are precisely analogous to

the zero-point fluctuations of a simple harmonic oscillator. Normally such fluctuations are

e

r = 2GM

r

t

+e e-

e-

+

i0

i+

I+

r = 0

r
=

0

canonical term
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Carter-Penrose diagrams (II)
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can demonstrate, for example, that a hole which is formed from an initially inhomogeneous

collapse “shakes off” any lumpiness by emitting gravitational radiation. This is an example

of a “no-hair theorem.” If we are interested in the form of the black hole after it has settled

down, we thus need only to concern ourselves with charged and rotating holes. In both cases

there exist exact solutions for the metric, which we can examine closely.
But first let’s take a brief detour to the world of black hole evaporation. It is strange to

think of a black hole “evaporating,” but in the real world black holes aren’t truly black —

they radiate energy as if they were a blackbody of temperature T = h̄/8πkGM , where M is

the mass of the hole and k is Boltzmann’s constant. The derivation of this effect, known as

Hawking radiation, involves the use of quantum field theory in curved spacetime and is way

outside our scope right now. The informal idea is nevertheless understandable. In quantum
field theory there are “vacuum fluctuations” — the spontaneous creation and annihilation

of particle/antiparticle pairs in empty space. These fluctuations are precisely analogous to

the zero-point fluctuations of a simple harmonic oscillator. Normally such fluctuations are
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DGP scalar
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Carter-Penrose diagrams (III)
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can demonstrate, for example, that a hole which is formed from an initially inhomogeneous

collapse “shakes off” any lumpiness by emitting gravitational radiation. This is an example

of a “no-hair theorem.” If we are interested in the form of the black hole after it has settled

down, we thus need only to concern ourselves with charged and rotating holes. In both cases

there exist exact solutions for the metric, which we can examine closely.
But first let’s take a brief detour to the world of black hole evaporation. It is strange to

think of a black hole “evaporating,” but in the real world black holes aren’t truly black —

they radiate energy as if they were a blackbody of temperature T = h̄/8πkGM , where M is

the mass of the hole and k is Boltzmann’s constant. The derivation of this effect, known as

Hawking radiation, involves the use of quantum field theory in curved spacetime and is way

outside our scope right now. The informal idea is nevertheless understandable. In quantum
field theory there are “vacuum fluctuations” — the spontaneous creation and annihilation

of particle/antiparticle pairs in empty space. These fluctuations are precisely analogous to

the zero-point fluctuations of a simple harmonic oscillator. Normally such fluctuations are
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message to/from a parallel universe?

eternal black hole
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v′′ = arctan

(
v′

√
2GM

)

, (7.105)

with ranges

−π/2 < u′′ < +π/2

−π/2 < v′′ < +π/2

−π < u′′ + v′′ < π .

The (u′′, v′′) part of the metric (that is, at constant angular coordinates) is now conformally

related to Minkowski space. In the new coordinates the singularities at r = 0 are straight
lines that stretch from timelike infinity in one asymptotic region to timelike infinity in the

other. The Penrose diagram for the maximally extended Schwarzschild solution thus looks

like this:
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The only real subtlety about this diagram is the necessity to understand that i+ and i− are

distinct from r = 0 (there are plenty of timelike paths that do not hit the singularity). Notice
also that the structure of conformal infinity is just like that of Minkowski space, consistent

with the claim that Schwarzschild is asymptotically flat. Also, the Penrose diagram for a

collapsing star that forms a black hole is what you might expect, as shown on the next page.

Once again the Penrose diagrams for these spacetimes don’t really tell us anything we

didn’t already know; their usefulness will become evident when we consider more general

black holes. In principle there could be a wide variety of types of black holes, depending on
the process by which they were formed. Surprisingly, however, this turns out not to be the

case; no matter how a black hole is formed, it settles down (fairly quickly) into a state which

is characterized only by the mass, charge, and angular momentum. This property, which

must be demonstrated individually for the various types of fields which one might imagine

go into the construction of the hole, is often stated as “black holes have no hair.” You
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CONCLUSION

✦ It is possible to look inside a black hole using galileon (if the 
physical solution(s) exist). This is similar to superluminal k-
essence.

✦ For a particular choice of galileon the only solutions are 
those with zero radius of the sound horizon.

✦ For some regions of parameters regular solutions do not exist.
✦Are there problems for galileon if BH is included?
✦Change of thermodynamics of black holes? 
✦Signals to/from a parallel universe?
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