The $Z \rightarrow c \bar{c} \rightarrow \gamma \gamma^{*}, Z \rightarrow b \bar{b} \rightarrow \gamma \gamma^{*}$ triangle diagrams and

the $Z \rightarrow \gamma \psi, Z \rightarrow \gamma \Upsilon$ decays
 N.N. Achasov

Laboratory of Theoretical Physics,
Sobolev Institute for Mathematics,
Academician Koptiug Prospekt, 4, Novosibirsk, 630090, Russia

Electronic Address: achasov@math.nsc.ru
QUARKS 2010, Kolomna, Russia, June 6-12, 2010 - p.1/34

ABSTACT

It is expounded the approach to the $Z \rightarrow \gamma \Psi$ and $Z \rightarrow \gamma \Upsilon$ decay study, based on the sum rules for the $Z \rightarrow c \bar{c} \rightarrow \gamma \gamma^{*}$ and $Z \rightarrow b \bar{b} \rightarrow \gamma \gamma^{*}$ amplitudes and their derivatives.

The branching ratios of the $Z \rightarrow \gamma \psi$ and $Z \rightarrow \gamma \Upsilon$ decays are calculated for different guesses as to saturation of the sum rules.

The angle distributions in the $Z \rightarrow \gamma \psi$ and $Z \rightarrow \gamma \Upsilon$ decays are calculated also.

OUTLINE

1. The invariant amplitudes of the triangle loop diagrams describing the transition of the axial-vector current $\rightarrow q \bar{q} \rightarrow \gamma\left(k_{1}\right) \gamma\left(k_{2}\right)$ at $k_{1}^{2}=0$ and $k_{2}^{2} \neq 0$.
2. The sum rules for the $Z \rightarrow c \bar{c}($ or $b \bar{b}) \rightarrow \gamma \gamma *$ amplitude.
3. The resonance saturation of the sum rule for the amplitude.
4. The resonance saturation of the sum rule for the amplitude derivative.
5. The simultaneous resonance saturation of the amplitude and its derivative.
6. Summary.
7. The angle distributions in the $Z \rightarrow \gamma \psi$ and $Z \rightarrow \gamma \Upsilon$ decays.

The Triangle Diagrams

$T_{\alpha \beta \mu}=A_{1} k_{1}^{\sigma} \epsilon_{\sigma \alpha \beta \mu}+A_{2} k_{2}^{\sigma} \epsilon_{\sigma \alpha \beta \mu}+A_{3} k_{1 \beta} k_{1}^{\delta} k_{2}^{\sigma} \epsilon_{\delta \sigma \alpha \mu}$
$+A_{4} k_{2 \beta} k_{1}^{\delta} k_{2}^{\sigma} \epsilon_{\delta \sigma \alpha \mu}+A_{5} k_{1 \alpha} k_{1}^{\delta} k_{2}^{\sigma} \epsilon_{\delta \sigma \beta \mu}+A_{6} k_{2 \alpha} k_{1}^{\delta} k_{2}^{\sigma} \epsilon_{\delta \sigma \beta \mu}$

QUARKS 2010, Kolomna, Russia, June 6-12, 2010 - p.4/34

The Triangle Diagrams

The local gauge invariance

$$
k_{1}^{\alpha} T_{\alpha \beta \mu}=k_{2}^{\beta} T_{\alpha \beta \mu}=0
$$

is ensured by the next constraints:

$$
A_{1}=k_{2}^{2} A_{4}+\left(k_{1} k_{2}\right) A_{3}, \quad A_{2}=k_{1}^{2} A_{5}+\left(k_{1} k_{2}\right) A_{6}
$$

Besides that
$A_{3}\left(k_{1}, k_{2}\right)=-A_{6}\left(k_{2}, k_{1}\right), \quad A_{4}\left(k_{1}, k_{2}\right)=-A_{5}\left(k_{2}, k_{1}\right)$.
A_{3}, A_{4}, A_{5} and A_{6} are the invariant amplitudes free of kinematical singularities. They are well-defined and can be calculated in the analytic form if $k_{1}^{2}=0\left(\right.$ or $\left.k_{2}^{2}=0\right)$.

The Triangle Diagrams

Let us consider the region $k_{1}^{2}=0, Q^{2}=-k_{2}^{2}=-E^{2}>0$, $W^{2}=-M^{2}=-\left(k_{1}+k_{2}\right)^{2}>0$ which is suitable for the calculations with the help of the dispersion relations over M^{2} (and over \boldsymbol{E}^{2}). Here is the result of this calculation:

$$
\begin{aligned}
& A_{3}=-A_{6}=-\frac{1}{2 \pi^{2}} \cdot \frac{1}{Q^{2}-W^{2}} \\
& \times\left\{\frac{Q^{2}}{Q^{2}-W^{2}} L_{1}+\frac{m_{q}^{2}}{Q^{2}-W^{2}} L_{2}-1\right\} \\
& A_{4}=-\frac{1}{2 \pi^{2}} \cdot \frac{1}{Q^{2}-W^{2}} L_{1}
\end{aligned}
$$

The Triangle Diagrams

$$
\begin{gathered}
A_{2}=\frac{1}{4 \pi^{2}}\left\{\frac{Q^{2}}{Q^{2}-W^{2}} L_{1}+\frac{m_{q}^{2}}{Q^{2}-W^{2}} L_{2}-1\right\}, \\
A_{1}=\frac{1}{4 \pi^{2}}\left\{\frac{Q^{2}}{Q^{2}-W^{2}} L_{1}-\frac{m_{q}^{2}}{Q^{2}-W^{2}} L_{2}+1\right\}, \\
A_{5}=-A_{4}+\frac{3}{\pi^{2}} Q^{2} \frac{d}{d Q^{2}}\left[\frac{1}{Q^{2}-W^{2}} L_{1}\right]+ \\
\frac{3}{2 \pi^{2}} Q^{4}\left(\frac{d}{d Q^{2}}\right)^{2}\left[\frac{1}{Q^{2}-W^{2}} L_{1}\right]--\frac{3}{4 \pi^{2}} Q^{2} \frac{d}{d Q^{2}}\left[\frac{1}{Q^{2}-W^{2}} L_{2}\right] \\
+\frac{1}{2 \pi^{2}} Q^{2} m_{q}^{2}\left(\frac{d}{d Q^{2}}\right)^{2}\left[\frac{1}{Q^{2}-W^{2}} L_{2}\right], \text { where }
\end{gathered}
$$

The Triangle Diagrams

$$
\begin{aligned}
L_{1} & =-\rho \ln \frac{\rho+1}{\rho-1}+\beta \ln \frac{\beta+1}{\beta-1} \\
L_{2} & =-\ln ^{2} \frac{\rho+1}{\rho-1}+\ln ^{2} \frac{\beta+1}{\beta-1} \\
\rho^{2} & =1+\frac{4 m_{q}^{2}}{W^{2}}, \quad \beta^{2}=1+\frac{4 m_{q}^{2}}{Q^{2}}
\end{aligned}
$$

Note that A_{5} and A_{4} do not contribute into physical values directly (not through the relations (3)) because $\boldsymbol{k}_{1 \alpha}$ and $\boldsymbol{k}_{2 \beta}$ in Eq. (1) are contracted either with the polarization vectors $\left(k_{1 \alpha} e^{\alpha}\left(k_{1}\right)\right)=0$ and $\left(k_{2 \beta} e^{\beta}\left(k_{2}\right)\right)=0$ or with the conserved currents $\left(k_{1 \alpha} j^{\alpha}\left(k_{1}\right)\right)=0$ and $\left(k_{2 \beta} j^{\beta}\left(k_{2}\right)\right)=0$.

QUARKS 2010, Kolomna, Russia, June 6-12, 2010 - p.8/34

The Triangle Diagrams

i) $0<-\mathrm{W}^{2}=\mathrm{M}^{2}<4 \mathrm{~m}_{\mathrm{q}}^{2}$:
$\rho \rightarrow i \sqrt{-\rho^{2}}, \quad \frac{1}{2} \ln \frac{\rho+1}{\rho-1} \rightarrow-i \arctan \frac{1}{\sqrt{-\rho^{2}}}$,
$2 m_{q}<M$:
$\sqrt{-\rho^{2}} \rightarrow-i \rho, \quad \arctan \frac{1}{\sqrt{-\rho^{2}}} \rightarrow \frac{\pi}{2}+\frac{i}{2} \ln \frac{1+\rho}{1-\rho}$.
ii) $0<-\mathrm{Q}^{2}=\mathrm{E}^{2}<4 \mathrm{~m}_{\mathrm{q}}^{2}$:
$\beta \rightarrow i \sqrt{-\beta^{2}}, \quad \frac{1}{2} \ln \frac{\beta+1}{\beta-1} \rightarrow-i \arctan \frac{1}{\sqrt{-\beta^{2}}}$,
$2 \mathrm{~m}_{\mathrm{q}}<\mathrm{E}:$
$\sqrt{-\beta^{2}} \rightarrow-i \beta, \quad \arctan \frac{1}{\sqrt{-\beta^{2}}} \rightarrow \frac{\pi}{2}+\frac{i}{2} \ln \frac{1+\beta}{1-\beta}$.

$Z \rightarrow \gamma(\psi / \Upsilon)$ in dispersion approach

Let us calculate the amplitude for $Z \rightarrow \gamma\left(k_{1}\right) \gamma^{*}\left(k_{2}\right)$ for $Z \rightarrow c \bar{c} \rightarrow \gamma \gamma^{*}$ or $Z \rightarrow b \bar{b} \rightarrow \gamma \gamma^{*}$ at $0 \leq k_{2}^{2}=E^{2} \leq 4 m_{q}^{2}$ $\left(k_{1}^{2}=0\right)$ in the Z boson rest frame, neglecting $\sim(E / M)^{2}$,
$T\left(Z \rightarrow q \bar{q} \rightarrow \gamma \gamma^{*}\right)=M^{2} E t_{q}\left(\vec{n} \cdot \vec{e}\left(\gamma^{*}\right)\right)(\vec{n} \cdot[\vec{e}(\gamma) \times \vec{e}(Z)])$ where $M \equiv M_{Z} ; \vec{n}=\vec{k}_{1} /\left|\vec{k}_{1}\right| ; \vec{e}(Z)$ and $\vec{e}\left(\gamma^{*}\right)$ are the polarization three-vectors of the Z boson and the γ^{*} quantum in their rest frames; $\vec{e}(\gamma)$ is the polarization three-vector of the γ quantum. The amplitude t_{q} takes into account three colors.

$$
t_{q}=-\sigma_{q} \frac{3}{4} \cdot \frac{e^{3} e_{q}^{2}}{\sin 2 \Theta_{W}}\left(A_{4}+A_{6}\right)
$$

where $\sigma_{c}=1, \sigma_{b}=-1, e_{c}=2 / 3, e_{b}=-1 / 3$.

$Z \rightarrow \gamma(\psi / \Upsilon)$ in dispersion approach

The t_{q} amplitude satisfies a dispersion relation without subtractions both in M^{2} and in E^{2}. Consequently, t_{q} is the amplitude convenient for obtaining sum rules in the $\boldsymbol{E}^{\mathbf{2}}$ channel. It is most convenient to derive them with the help of the following consideration. The amplitude t_{q} describes the full amplitude for $Z \rightarrow q \bar{q} \rightarrow \gamma \gamma^{*}$ in the region $E^{2} \leq 0$ accurate up to higher corrections in $Q C D$ and the standard electroweak theory. On the other hand, the full amplitude for $Z \rightarrow q \bar{q} \rightarrow \gamma \gamma^{*}$ can be represented with the help of the intermediate hadronic states in the $\boldsymbol{E}^{\mathbf{2}}$ channel as the sum of resonance contributions and a continuum spectrum contribution:

$Z \rightarrow \gamma(\psi / \Upsilon)$ in dispersion approach

$T\left(Z \rightarrow q \bar{q} \rightarrow \gamma \gamma^{*}\right)=M^{2} E t_{h}^{q}\left(\vec{n} \cdot \vec{e}\left(\gamma^{*}\right)\right)(\vec{n} \cdot[\vec{e}(\gamma) \times \vec{e}(Z)])$
where

$$
t_{h}^{q}=\sum_{V} \frac{m_{V}^{2}}{m_{V}^{2}-E^{2}} \cdot \frac{e}{f_{V}} T_{V}^{q}+e T_{c o n t}^{q}
$$

V is a $(q \bar{q})$ vector quarkonium ; $T_{\text {cont }}^{q}$ is the continuum contribution $\left(D \bar{D}, D^{*} \bar{D}, D \bar{D}^{*}, D^{*} \bar{D}^{*}, \cdots\right.$ or $\left.B \bar{B}, B^{*} \bar{B}, B \bar{B}^{*}, B^{*} \bar{B}^{*}, \cdots\right)$.

There is every reason to believe that where $E^{2} \approx 0$
$t_{h}^{q} \approx t_{q} \approx-\frac{\sigma_{q}}{M^{2}} \frac{3 e \alpha e_{q}^{2}}{2 \sin 2 \Theta_{W}}\left(i-\frac{2}{\pi} \ln \frac{M}{m_{q}}+\frac{1}{\pi}+\frac{\beta}{\pi} \ln \frac{\beta+1}{\beta-1}\right)$
Let us consider the sum rule for the amplitude and its derivative
QUARKS 2010, Kolomna, Russia, June 6-12, 2010 - p. $12 / 34$

$Z \rightarrow \gamma(\psi / \Upsilon)$ in dispersion approach

$$
\begin{gathered}
\left.t_{q}\right|_{E^{2}=0}=\left.t_{h}^{q}\right|_{E^{2}=0} \text { and }\left.\frac{d}{d E^{2}} t_{q}\right|_{E^{2}=0}=\left.\frac{d}{d E^{2}} t_{h}^{q}\right|_{E^{2}=0}, \text { that is, } \\
\sum_{V} \frac{1}{f_{V}} T_{V}^{q}+\left.T_{\text {cont }}^{q}\right|_{E^{2}=0} \equiv T_{q}(\text { Res })+\left.T_{\text {cont }}^{q}\right|_{E^{2}=0}= \\
T_{q} \equiv-\sigma_{q} \frac{3 \alpha e_{q}^{2}}{2 \sin 2 \Theta_{W}} \cdot \frac{1}{M^{2}}\left(i-\frac{2}{\pi} \ln \frac{M}{m_{q}}+\frac{3}{\pi}\right) \text { and } \\
\sum_{V} \frac{1}{f_{V} m_{V}^{2}} T_{V}^{q}+\left.\frac{d}{d E^{2}} T_{\text {cont }}^{q}\right|_{E^{2}=0}=D_{q}(\text { Res })+\left.\frac{d}{d E^{2}} T_{\text {cont }}^{q}\right|_{E^{2}=0} \\
=D_{q} \equiv \frac{\sigma_{q}}{M^{2}} \frac{\alpha e_{q}^{2}}{4 \pi m_{q}^{2} \sin 2 \Theta_{W}} . \Gamma\left(\mathrm{V} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}\right)=\frac{4 \pi}{3} \frac{\mathrm{~m}_{\mathrm{V}}^{2}}{\mathrm{f}_{\mathrm{V}}^{2}} \alpha^{2}
\end{gathered}
$$

$Z \rightarrow \gamma(\psi / \Upsilon)$ in dispersion approach

$$
\begin{gathered}
\Gamma(Z \rightarrow \gamma V) \approx \frac{1}{24 \pi} M^{3} m_{V}^{2}\left|T_{V}^{q}\right|^{2} \\
c 1 \equiv J / \psi(1 S) \equiv \psi(3097), c 2 \equiv \psi(3686), c 3 \equiv \psi(3770) \\
c 4 \equiv \psi(4040), c 5 \equiv \psi(4160), c 6 \equiv \psi(4415) \\
f_{c 1}: f_{c 2}: f_{c 3}: f_{c 4}: f_{c 5}: f_{c 6}=1: 1.7: 5: 2.9: 3: 3.7, \\
b 1 \equiv \Upsilon(9460), b 2 \equiv \Upsilon(10023), b 3 \equiv \Upsilon(10355), \\
b 4 \equiv \Upsilon(10579), b 5 \equiv \Upsilon(10860), b 6 \equiv \Upsilon(11020) \\
f_{b 1}: f_{b 2}: f_{b 3}: f_{b 4}: f_{b 5}: f_{b 6}=1: 1.5: 1.8: 2.4: 2.2: 3.5 \\
f_{c 1}=11.2, \quad f_{c 1}^{2} / 4 \pi \equiv f_{J / \psi(1 S)}^{2} / 4 \pi \equiv f_{\psi(3097)}^{2} / 4 \pi=9.9 \\
\mathrm{f}_{\mathrm{b} 1}=39.7, \quad \mathrm{f}_{\mathrm{b} 1}^{2} / 4 \pi \equiv \mathrm{f}_{\Upsilon(1 \mathrm{~S})}^{2} / 4 \pi \equiv \mathrm{f}_{\Upsilon(9460)}^{2} / 4 \pi=125.4
\end{gathered}
$$

Sum rule for amplitude

Let us saturate initially the real part of the sum rule for the amplitude with the ground state, that is,

$$
T_{V}^{q}=f_{V} \operatorname{Re}\left(T_{q}\right), \text { where }, V=J / \psi(1 S), \Upsilon(1 S)
$$

Using $m_{c}=1.27 \mathrm{GeV}, m_{b}=4.2 \mathrm{GeV}, M=91.19 \mathrm{GeV}$, $\Gamma_{Z}=2.5 \mathrm{GeV}, \alpha=1 / 137$, and $\sin 2 \Theta_{W}=0.84$, we find

$$
\begin{aligned}
& B R(Z \rightarrow \gamma J / \psi(1 S))=7.2 \cdot 10^{-6} \\
& B R(Z \rightarrow \gamma \Upsilon(1 S))=1.7 \cdot 10^{-5}
\end{aligned}
$$

which are two orders of magnitude higher quark model predictions.
Let us saturate now the real part of the sum rule for the amplitude with the Ψ and Υ families

$$
\sum_{V} \frac{1}{f_{V}} T_{V}^{q} \equiv T_{q}(R e s)=\operatorname{Re}\left(T_{q}\right)
$$

QUARKS 2010, Kolomna, Russia, June 6-12, 2010 - p. $15 / 34$

Sum rule for amplitude

The minimum of $\sum_{V} \Gamma(Z \rightarrow \gamma V)$ is reached when
$T_{V}^{q}=\frac{1}{a_{q} f_{V} m_{V}^{2}} \operatorname{Re}\left(T_{q}\right), \quad$ where $\quad a_{q}=\sum_{V} \frac{1}{f_{V}^{2} m_{V}^{2}}$,
$\Gamma(Z \rightarrow \gamma V)=\frac{1}{24 \pi} M^{3}\left(\operatorname{Re}\left(T_{q}\right)\right)^{2}\left(f_{V} m_{V} a_{q}\right)^{-2}$, and

$$
\min \sum_{V} \Gamma(Z \rightarrow \gamma V)=\frac{1}{24 \pi} M^{3}\left(\boldsymbol{R e}\left(T_{q}\right)\right)^{2} a_{q}^{-1}
$$

For the Ψ family ($a_{c}=1.2 \cdot 10^{-3} \mathrm{GeV}^{-2}$)
$\min \sum_{\Psi} B R(Z \rightarrow \gamma \psi)=5.05 \cdot 10^{-6}$,
$\quad B R(Z \rightarrow \gamma J / \psi(1 S))=3.53 \cdot 10^{-6}$.
For the Υ family ($a_{b}=1.43 \cdot 10^{-5} \mathrm{GeV}^{-2}$)
$\min \sum_{\Upsilon} B R(Z \rightarrow \gamma \Upsilon)=8.58 \cdot 10^{-6}$,
$B R\left(Z \rightarrow \gamma \Upsilon(1 S)=4.25 \cdot 10^{-6}\right.$.
QUARKS 2010, Kolomna, Russia, June 6-12, 2010 - p. $16 / 34$

Sum rule for amplitude

When the amplitude is saturated with the ground state

$$
\underset{\text { ance family }}{D_{q}(V)}=\frac{1}{f_{V} m_{V}^{2}} T_{V}^{q}=\frac{1}{m_{V}^{2}} \operatorname{Re}\left(T_{q}\right)
$$

or the resonance family

$$
\begin{gathered}
D_{q}(R e s)=\sum_{V} \frac{1}{f_{V} m_{V}^{2}} T_{V}^{q}=\frac{d_{q}}{a_{q}} R e\left(T_{q}\right), \quad d_{q}=\sum_{V} \frac{1}{f_{V}^{2} m_{V}^{4}} \\
D_{c}(J / \psi(1 S))=0.10 \operatorname{Re}\left(T_{c}\right) \mathrm{GeV}^{-2}=5.60 D_{c} \\
D_{b}(\Upsilon(1 S))=0.01 R e\left(T_{b}\right) \mathrm{GeV}^{-2}=3.73 D_{b} \\
D_{c}(R e s)=0.1 R e\left(T_{c}\right) \mathrm{GeV}^{-2}=5 D_{c}, d_{c}=1.1 \cdot 10^{-4} \mathrm{GeV}^{-4} \\
D_{b}(R e s)=0.01 R e\left(T_{b}\right) \mathrm{GeV}^{-2}=3.4 D_{b}, d_{b}=1.5 \cdot 10^{-7} \mathrm{GeV}^{-4}
\end{gathered}
$$

So, the saturation of the amplitudes with the ground states or the resonance families leads to the unacceptably large contributions of the resonances into the amplitude derivatives.

Sum rule for the amplitude derivative

The dispersion integral for T_{q} is due to the $2 m_{q} \leq E \sim M_{Z}$ region, that is not a low energy one. Consequently, it is reasonable to study the sum rule for the amplitude derivative because the contribution of low-lying states in the dispersion integral for the amplitude derivative is enhanced as compared to their contribution to the amplitude itself. Note that 90% of the dispersion integral for D_{q} is determined by the region of low energies $2 m_{q} \leq E \leq 6 m_{q}$.

When the amplitude derivative is saturated with the ground state $V, V=J / \psi(1 S), \quad \Upsilon(1 S)$,

$$
\begin{gathered}
T_{V}^{q}=f_{V} m_{V}^{2} D_{q}, \text { then } \\
B R(Z \rightarrow \gamma J / \psi(1 S))=2.31 \cdot 10^{-7} \\
B R(Z \rightarrow \gamma \Upsilon(1 S))=1.24 \cdot 10^{-6}
\end{gathered}
$$

Sum rule for the amplitude derivative

When the amplitude derivative is saturated with the resonance family,

$$
\begin{aligned}
& \sum_{V} \frac{1}{f_{V} m_{V}^{2}} T_{V}^{q} \equiv D_{q}(\text { Res })=D_{q}, \text { then } \\
T_{V}^{q}= & \frac{1}{g_{q} f_{V} m_{V}^{4}} D_{q}, \text { where } g_{q}=\sum_{V} \frac{1}{f_{V}^{2} m_{V}^{6}}, \text { and } \\
& \min \sum_{V} \Gamma(Z \rightarrow \gamma V)=\frac{1}{24 \pi} M^{3} D_{q}^{2} g_{q}^{-1}
\end{aligned}
$$

Sum rule for the amplitude derivative

For the ψ family ($g_{c}=1.08 \cdot 10^{-5} \mathrm{GeV}^{-6}$)

$$
\min \sum_{\psi} B R(Z \rightarrow \gamma \psi)=1.95 \cdot 10^{-7}
$$

and

$$
\begin{aligned}
& \operatorname{BR}(\mathrm{Z} \rightarrow \gamma \mathrm{~J} / \psi(1 \mathrm{~S}))=1.64 \cdot 10^{-7} \\
& \boldsymbol{B R}(Z \rightarrow \gamma \psi(3686))=2.056 \cdot 10^{-8} \\
& \operatorname{BR}(\mathrm{Z} \rightarrow \gamma \psi(3770))=2 \cdot 10^{-9} \\
& B R(Z \rightarrow \gamma \psi(4040))=4 \cdot 10^{-9} \\
& \operatorname{BR}(\mathrm{Z} \rightarrow \gamma \psi(4160))=3 \cdot 10^{-9} \\
& B R(Z \rightarrow \gamma \psi(4415))=1.44 \cdot 10^{-9}
\end{aligned}
$$

Sum rule for the amplitude derivative

For the Υ family ($\left.g_{b}=1.52 \cdot 10^{-9} \mathrm{GeV}^{-6}\right)$

$$
\min \sum_{\Upsilon} B R(Z \rightarrow \gamma \Upsilon)=7.23 \cdot 10^{-7}
$$

and

$$
\begin{aligned}
& \operatorname{BR}(\mathrm{Z} \rightarrow \gamma \Upsilon(1 \mathrm{~S}))=4.27 \cdot 10^{-7} \\
& B R(Z \rightarrow \gamma \Upsilon(10023))=1.31 \cdot 10^{-7} \\
& \operatorname{BR}(\mathrm{Z} \rightarrow \gamma \Upsilon(10355))=7.5 \cdot 10^{-8} \\
& B R(Z \rightarrow \gamma \Upsilon(10579))=3.9 \cdot 10^{-8} \\
& \operatorname{BR}(\mathrm{Z} \rightarrow \gamma \Upsilon(10860))=3.7 \cdot 10^{-8} \\
& B R(Z \rightarrow \gamma \Upsilon(11020))=1.4 \cdot 10^{-8}
\end{aligned}
$$

Sum rule for the amplitude derivative

The branching ratios for the production of the ground states $\left(B R(Z \rightarrow \gamma J / \psi(1 S))=1.64 \cdot 10^{-7}\right.$ and $\left.B R(Z \rightarrow \gamma \Upsilon(1 S))=4.27 \cdot 10^{-7}\right)$ more or less agree with the quark model predictions $\left(\sim 3.4 \cdot 10^{-8}\right.$ and $\left.\sim 3.4 \cdot 10^{-7}\right)$.

It is appropriate to note here that the branching ratios of all $Z \rightarrow$ $\gamma \psi$ decays depend sensibly on the c quark mass, $\sim\left(1 / m_{c}\right)^{4}$, so that the replace of $m_{c}=1.27 \mathrm{GeV}$ by $m_{c}=1.5 \mathrm{GeV}$ halves each of them. In addition, the decrease of the resonance contribution to the amplitude derivative $\left(D_{q}(R e s) \rightarrow y D_{q}, 0<y<1\right)$ results in the decrease all the branching ratios (results in the y^{2} factor before each right-hand side).

Sum rule for the amplitude derivative

When the amplitude is saturated with the ground state

$$
T_{q}(V) \equiv \frac{1}{f_{V}} T_{V}^{q}=m_{V}^{2} D_{q}
$$

or the resonance family

$$
\begin{gathered}
T_{q}(\text { Res }) \equiv \sum_{V} \frac{1}{f_{V}} T_{V}^{q}=\frac{d_{q}}{g_{q}} D_{q}(\text { Res })=\frac{d_{q}}{g_{q}} D_{q} \\
T_{c}(J / \psi(1 S))=9.59 D_{c} \mathrm{GeV}^{2}=0.18 \operatorname{Re}\left(T_{c}\right) \\
T_{b}(\Upsilon(1 S))=89.49 D_{b} \mathrm{GeV}^{2}=0.27 \operatorname{Re}\left(T_{b}\right)
\end{gathered}
$$

$$
\begin{aligned}
& T_{c}(R e s)=10.2 D_{c}(R e s) \mathrm{GeV}^{2}=10.2 D_{c} \mathrm{GeV}^{2}=0.19 R e\left(T_{c}\right) \\
& T_{b}(\text { Res })=96.7 D_{b}(\text { Res }) \mathrm{GeV}^{2}=96.7 D_{b} \mathrm{GeV}^{2}=0.29 R e\left(T_{b}\right)
\end{aligned}
$$

This results specify explicitly that the main body of T_{c} and T_{b} is saturated with the continuous spectrum. In addition, they corroborate our idea that the resonances do not contribute to $\operatorname{Im}\left(T_{q}\right)$.

Sum rule for amplitude and its derivative

The simultaneous saturation of the amplitude and its derivative with the ground state is provided if only
$\operatorname{Re}\left(T_{q}\right) / D_{q}=m_{V}^{2}$, but in our case

$$
\begin{aligned}
& \operatorname{Re}\left(T_{c}\right) / D_{c}=53.688 \mathrm{GeV}^{2} \neq m_{J / \psi(1 S)}^{2}=9.59 \mathrm{GeV}^{2} \text { and } \\
& \operatorname{Re}\left(T_{b}\right) / D_{b}=334 \mathrm{GeV}^{2} \neq m_{\Upsilon(1 S)}^{2}=89.49 \mathrm{GeV}^{2}
\end{aligned}
$$

As for the simultaneous saturation of the amplitude and its derivative with the resonance family, it's quite another matter.
Considering the resonance contributions in the sum rules for the amplitude, $T_{q}($ Res $)$, and its derivative, $D_{q}($ Res $)$, as the two constraints we find

$$
\min \sum_{V} \Gamma(Z \rightarrow \gamma V)=
$$

$\frac{1}{24 \pi} M^{3} \cdot \frac{g_{q} T_{q}\left(R e s^{2}\right)^{2}+a_{q} D_{q}(R e s)^{2}-2 d_{q} T_{q}(R e s) D_{q}(R e s)}{a_{q} g_{q}-d_{q}^{2}}$
QUARKS 2010, Kolomna, Russia, June 6-12, 2010 - p.24/34

Sum rule for amplitude and its derivative

$$
T_{V}^{q}=\frac{\left(g_{q}-d_{q} / m_{V}^{2}\right) T_{q}(R e s)-\left(d_{q}-a_{q} / m_{V}^{2}\right) D_{q}(R e s)}{f_{V} m_{V}^{2}\left(a_{q} g_{q}-d_{q}^{2}\right)}
$$

This is self-consistent for any $T_{q}(R e s), D_{q}(R e s)$, and m_{V}^{2} :

$$
\sum_{V} \frac{1}{f_{V}} T_{V}^{q}=T_{q}(R e s), \quad \sum_{V} \frac{1}{f_{V} m_{V}^{2}} T_{V}^{q}=D_{q}(R e s) .
$$

The minimum of $\min \sum_{V} \Gamma(Z \rightarrow \gamma V)$, i.e., the lower bound of $\sum_{V} \Gamma(Z \rightarrow \gamma V)$ is reached when

$$
T_{q}(\text { Res })=\frac{d_{q}}{g_{q}} D_{q}(\text { Res }) .
$$

Setting $D_{q}($ Res $)=D_{q}$, we revert to the saturation of the amplitude derivative with the resonance family.

Sum rule for amplitude and its derivative

Let us consider the deviation from the lower bound
$T_{q}($ Res $)=\frac{d_{q}}{g_{q}} D_{q}($ Res $) \cdot(1+x)=\frac{d_{q}}{g_{q}} D_{q} \cdot(1+x)$, then
$\min \sum_{V} \Gamma(Z \rightarrow \gamma V)=\frac{1}{24 \pi} M^{3} D_{q}^{2} g_{q}^{-1}\left(1+x^{2} \cdot \frac{d_{q}^{2}}{\Delta_{q}}\right)$,
where $\Delta_{q}=a_{q} g_{q}-d_{q}^{2}$,

$$
\begin{aligned}
& T_{V}^{q}=\frac{1}{g_{q} f_{V} m_{V}^{4}} D_{q}\left[1+x \cdot \frac{d_{q}\left(g_{q} m_{V}^{2}-d_{q}\right)}{\Delta_{q}}\right] \\
& \Gamma(Z \rightarrow \gamma V)=\frac{1}{24 \pi} M^{3} D_{q}^{2}\left(f_{V} m_{V}^{3} g_{q}\right)^{-2} \\
& \times\left[1+2 x \cdot \frac{d_{q}\left(g_{q} m_{V}^{2}-d_{q}\right)}{\Delta_{q}}+x^{2} \cdot \frac{d_{q}^{2}\left(g_{q} m_{V}^{2}-d_{q}\right)^{2}}{\Delta_{q}^{2}}\right] .
\end{aligned}
$$

Sum rule for amplitude and its derivative

For the ψ family ($\Delta_{c}=4.45 \cdot 10^{-10} \mathrm{GeV}^{-8}$)

$$
\min \sum_{\psi} B R(Z \rightarrow \gamma \psi)=1.95 \cdot 10^{-7} \cdot\left(1+x^{2} \cdot 28.17\right)
$$

and
$\mathrm{BR}(\mathrm{Z} \rightarrow \gamma \mathrm{J} / \psi(1 \mathrm{~S}))=1.64 \cdot 10^{-7} \cdot\left(1-\mathrm{x} \cdot 4.29+\mathrm{x}^{2} \cdot 4.60\right)$
$B R(Z \rightarrow \gamma \psi(3686))=2.056 \cdot 10^{-8} \cdot\left(1+x \cdot 17.4+x^{2} \cdot 76\right)$
$\operatorname{BR}(\mathrm{Z} \rightarrow \gamma \psi(3770))=2 \cdot 10^{-9} \cdot\left(1+\mathrm{x} \cdot 20.79+\mathrm{x}^{2} \cdot 108.07\right)$
$B R(Z \rightarrow \gamma \psi(4040))=4 \cdot 10^{-9} \cdot\left(1+x \cdot 32.24+x^{2} \cdot 259.8\right)$
$\operatorname{BR}(\mathrm{Z} \rightarrow \gamma \psi(4160))=3 \cdot 10^{-9} \cdot\left(1+\mathrm{x} \cdot 37.58+\mathrm{x}^{2} \cdot 353\right)$
$B R(Z \rightarrow \gamma \psi(4415))=1.44 \cdot 10^{-9} \cdot\left(1+x \cdot 49.4+x^{2} \cdot 611\right)$
QUARKS 2010, Kolomna, Russia, June 6-12, 2010 - p. $27 / 34$

Sum rule for amplitude and its derivative

For the Υ family ($\Delta_{b}=2.14 \cdot 10^{-16} \mathrm{GeV}^{-8}$)
$\min \sum_{\Upsilon} B R(Z \rightarrow \gamma \Upsilon)=7.23 \cdot 10^{-7} \cdot\left(1+x^{2} \cdot 100.46\right)$ and
$\operatorname{BR}(\mathrm{Z} \rightarrow \gamma \Upsilon(1 \mathrm{~S}))=4.27 \cdot 10^{-7} \cdot\left(1-\mathrm{x} \cdot 15.04+\mathrm{x}^{2} \cdot 56.6\right)$
$B R(Z \rightarrow \gamma \Upsilon(10023))=1.31 \cdot 10^{-7} \cdot\left(1+x \cdot 7.74+x^{2} \cdot 15\right)$
$\operatorname{BR}(\mathrm{Z} \rightarrow \gamma \Upsilon(10355))=7.5 \cdot 10^{-8} \cdot\left(1+\mathrm{x} \cdot 21.8+\mathrm{x}^{2} \cdot 119\right)$
$B R(Z \rightarrow \gamma \Upsilon(10579))=3.9 \cdot 10^{-8} \cdot\left(1+x \cdot 31.5+x^{2} \cdot 249\right)$
$\operatorname{BR}(\mathrm{Z} \rightarrow \gamma \Upsilon(10860))=3.7 \cdot 10^{-8} \cdot\left(1+\mathrm{x} \cdot 44.0+\mathrm{x}^{2} \cdot 485\right)$
$B R(Z \rightarrow \gamma \Upsilon(11020))=1.4 \cdot 10^{-8} \cdot\left(1+x \cdot 51.3+x^{2} \cdot 658\right)$
QUARKS 2010, Kolomna, Russia, June 6-12, 2010 - p. 28/34

Sum rule for amplitude and its derivative

T_{q} is saturated if $x=4.26$ for ψ family and $x=2.45$ for Υ one.

$$
\sum_{\psi} \operatorname{BR}(\mathrm{Z} \rightarrow \gamma \psi)=10^{-4},
$$

$\operatorname{BR}(\mathrm{Z} \rightarrow \gamma \mathrm{J} / \psi(1 \mathrm{~S}))=1.1 \cdot 10^{-5}, \operatorname{BR}(\mathrm{Z} \rightarrow \gamma \psi(3686))=3 \cdot 10^{-5}$, $B R(Z \rightarrow \gamma \psi(3770))=4 \cdot 10^{-6}, \quad B R(Z \rightarrow \gamma \psi(4040))=1.9 \cdot 10^{-5}$, $\operatorname{BR}(\mathrm{Z} \rightarrow \gamma \psi(4160))=2 \cdot 10^{-5}, \operatorname{BR}(\mathrm{Z} \rightarrow \gamma \psi(4415))=1.6 \cdot 10^{-5}$, and

$$
\sum_{\Upsilon} \mathrm{BR}(\mathrm{Z} \rightarrow \gamma \Upsilon)=4.36 \cdot 10^{-4},
$$

$\operatorname{BR}(\mathrm{Z} \rightarrow \gamma \Upsilon(1 \mathrm{~S}))=1.28 \cdot 10^{-4}, \operatorname{BR}(\mathrm{Z} \rightarrow \gamma \Upsilon(10023))=1.5 \cdot 10^{-5}$, $B R(Z \rightarrow \gamma \Upsilon(10355))=5.9 \cdot 10^{-5}, B R(Z \rightarrow \gamma \Upsilon(10579))=6.3 \cdot 10^{-5}$, $\operatorname{BR}(\mathrm{Z} \rightarrow \gamma \Upsilon(10860))=1.12 \cdot 10^{-4}, \operatorname{BR}(\mathrm{Z} \rightarrow \gamma \Upsilon(11020))=5.9 \cdot 10^{-5}$.

But, saturation of T_{q} with the resonances only is bad idea and $B R(Z \rightarrow \gamma \Upsilon(1 S))=1.28 \cdot 10^{-4}$ contradicts to experiment. QUARKS 2010, Kolomna, Russia, June 6-12, 2010 - p.29/34

Sum rule for amplitude and its derivative

When $x=-1$, the resonances do not contribute to T_{q} at all, then

$$
\sum_{\psi} \operatorname{BR}(\mathrm{Z} \rightarrow \gamma \psi)=5.69 \cdot 10^{-6},
$$

$\operatorname{BR}(\mathrm{Z} \rightarrow \gamma \mathrm{J} / \psi(1 \mathrm{~S}))=1.62 \cdot 10^{-6}, \operatorname{BR}(\mathrm{Z} \rightarrow \gamma \psi(3686))=1.22 \cdot 10^{-6}$,
$B R(Z \rightarrow \gamma \psi(3770))=1.7 \cdot 10^{-7}, B R(Z \rightarrow \gamma \psi(4040))=9 \cdot 10^{-7}$,
$\operatorname{BR}(Z \rightarrow \gamma \psi(4160))=9.8 \cdot 10^{-7}, \operatorname{BR}(Z \rightarrow \gamma \psi(4415))=8 \cdot 10^{-7}$,
and

$$
\sum_{\Upsilon} \mathrm{BR}(\mathrm{Z} \rightarrow \gamma \Upsilon)=7.34 \cdot 10^{-5}
$$

$\operatorname{BR}(Z \rightarrow \gamma \Upsilon(1 S))=3.08 \cdot 10^{-5}, \operatorname{BR}(Z \rightarrow \gamma \Upsilon(10023))=1.3 \cdot 10^{-6}$, $B R(Z \rightarrow \gamma \Upsilon(10355))=7.4 \cdot 10^{-6}, B R(Z \rightarrow \gamma \Upsilon(10579))=8.7 \cdot 10^{-6}$, $\operatorname{BR}(Z \rightarrow \gamma \Upsilon(10860))=1.65 \cdot 10^{-5}, \operatorname{BR}(Z \rightarrow \gamma \Upsilon(11020))=8.7 \cdot 10^{-6}$.

Summary

As is evident from the foregoing, the lower bounds of
$\sum_{\psi} B R(Z \rightarrow \gamma \psi)=1.95 \cdot 10^{-7}$ and
$\sum_{\Upsilon} B R(Z \rightarrow \gamma \Upsilon)=7.23 \cdot 10^{-7}$ are reached in the case of the amplitude derivative saturation with the resonances. As this takes place, the branching ratios for the production of the ground states, $B R(Z \rightarrow \gamma J / \psi(1 S))=1.64 \cdot 10^{-7}$ and $B R(Z \rightarrow \gamma \Upsilon(1 S))=4.27 \cdot 10^{-7}$, more or less agree with the quark model predictions, $\sim 3.4 \cdot\left(10^{-8}-10^{-7}\right)$.
The angular distributions expected in the center-of-mass system of the $q \bar{q} \rightarrow Z \rightarrow \gamma V$ and $e^{+} e^{-} \rightarrow Z \rightarrow \gamma V$ reactions

$$
W(\theta)=\frac{3}{8} \cdot \frac{1+\cos ^{2} \theta+\left(2 m_{q}^{2} / M^{2}\right) \sin ^{2} \theta}{1+m_{V}^{2} / M^{2}} \approx \frac{3}{8}\left(1+\cos ^{2} \theta\right),
$$

where θ is the angle between the γ quantum momentum and the beam axis. Details are below.

Angle distributions

If not to be interested in the photon and \boldsymbol{V} meson polarizations

$$
\begin{gathered}
\mathrm{W}(\tilde{\mathrm{e}}(\mathrm{Z}), \tilde{\mathrm{n}})=(3 / 4)\left(\left(\tilde{\mathrm{e}}(\mathrm{Z})^{*} \cdot \tilde{\mathrm{e}}(\mathrm{Z})\right)-\left(\tilde{\mathrm{n}} \cdot \tilde{\mathrm{e}}(\mathrm{Z})^{*}\right)(\tilde{\mathrm{n}} \cdot \tilde{\mathrm{e}}(\mathrm{Z}))\right), \\
W\left(S_{z}=1, \theta\right)=W\left(S_{Z}=-1, \theta\right)=(3 / 8)\left(1+\cos ^{2} \theta\right), \\
W\left(S_{z}=0, \theta\right)=(3 / 4) \sin ^{2} \theta,
\end{gathered}
$$

where S_{z} is the z component of the Z boson spin in its rest frame, θ is the angle between the γ quantum momentum and the z axis. If to be interested in polarization of the photon only

$$
\begin{aligned}
& W(\vec{e}(Z), \vec{n}, \vec{e}(\gamma))=(3 / 4)(\vec{n} \cdot[\vec{e}(\gamma) \times \vec{e}(Z)])(\vec{n} \cdot[\vec{e}(\gamma) \times \vec{e}(Z)])^{*} \\
& \quad W\left(S_{z}=1, S_{\gamma}=+1, \theta\right)=W\left(S_{z}=-1, S_{\gamma}=-1, \theta\right) \\
& \quad=(3 / 16)(1+\cos \theta)^{2}, \\
& \quad W\left(S_{z}=1, S_{\gamma}=-1, \theta\right)=W\left(S_{z}=-1, S_{\gamma}=+1, \theta\right) \\
& \quad=(3 / 16)(1-\cos \theta)^{2},
\end{aligned}
$$

$$
W\left(S_{z}=0, S_{\gamma}=+1, \theta\right)=W\left(S_{z}=0, S_{\gamma}=-1, \theta\right)=(3 / 8) \sin ^{2} \theta
$$

where S_{γ} is the photon helicity.

Angle distributions

Note that Z boson with $S_{z}=0$ is not produced if the z axis is the axis of the $e^{+} e^{-}$or $q \bar{q}$ beams in their center-of-mass system. In that event, the angular distributions in the $e^{+} e^{-} \rightarrow Z \rightarrow \gamma V$ and $q \bar{q} \rightarrow Z \rightarrow \gamma V$ reactions are

$$
\mathrm{W}_{\mathrm{S}_{\gamma}= \pm 1}^{\mathrm{e}^{+} \mathrm{e}^{-}}(\theta)=\frac{3}{16 \mathrm{~N}_{\mathrm{e}}}\left[(1 / 2-\xi)^{2}(1 \mp \cos \theta)^{2}+\xi^{2}(1 \pm \cos \theta)^{2}\right]
$$

where $N_{e}=(1 / 2-\xi)^{2}+\xi^{2}, \xi=\sin ^{2} \Theta_{W}=0.23$, the z axis is put in the electron momentum direction,
$W_{S_{\gamma}= \pm 1}^{u \bar{u}}(\theta)=\frac{3}{16 N_{u}}\left[\left(1 / 2-e_{u} \xi\right)^{2}(1 \mp \cos \theta)^{2}+e_{u}^{2} \xi^{2}(1 \pm \cos \theta)^{2}\right]$,
where $N_{u}=\left(1 / 2-e_{u} \xi\right)^{2}+e_{u}^{2} \xi^{2}, e_{u}=2 / 3$; the z axis is put in the u quark momentum direction, and
$W_{S_{\gamma}= \pm 1}^{d \bar{d}}(\theta)=\frac{3}{16 N_{d}}\left[\left(1 / 2-e_{d} \xi\right)^{2}(1 \mp \cos \theta)^{2}+e_{d}^{2} \xi^{2}(1 \pm \cos \theta)^{2}\right]$, where $N_{d}=\left(1 / 2-e_{d} \xi\right)^{2}+e_{d}^{2} \xi^{2}, e_{d}=-1 / 3$; the z axis is put in the d quark momentum direction.

