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Abstract

The relation between (gauged) supergravity and possible hidden symmetries given by
Kac-Moody algebras is discussed. In the first part, we review the appearance of hidden
symmetries in Kaluza-Klein reduction of 11-dimensional supergravity and explain the con-
jecture of an underlying invariance of supergravity under the Kac-Moody algebras E10 or
E11. The second part deals with the extension of the Supergravity/Kac-Moody correspon-
dence to gauged supergravity. We present an action principle that realizes a truncation of
E11 and briefly discuss the possibility of encoding the dynamics of gauged supergravity in
a one-dimensional E10 coset model.

1 Introduction

One of the most surprising features of extended supergravity theories is their intimate rela-
tion with exceptional and even infinite-dimensional Lie algebras. For instance, the maximal
supergravity in D = 4, which has originally been constructed through dimensional reduction of
11-dimensional supergravity, exhibits a non-linearly realized E7 symmetry. Reducing maximal
supergravity even further to D = 3 and D = 2 shows more symmetry enhancement to E8 and
E9, the latter representing an affine, that is, infinite-dimensional algebra. This appearance of
symmetries that are at first sight unrelated to structures present in the original theory, has led
to the conjecture that 11-dimensional supergravity or even M-theory might express in a hidden
way a much bigger symmetry group, possibly containing the Kac-Moody algebras E10 or E11

[1, 2]. The basic idea is that maximal supergravity in various dimensions can be obtained from
an as yet undiscovered ‘universal’ E11 (or E10) covariant theory by decomposing the algebra
with respect to the SL(D) ×GD subgroup, where SL(D) accounts for for the space-time sym-
metries in D dimensions and GD is the duality group (as E7 in D = 4 or E8 in D = 3). Evidence
for this proposal consists of the fact that performing such a level–decomposition yields, at low
levels, precisely the field content of maximal supergravity in the required dimension [4].

Here, we are going to discuss recent advances of extending the dictionary between Kac-
Moody algebras and supergravity by taking gauged supergravities into account [5, 6, 7, 8]. It
turns out that the parameters of supergravity expressing the gauging are encoded in (D−1)– and
D–form potentials through duality. While the ‘low-level match’ between Kac-Moody algebras
and supergravity can be viewed as a simple ‘covariantization’ of the hidden duality symmetries
appearing in lower dimensions – and as such not representing independent evidence for the
conjecture –, the results for gauged supergravity are truly confirmative and push the Kac-
Moody/supergravity correspondence beyond a regime where agreement was to be expected.

The organization is as follows. We first briefly review the appearance of hidden symmetries
in dimensional reductions of maximal supergravity. Then we turn to gauged supergravity in
the embedding tensor formalism and discuss their corresponding (D− 1)– and D–forms within
E11 for the example of three dimensions. Finally, we sketch the connection between gauged
supergravity and the E10 coset model of [2].

∗

e-mail: o.hohm@rug.nl

1



2 Supergravity, hidden symmetries and Kac-Moody algebras

We start with a review of maximal supergravity and its Kaluza-Klein reduction. In any dimen-
sion, the maximal supergravity multiplet consists of 128 bosonic and 128 fermionic degrees of
freedom. The corresponding field content reads in D = 11:

128B + 128F = (gMN × 44, AMNP × 84)B + (ψM × 128)F , (1)

where M,N, . . . are D = 11 space-time indices and A denotes a 3-form. The corresponding
action is given by

S11 =

∫

d11x
(
− 1

4κ2

√−gR− 1
48

√−gFMNKLF
MNKL (2)

+ 2κ
1442 ε

M1...M11FM1...M4
FM5...M8

AM9...M11
+ Lfermions

)
.

In order to perform a Kaluza-Klein reduction to, say, four dimensions, we have to decompose
the fields according to

gMN = (gµν , Bµ m, φmn) , AMNP = (Aµνρ, Aµν m, Aµ mn, Amnk) . (3)

Here, µ, ν, . . . are four-dimensional space-time indices and m,n, . . . = 1, . . . , 7 internal indices.
Thus, besides the four-dimensional metric gµν , one obtains a set of scalars and vectors, as well
as 2–forms and a 3–form. The 3–form does not carry propagating degrees of freedom in D = 4
and will therefore be discarded in the following. However, the 2–forms do carry degrees of
freedom, as they are dual to scalars in four dimensions. It turns out that in order to exhibit
the hidden E7 symmetry this dualization is inevitable.1 Imposing a duality relation, which is
roughly of the form

εµνρσFνρσ m ≡ εµνρσ∂νAρσ m = ∂µÃm , (4)

yields seven additional scalar fields Ãm, such that in total we find the four-dimensional bosonic
field content

gµν , Bµ m +Aµ mn
︸ ︷︷ ︸

7+21=28

, φmn +Amnk + Ãm
︸ ︷︷ ︸

28+35+7=70

. (5)

In particular, the total number of scalar fields is precisely such that it can be accommodated in
the coset space E7/SU(8), whose dimensions is 133−63 = 70. Also, the 28 vector fields combine
together with their magnetic duals such that they can live in the fundamental 56 representation
of E7. And in fact, working out the dimensional reduction in detail, reveals that the effective
theory indeed has these symmetries. Moreover, this is a pattern which persists for dimensional
reductions to all dimensions D > 1,

D = 5 : E6(6)/USp(8)

D = 4 : E7(7)/SU(8)

D = 3 : E8(8)/SO(16)

D = 2 : E9(9)/K(E9) ,

(6)

provided all p–form fields are dualized to their lowest possible rank. In other words, the fields
of maximal supergravity and the possible dualities conspire in such a way that exceptional (and
for D = 2 even infinite-dimensional) symmetry groups appear, a feature that one could have
hardly guessed from a pure supersymmetry analysis.

1The fact that those dualizations are special for the given dimension and cannot just be performed in any

dimension shows already that a realization of the hidden symmetries in the higher-dimensional context requires

some unconventional elements.
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This striking pattern of exceptional symmetry algebras Ed appearing for reductions on d-tori
has led to the conjecture that the original 11-dimensional theory possesses a hidden unifying
symmetry, which could be the Kac-Moody algebras E10 or E11. In fact, the magic numerology
expressed in (6) can be concisely summarized by saying that the structure of maximal D–
dimensional supergravity can be obtained from, say, E11 by decomposing it with respect to the
subgroup SL(D) × GD, where GD denotes the duality group. For instance, decomposing E11

with respect to SL(11) (since there is no duality group in D = 11), results at low levels in the
following representations

` = 0 : Ka
b ,

` = 1 : Ra1···a3 ,

` = 2 : Ra1···a6 ,

` = 3 : Ra1···a8 ,b ,

(7)

where at level ` = 0 we find the SL(11) subgroup associated to the metric, spanned by K a
b,

a, b, . . . = 1, . . . , 11, and at higher level Young-tableaux representations of SL(11). In particular,
at level ` = 1 one obtains a 3-form, in agreement with the 3–form potential of 11-dimensional
supergravity. That the bosonic field content is correctly reproduced in this way is to be expected,
since it was the 3–form to begin with that gave rise to, say, E7, which is now realized as a
subgroup. At higher levels one encounters a 6–form, which is interpreted as the dual of the
3–form as well as a mixed Young–tableau field, which is interpreted as the dual of the graviton.
This scheme extends to level decompositions for other dimensions as well in that it reproduces
the supergravity spectra in a democratic formulation, in which each field appears together with
its dual. However, we should note that the question of how to make this connection between
infinite-dimensional Kac-Moody algebras and supergravity precise is not uncontroversial. On
the one hand, it has been suggested that 11-dimensional supergravity can be interpreted in a
covariant way as a non-linear realization of E11 (in a suitable sense) [1], while on the other
hand a one-dimensional σ–model based on E10 has been discussed, which aims to reproduce
the supergravity dynamics in a non-covariant, gauge-fixed formulation [2]. (We will have to say
more about this latter proposal in sec. 3.3.) However, it is probably fair to say that so far a
conclusive picture of how to implement the Kac-Moody algebra in supergravity or extensions
thereof is lacking. One way to enrich our understanding of this correspondence has been the
study of gauged supergravity, to which we will turn now. First it uncovers a connection between
gaugings of supergravity and E11 beyond the regime reviewed above and, second, pushes the
interpretation of the (infinite) tables of Kac-Moody level decompositions a bit further.

3 Gauged supergravity

3.1 Gauged supergravity and the embedding tensor

To begin with, we briefly review the embedding tensor formalism, which allows to relate possible
gaugings of supergravity to E11. We will specialize to D = 3 [9, 10], as this is the case we will
analyze in detail below.

In three dimensions, vectors are dual to scalars, and the metric does not carry degrees of
freedom. Therefore, in order to exhibit the E8 symmetry, all bosonic degrees of freedom have
to reside in scalar fields. This in turn seems to rule out the possibility of deforming theories
in this ‘duality symmetric’ formulation by introducing gauge groups, since there are simply no
gauge fields left to perform the gauging. However, in [9, 10] it has been shown how to avoid
this problem: One needs to introduce 248 additional vector fields transforming in the adjoint
of E8 by hand, which enter, however, not via a Yang-Mills term, but only via a topological
Chern-Simons term. Consequently, they do not change the counting of degrees of freedom, as
required by supersymmetry.
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As usual, the gauging requires the introduction of covariant derivatives according to

∂µ −→ Dµ = ∂µ − gΘMNAµ
N tM ,

where M,N , . . . = 1, . . . , 248 are adjoint E8 indices, whose generators are denoted by tM.
Moreover, Aµ

M are the corresponding gauge vectors (with coupling constant g), and ΘMN

denotes the so-called embedding tensor. The latter is a convenient tool in order to treat all
possible gaugings on the same footing. Technically, it encodes the subgroup of the global
symmetry E8 which is gauged in that the symmetry generators XM of the gauge group are
given by

XM = ΘMN t
N . (8)

In particular, the rank of ΘMN determines the dimension of the gauge group. In total, the
gauged supergravity Lagrangian is completely determined by the embedding tensor ΘMN and
is given by

Lg = − 1
4eR+ 1

4eP
µAPµA − eV

− 1
4gε

µνρAµ
MΘMN (∂νAρ

N − 1
3gΘKSf

NS
LAν

KAρ
L) + Lfermions ,

(9)

where the Pµ
A are the non-compact part of the Maurer-Cartan forms of E8, which encodes the

dynamics of the scalar fields. The scalar potential V is given by

V = 1
32g

2GMN ,KLΘMNΘKL , (10)

where
GMN ,KL = 1

14G
MKGNL +GMKηNL − 3

14η
MKηNL − 4

6727η
MN ηKL , (11)

with G = V · VT denoting the ‘E8 metric’ obtained from an scalar dependent E8 representative
V. This action is invariant under the gauge symmetries determined by ΘMN and under (a
deformation of) local supersymmetry, provided the embedding tensor satisfies the following
constraints. First, gauge invariance requires invariance of ΘMN under the adjoint action of the
gauge group generators (8), which takes the form of a quadratic constraint,

QMN ,P ≡ ΘKPΘL(MfKL
N ) = 0 . (12)

Second, supersymmetry requires absence of certain irreducible E8 representations of ΘMN . Due
to the symmetry of ΘMN , it lives in the symmetric tensor product

(248 ⊗ 248)sym = 1⊕ 3875 ⊕ 27000 , (13)

but only the underlined representations are consistent with supersymmetry. To summarize, any
embedding tensor satisfying the E8 covariant constraints (12) and (13) gives rise to a consistent
gauged supergravity. However, we should stress that in spite of the ‘E8 covariant’ form of the
action and the constraints, E8 is no longer a symmetry of gauged supergravity, simply due to
the fact, that as a set of constants ΘMN cannot transform under the duality group. To put
it differently, E8 rotates different embedding tensors into each other, or in other words, it acts
on the ‘space of gauged supergravities’. In general, this formal symmetry can be extended to a
genuine symmetry at the level of the action by introducing (D− 1)– and D–forms as Lagrange
multiplier. Precisely these fields provide the link to E11 and so we will turn to them now.

3.2 Deformation potentials and top-form potentials

In order to promote E8 to a true physical symmetry, the embedding tensor ΘMN has to be
promoted to a physical (scalar) field, such that it can transform under E8 according to its
index structure. However, the replacement of ΘMN by scalar fields ΘMN (x) will violate the
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gauge invariance and supersymmetry by terms proportional to ∂µΘMN . Moreover, in order to
deal with unconstrained fields, the quadratic constraint should be relaxed and only imposed by
means of Lagrange multipliers. In total, we extend the action to [11, 12]

Ltot = Lg + 1
4gε

µνρDµΘMNBνρ
MN − 1

6g
2ΘKPΘL(MfKL

N )ε
µνρCµνρ

MN ,P , (14)

where we introduced 2–forms Bµν
MN and 3–forms Cµνρ

MN ,K. Here, B satisfies the linear
constraint (13), i.e., does not contain the 27000, while C also carries only a subset of the possible
irreducible representations (see below). This construction is possible in any dimension, where
they would correspond to (D−1)– andD–forms (the deformation and top-form potentials in the
nomenclature of [7]). The equations of motion in turn imply that ΘMN is constant together
with the quadratic constraint. Thus, one recovers the original gauged supergravity, and the
invariance of (14) under global E8 rotations is spontaneously broken. In order for (14) to be
invariant under gauge transformations and supersymmetry, certain gauge and supersymmetry
variations have to be assigned to the 2– and 3–form. That this is always possible follows from
the fact that the violation of these symmetries has to be proportional to either the quadratic
constraint or ∂µΘMN .

Explicitly, one finds that the bosonic gauge symmetries are given by [11]

δAµ
M = DµΛM − gΘNKf

MN
LΛµ

KL , (15)

δBµν
MN = D[µΛν]

MN + δA[µ
〈MAν]

N〉 − Λ〈MJ̃µν
N〉

+2
3gΘKLf

K〈M
P

(
Λµν

|LP|,N〉 − Λµν
N〉P ,L

)
,

δCµνρ
MN ,P = D[µΛνρ]

MN ,P − 3 δA[µ
〈PBνρ]

MN〉 +A[µ
〈PAν

MδAρ]
N〉

+3
2Λ[µ

〈MN J̃νρ]
P〉 + 1

16geεµνρΛ
〈P

(
− 1

7G
M|K|GN〉L −GM|K|ηN〉L

)
ΘKL ,

where J̃µν
M is the dual of the E8 ‘Noether’ current, and the brackets 〈 〉 project onto the

representations required by the left-hand sides. Here we assume that the embedding tensor is
still invariant under local transformations, δΛΘMN = 0.

We would like to stress that these gauge transformations represent a rather non-trivial
structure as their closure requires substantial input from the equations of motion. In fact,
closure of the gauge algebra is not only up to the first–order duality relations, but requires
also the second–order scalar field equations. Moreover, the field equations of ΘMN imply a
generalized duality relation between the ‘field strength’ of Bµν

MN and the embedding tensor,

e−1εµνρGµνρ
MN + 2Aµ

〈MJµN〉 = 1
4gG

MN ,KLΘKL , (16)

where the first terms of Gµνρ
MN are given by

Gµνρ
MN = D[µBνρ]

MN +A[µ
〈M∂νAρ]

N〉 − 2gΘKLf
K〈M

PA[µ
N〉Bνρ]

LP + · · · . (17)

However, as is already manifest from the explicit presence of the gauge vectors in (16), this
duality relation is not manifestly gauge–covariant. Moreover, the tensor defined in (17) is not a
covariant field strength. In fact, the full equation (16) transforms in a highly non-trivial manner
into the other equations of motion, including the second–order scalar equations [11]!

3.3 E11 and gauged supergravity

Let us now turn to the relation between gauged supergravity and E11. Performing a level
decomposition of E11 with respect to SL(3) × E8, encodes by definition at level ` = 0 the
E8–valued scalar fields and the (topological) metric. We will see that beyond this ‘easy’ part
of the dictionary, E11 contains at higher levels information about possible gaugings. The level
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Level SL(3) ×E8 representation Generator

1 (3,248) Xµ
M

2 (3̄,1 ⊕ 3875) Y µν
MN

3 (1,248 ⊕ 3875 ⊕ 147250) Zµνρ
MN ,P

Table 1: SL(3)×E8 representations within E11 up to level 3, of which the SL(3) part is totally
antisymmetric.

decomposition up to and including ` = 3 can be found in the table, in which we performed a p-
form truncation, restricting only to those generators which are completely antisymmetric in their
SL(3) indices. We observe that the field content is as required from gauged supergravity after
introducing the deformation and top-form potentials. And moreover, the representations of the
2–forms are in precise agreement, thus reproducing the linear constraint of gauged supergravity!
Finally, the representations of the 3–form are consistent with the quadratic constraint, though
within E11 they contain an additional 248, whose interpretation is unknown. This pattern
extends to higher dimensions and massive deformations as well. Thus, E11 precisely encodes
also the possible deformations of supergravity into gauged or massive supergravity!

Next we are going to compare also the symmetry transformations on both sides of the
correspondence. For E11 we assume a non-linear realization of the symmetry. Explicitly, this
can be realized by introducing the coset representative

V = exp
(
Aµ

MXµ
M +Bµν

MNY µν
MN + Cµνρ

MN ,PZµνρ
MN ,P

)
, (18)

and acting with a group element,

g = exp
(
Λµ

MXµ
M + Λµν

MNY µν
MN + Λµνρ

MN ,PZµνρ
MN ,P

)
. (19)

We should note that here we restricted to fields corresponding to the positive-level generators
in the table (usually referred to as Borel gauge-fixing) and similarly for the group element. The
latter choice corresponds to a truncation of the symmetry algebra, which turns out to be the
one which can be identified within supergravity. Computing the transformed fields according
to V ′ = gV by use of the E11 algebra, one finds

δAµ
M = Λµ

M ,

δBµν
MN = Λµν

MN + Λ[µ
〈MAν]

N〉 , (20)

δCµνρ
MN ,P = Λµνρ

MN ,P − 3
2B[µν

〈MNΛρ]
P〉 + 3

2Λ[µν
〈MNAρ]

P〉 − 1
2A[µ

〈MΛν
NAρ]

P〉 ,

which represents a rigid symmetry.
In order to make contact with the symmetries of gauged supergravity, we first note that the

full bosonic gauge transformations cannot be obtained, since they are first local and, second,
contain the embedding tensor, which appears on the E11 side only through their dual 2–forms.
Thus, at best we can expect a certain truncation of supergravity to be in agreement with E11.
To see that this is indeed the case, we perform a certain limit within supergravity, leaving us
with an extended version of ungauged supergravity. We rescale the fields according to

Aµ
M → g1/2Aµ

M , Bµν
MN → gBµν

MN , Cµνρ
MN ,P → g3/2Cµνρ

MN ,P , (21)

and then take the limit g → 0. This yields the Lagrangian,

L = L0 − 1
4ε

µνρΘMNG
(0)
µνρ

MN , (22)
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where L0 denotes the standard Lagrangian of ungauged supergravity. Here, G
(0)
µνρ

MN is the
g → 0 limit of Gµνρ

MN , given by

G(0)
µνρ

MN = ∂[µBνρ]
MN +A[µ

〈M∂νAρ]
N〉 . (23)

This Lagrangian is equivalent to ungauged supergravity, since it merely represents an extension
by topological 1– and 2–forms with zero-curvatures. In this limit the gauge transformations
reduce to

δΛAµ
M = ∂µΛM , (24)

δΛBµν
MN = ∂[µΛν]

MN + ∂[µΛMAν]
N ,

δΛĈµνρ
MN ,P = ∂[µΛνρ]

MN ,P − 3
2∂[µΛPBνρ]

MN + 3
2∂[µΛν

MNAρ]
P − 1

2A[µ
PAν

M∂ρ]Λ
N ,

such that the dependence on the embedding tensor completely disappears. Here, we performed
a field redefinition, shifting Cµνρ

MN ,K by 3
2A[µ

〈PBνρ]
MN〉. Restricting the gauge parameter

now to linear space-time dependence according to

ΛM = xρΛρ
M , Λµ

MN = xρΛρµ
MN , Λµν

MN ,P = xρΛρµν
MN ,P , (25)

gives exactly the global symmetry in (20) predicted by E11. Thus, an extended version of
ungauged supergravity can be matched to a (truncation of) E11. However, the higher-order
terms in g and Θ in the gauge variations cannot be obtained in this way. One might speculate
that a further extension of E11 can reproduce these missing terms. It is, however, clear that
simply extending the Lie algebra to a larger algebra and computing the non-linear realization
with respect to this algebra cannot achieve this, due to the fact that these symmetries would still
close off-shell, while the true symmetries contain intriguing information about the equations of
motion, as we saw above. Therefore, one feels that only a somewhat unconventional approach
can cure these problems.

3.4 E10 coset dynamics

Here we are going to briefly discuss a possible realization of gauged supergravity within the E10

model of [2]. We will see that it is able to circumvent some of the problems encountered above.
The model is a one-dimensional σ–model based on the infinite-dimensional coset space

E10/K(E10), where K(E10) is the compact subgroup of E10. Thus, the action reads

SE10/K(E10) = 1
4

∫

dt n(t)−1 (P(t)|P(t)) , (26)

where we introduced the Maurer-Cartan forms:

V−1∂tV = P(t) + Q(t) , P ∈ e10 	 k(e10) , Q ∈ k(e10) , (27)

and n(t) is a lapse function establishing one-dimensional diffeomorphism invariance. It has been
shown in a number of cases that this model can account for the dynamics of supergravity in a
certain truncation and after performing some gauge-fixing (see, e.g., [3]). For instance, gravity
truncated to only a time-like system and in which the shift-functions N i appearing in the ADM
decomposition have been gauge-fixed to zero, only contains the fields ei

α(t) and n(t), which are
the spatial part of the vielbein and the usual lapse function. The corresponding truncation of
the Einstein-Hilbert action is equivalent to the (one-dimensional) non-linear σ–model based on
GL(d)/SO(d), where d = D− 1. As GL(d) appears as a subgroup of E10 (instead of the larger
GL(D) for E11), the action (26) manifestly reproduces the correct gravitational dynamics at
low levels. Moreover, this also holds for maximal supergravity, when the duality subgroups are
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properly taken into account in the level decomposition. Finally let us note that the conjecture
is that the spatial derivatives are encoded in the higher-level representations.

Let us now turn to the question whether the E10 model is also capable of reproducing gauged
supergravity. As in E11, the level decomposition — here with respect to the subgroupGL(2)×E8

— contains a 2-form in the correct representation. However, E10 cannot accommodate the 3–
form and thus the information about quadratic constraints. The Maurer-Cartan forms at level
` = 2 are in turn given by

V−1∂tV|`=2 =
(
∂tBij

MN −A[i
M∂tAj]

N
)
Y ij

MN ≡ DtBij
MNY ij

MN , (28)

where we used the same nomenclature for the generators as in the E11 table above. Comparing
this with (17) one infers that, as in the case of E11, this does not reproduce the terms propor-
tional to ΘMN . However, in the context of E10 this can be interpreted as another gauge-fixing:
Due to the non-covariant formulation, we may simply impose the gauge

A0
M = 0 , (29)

which is also required by the fact that the spectrum contains at level ` = 1 only 1-form potentials
with respect to GL(2), i.e., with indices i, j, . . . = 1, 2. After this gauge fixing, the problematic
terms disappear, and so the E10 model is in principle able to be in agreement with gauged
supergravity. Moreover, the coset equations of motion for Bij

MN are such that they can be
solved in closed form to yield

n−1gikgjlGMKGNLDtBkl
KL = 1

4gε
ijΘMN , (30)

which naturally introduces the embedding tensor into the game. This has the same structure
as the duality relation (16) between the deformation potential and the embedding tensor. Also
the other equations of motion take a corresponding form on both sides of the correspondence.
However, by comparing (30) and (16) in more detail one concludes that only the positive-definite
term in GMN ,KL proportional to GMKGNL is reproduced by E10. In other words, the indefinite
potential of gauged supergravity is not predicted by E10. Similar discrepancies appear for the
match between ungauged supergravity and E10 once spatial derivatives are taken into account
in that also a certain indefiniteness of the Einstein-Hilbert term does seem to be derivable from
this simple coset model. It is, however, striking that so many aspects of supergravity and even
its massive deformations are contained in this naive coset space ansatz given in (26). A more
exhaustive analysis of the correspondence in case of three-dimensional gauged supergravity will
appear elsewhere [13].

4 Conclusions

We reviewed the appearance of hidden symmetries and the associated conjecture of Kac-Moody
symmetries in higher dimensions in the context of gauged supergravity. Specifically, we re-
viewed the structure of deformation and top–form potentials as predicted by E11 and compared
with their presence in gauged supergravity. While the linear constraints (and to some extend
also the quadratic constraints) are correctly encoded in E11, the precise form of the symmetry
transformations can only be obtained from the Kac-Moody algebras in a certain limit to (ex-
tended) ungauged supergravity. Moreover, the symmetries of the (D−1)– and D–forms express
a highly non-trivial on-shell structure, which in turn poses serious obstructions to any purely
kinematical attempt. Finally, we compared the E10 coset dynamics with gauged supergravity
and found that due to its non-covariant formulation it is better suited for dealing with the
mentioned discrepancies. However, also here there are certain disagreements. We conclude that
while a precise understanding of a Kac-Moody/supergravity correspondence is still not in sight,
the surprising connection even to gauged supergravity strongly advocates further research.
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