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Abstract

We discuss loop MHV amplitudes in the N = 4 SYM theory in terms of the effective
gravity in the momentum space with the IR regulator branes as degrees of freedom. Ra-
pidities of external particles yield the moduli space of complex structures providing the
playground for the Kodaira-Spencer(KS) type gravity. We suggest the fermionic represen-
tation for the loop MHV amplitudes in the N = 4 SYM theory assuming the identification of
KS fermions with the IR regulator branes in the B model. The two-easy mass box diagram is
treated as the four fermion correlator on the spectral curve and it plays the role of a building
block in the whole picture. The BDS anzatz has the interpretation as semiclassical limit
of a fermionic correlator. It is argued that fermionic representation implies integrability on
the moduli spaces which fixes the dependence of the amplitudes on the cross-ratios of the
external momenta.

1 Introduction

The N = 4 SYM theory provides a possibility to recognize some features of the theories with
less amount of SUSY. While N = 4 SYM is far from the QCD-like theories in the infrared
because of the lack of confinement it shares common features in UV region where physics in
asymptotically free theories is described within a perturbation theory. That is considering the
perturbative expansion in N = 4 SYM coupling constant which does not run we could try to
clarify some generic properties of the perturbative expansion in the gauge theories.

It is of the prime importance to discover any hidden symmetries at the high energies or
equivalently hidden integrable structures providing the nontrivial conservation laws restricting
the form of the scattering amplitudes. In the four-dimensional setup the integrability behind
the amplitudes is known only at the Regge limit when the SL(2,C) spin chain gets materialized
[1, 2](see [3] for review).

The simplest objects at generic kinematics are the MHV amplitudes which are the perfect
starting point for any discussion since at the planar limit they can be described in terms of the
single kinematical function. Even at the tree level MHV amplitudes [4] enjoy some remarkable
properties. They are localized on the complex curves in the twistor space [5] and can be
described as the correlators of chiral bosons on the genus zero Riemann surface [6]. It turns out
that the generating function for the tree MHV amplitudes is just the particular solution to the
self-duality equation in YM theory [9, 10]. It substitutes the naive superposition of the plane
waves of the same chirality in a nonlinear theory. Moreover this solution provides the symplectic
transformation [11](see also [12]) of the YM theory in the light-cone gauge formulation into the
so-called tree MHV Lagrangian formulated in [8] which to some extend is the analogue of the
t’Hooft effective vertex generated by instantons. However this approach becomes less clear
when going to higher loops. Indeed, the attempt to formulate the one-loop MHV amplitudes
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in a twistor-like manner was not successful [7] and certainly calls for additional insights on the
problem.

More recently Bern, Dixon and Smirnov (BDS) have formulated the conjecture [16] that
all-loop MHV amplitudes get exponentiated and factorize into IR divergent and finite parts.
Moreover it was conjectured that the finite part of all-loop amplitude involves only all-loop
cusp anomalous dimension Γcusp(α) and finite part of one-loop amplitude. Inspired by this
conjecture Alday and Maldacena have calculated the amplitude at strong coupling regime via
minimal surfaces in AdS-type geometry with the proper boundary conditions [14]. They have
found unexpected relation between the MHV amplitudes in planar limit of N = 4 SYM theory
and Wilson polygons in the momentum space.

The Wilson polygon-amplitude duality refreshes the problem but deserves for the explana-
tion itself. It was originally formulated at strong coupling when the Wilson loop is calculated
in terms of minimal surface in the AdS5 geometry upon a kind of T-duality transform. Later
it was shown that duality holds true at the perturbative regime as well [19] which puts it on
more firm ground. The important point was the formulation of the anomalous Ward identities
for the special conformal transformations with respect to the dual conformal group. It fixes
the kinematical dependence of the amplitudes up to five external legs [19]. However Ward
identities tell nothing about the functional form of the amplitudes starting from six external
legs. Recently the dual superconformal group was identified as the symmetry of the worldsheet
theory of the superstring in AdS5 × S5 geometry [38, 39].

Finally it was recognized that BDS anzatz fails at weak coupling at two loop level for six
external legs [15, 18] and at strong coupling for infinitely large number of external legs. Moreover
the BDS anzatz seems not fit well with the Regge limit [41]. On the other hand at two loop
level the duality between Wilson polygon and MHV amplitude survives.

There are a lot of pressing questions to be answered. Just mention a few;

• Is there some geometrical picture behind the BDS anzatz which would suggest the way of
its necessary generalization?

• Is there the generalization of the dual conformal Ward identity which would fix the func-
tional form of the one-loop amplitude for any number of external legs?

• Is there the fermionic representation for the loop amplitudes which would imply the hidden
integrability?

• What is the origin of the Wilson polygon - amplitude duality ?

• Is there clear geometrical picture behind the reggeization of the gluon?

To some extend we shall try to generalize the geometrical picture for the tree amplitudes
suggested in [5]. At the tree level in [5] the Euclidean D1 ”instanton” branes with the attached
open strings have been considered in the twistor space. The D1 brane is localized at the point
in the Minkowski space in agreement with the locality of the vertex generating tree MHV
amplitude in the MHV formalism. To describe the loop amplitudes we shall adopt a little bit
different picture and consider C4 manifold in the B model as a ”twistor-like” manifold for the
complexified Minkowski space. The D3 branes substitute ”D1 instantons” and are embedded
in C4. The somewhat similar objects were also introduced as the IR regulator branes in the
Alday-Maldacena calculation. Indeed, it was shown [14] that dilaton field gets changed upon the
T-duality in the RG radial coordinate which means that D-instanton is added to the background.
After the Fourier transform along flat four-dimensions D-instanton gets transformed into the
D3 brane we shall work with. The Wilson polygon which corresponds to the boundary of the
string worldsheet and is presumably dual to the amplitude is located just on these IR regulator
branes. Contrary to the previous considerations the positions of the regulator branes are not
free but determined dynamically in terms of the cross-ratios of the external momenta.
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The physics of the scattering at the loop level can be treated from the different perspectives.
From the point of view of the KS gravity on the moduli space we are calculating the correlator
of the fermions or the fermionic currents which can be identified with the tau-function of the
2d integrable system. The second viewpoint concerns the 4d gauge theory on the regulator
branes whose number is fixed by the number of external particles. Finally one could consider
the worldsheet viewpoint where the regulator branes provide the proper boundary conditions
for the string. These viewpoints are complimentary and allow to check the self-consistency of
our approach.

Within the KS perspective we shall discuss the fermionic representation behind the loop
MHV amplitudes which would generalize the Nair’s fermionic representation for the tree am-
plitudes. The fermionic picture is a heart of the integrability which admits the representation
in terms of the chiral fermions on the Riemann surface in the external gauge field. The gauge
field on the Riemann surface represents the ”point of Grassmanian” or in physical terms the
particular Bogolyubov transformation between the fermionic vacua. This approach was summa-
rized in [23]. It was argued that fermions in the KS gravity correspond to mirror of Lagrangian
branes in the A model. These branes are also refereed to as Kontsevich or noncompact branes
and their positions on the Riemann surface yield the ”times” in the corresponding integrable
systems. Note that in the framework of the topological strings in A-model we discuss the Kahler
geometry while in B-model the complex geometry is captured by the KS [13] theory.

The fermion one-point function corresponds to the Baker-Akhiezer function in the integrable
system framework and to the single regulator brane insertion at some point on the moduli space.
Since generically we are interested in the quantum integrable system the Riemann surface gets
quantized and yields the corresponding Baxter equation [26]. The semiclassical solutions to
the Baxter equation which are the generating functions for the Lagrangian sub-manifolds in
the particular integrable system play important role in the analysis. They serve as the building
blocks for the correlators in the N = 4 YM theory and can be considered as the ”semiclassical D3
brane wave function” or as the effective action in the 4d gauge theory on the brane worldvolume.
From the moduli space viewpoint the solution to the Baxter equation provides the generating
function of the Lagrangian sub-manifold. The natural integrable system on the moduli space can
be identified with the 3-KP system however similar to the N=2 SYM one could expect the pair
of integrable system - 2D field theory and finite dimensional one. The natural finite dimensional
integrable system which is responsible for the hidden symmetries at the generic kinematics is
conjectured to be related to the Faddeev-Volkov model [32] and the corresponding statistical
model [31] based on the discrete quantum conformal transformations.

Since we are trying to sum the perturbation series the YM coupling constant is expected
to be involved into some algebraic structure behind the all-loop answer. It is this hidden
symmetry which provides the choice of the particular solution to the Yang-Baxter equation.
The Faddeev-Volkov solution to the Yang-Baxter implies that we are actually trying to relate
the YM coupling constant with the parameter q of Uq(SL(2, R)). The proper identification
turns out to be nontrivial problem since in particular it has to respect the S-duality group in
N=4 theory. It will be argued that the BDS anzatz corresponds to the limit q → 1 while the
Regge limit seems to be related to the opposite ”strong coupling regime” of the quantum group.

The consideration of the four-dimensional theories on the regulator brane worldvolume is
useful as well. The theory is in the Coulomb phase and the position of the regulator brane on the
particular Riemann surface corresponds to the coordinate on the Coulomb moduli space. Since
all regulator D3 branes are at different positions on the moduli space the theory generically has
the gauge group U(1)k where k is related to the number of the external gluons . The effective
action of each U(1) gauge theory plays the role of the wave function of the two-dimensional
fermions in KS gravity. A little bit surprisingly one has to consider not the real part of the
effective action in the external field but the imaginary one involving dilogarithm. This is natural
from the Euclidean viewpoint while in the Minkowski space we actually consider the probability
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of the pair production.
It is important to discuss separately the special Regge kinematical region were the hidden

symmetries of the amplitudes where found for the first time. The hidden symmetries were
captured at one loop by the SL(2,C) spin chains [1, 2]. It was shown in [35] that the N-reggeon
dynamics belongs to the same universality class as conformal N=2 SQCD with Nf = 2N at the
strong coupling orbifold point. We shall argue that the brane geometry in the reggeon case is
similar to the one in SQCD which provides the qualitative explanation of the same universality
class for both theories. The new object is the open string stretched between two regulator branes
and is the analogue of the massive vector bosons in the conventional N=2 SYM theory. Here
we shall tempt to interpret these open strings as the ”reggeons”. The masses of these effective
degrees of freedom correspond to the differences of the positions of the regulator branes on the
Riemann surface.

2 The loop results for the MHV amplitudes

Let us remind the main results concerning the loop MHV amplitudes. The MHV gluon ampli-
tudes involve two gluons of the negative chiralities and the rest of gluons have positive chiralities.
Consider the ratio of all-loop and tree answers. The following form of the all-loop amplitudes
has been suggested in [16]

log(
Mall=loop

Mtree
) = (Fdiv + Γcusp(λ)Mone−loop) (1)

which involves only the all-loop answer for the cusp anomaly Γcusp and one-loop MHV ampli-
tude. The IR divergent part Fdiv gets factorized in the all-loop answer. The cusp anomaly
measures UV behavior of the contour with cusp [24]. Recently the closed integral equation
has been found for the cusp anomalous dimension in N = 4 SYM theory [40] which correctly
reproduces the weak and strong coupling expansions.

The finite part of the one-loop MHV which presumably defines the all-loop answer can be
written in terms of the finite part of the so-called two-mass easy box function F 2em [34]

Mone−loop,finite =
∑
p,q

F 2em,f (p, q, P,Q) (2)

This function can be expressed in terms of the dilogarithms only

F 2em,f (p, q, P,Q) = Li2(1−aP
2)+Li2(1−aQ

2)−Li2(1−a(q+P )2)−Li2(1−a(p+P )2) (3)

where

a =
P 2 +Q2 − (q + P )2 − (p+ P )2

P 2Q2 − (q + P )2(q + P )2
(4)

and p+ q+ P +Q = 0. One more expression for the function F 2em,f which will be useful later
can be written in terms of the variables xi,k = pi − pk in terms of the sums [19]

∑
i

∑
r

Li2(1 −
x2

i,i+rx
2
i=1,i+r+1

x2
i,i+r+1

x2
i−1,i+r

) (5)

where
xi = pi+1 − pi (6)

Since all external momenta are on the mass shell the arguments of dilogarithms are expressed
in terms of the cross-ratios of the scalar products of the momenta only.
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The BDS anzatz (1) has been checked at weak and strong coupling regimes. At strong
coupling analyzed in the stringy setup [14] one considers first the T-duality transformation on
the worldsheet which effectively interchanges UV and IR regions in the AdS5 geometry. Then
the calculation of the amplitude reduces to the calculation of the minimal surface in the dual
AdS space bounded by the polygon formed by the external on-shell gluon momenta. For the
four external legs the answer fits with the BDS anzatz for all-loop amplitude.

It was conjectured in [14] that any MHV N-leg amplitude follows from the vacuum expec-
tation value of the Wilson loop of the special form

Mall−loop

Mtree
=< W (p1, p2, ..., pN ) > (7)

where the closed Wilson loop polygon has light-like momenta at the edges and vertexes at xi.
Its closeness is provided by the total momentum conservation.

At weak coupling to check this polygon-amplitude duality one considers the expansion of
the Wilson polygon in the YM coupling treating Wilson loop as one in the coordinate space.
The perfect matching of Wilson loop and amplitudes has been found for one- and two loop
answers up to six external legs [15, 18]. Moreover it was demonstrated that the anomalous
Ward identities for the special conformal transformations of the form

KνW (x1, . . . xN ) =

n∑
i=1

(2xν
i xi∂i − x2

i ∂
ν
i )W (x1, . . . xN ) =

1

2
Γcusp

n∑
i=1

ln
x2

i,i+2

x2
i−1,i+1

xν
i,i+1 (8)

fix the answer up to four external legs [21]. The BDS anzatz has to be modified for generic
amplitude while the Wilson polygon-MHV amplitude duality has the chance to be all-loop
exact.

3 Finite part of N=4 SYM MHV amplitudes and momentum

space geometry

3.1 Fermionic picture

Let us now consider the four-dimensional case and formulate our proposal for finite part of the
MHV loop amplitudes. Remind that the tree amplitudes were described in terms of the D1 string
instanton embedded into the twistor manifold [5]. The instanton is localized at point in the
Minkowski space and open strings representing gluons are attached to it. To describe the loop
amplitude we shall substitute D1 brane by the IR regulator branes embedded into the proper
manifold. The gluons are attached to the regulator branes whose embedding coordinates are
considered as dynamical degrees of freedom. Contrary to tree case regulator branes are localized
at the sub-manifold of the complexified Minkowski space.

The starting point is the representation of the N=4 theory via geometrical engineering [22]
as the IIA superstring compactified on the three-dimensional Calabi-Yau manifold which was
identified as the K3×T 2 geometry in the singular limit. One has to consider the singular limit
of K3 manifold when it develops AN−1 singularity, where N becomes the rank of the gauge
group, and upon blowing up procedure it can be represented as ALEN geometry. On the other
hand the Kahler class of the T 2 can be identified with the coupling constant

Area(T 2) = 1/g2
Y M (9)

At weak coupling the torus is large and can be approximated by the complex plane. That is
the geometry can be roughly approximated by C3 upon the particular blow-ups.
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As we have seen the one-loop answer for the MHV amplitude determining the BDS form
of the amplitude involves the sum of the dilogarithms depending on the cross-ratios of the xi

variables. Below we shall try to explain how such functions with cross-ratio arguments emerge
naturally both in A-model and B-model frameworks. As is well-known the A-model captures
the information about the Kahler moduli while the B-model about the complex moduli and we
shall see where these moduli comes from. The brane description of the scattering amplitude
involves the set of the Lagrangian branes in the A-model and the corresponding B-model branes.
It is these branes which provide the corresponding moduli spaces.

Let us interpret the BDS anzatz in terms of the correlator of the noncompact Euclidean
D3 branes embedded into the four dimensional complex space. Consider 3d complex manifold
which is mirror to the topological vertex [29]. This manifold classically is described by the
equation in the C4 with coordinates x, y, u, v

xy = eu + ev + 1 (10)

At the discriminant locus it defines the Riemann surface

H(v, u) = eu + ev + 1 = 0 (11)

of genus zero with three different asymptotic regions. We shall argue that the loop MHV am-
plitudes can be identified with the fermionic correlators on the Riemann surface (11). Fermions
on the surface (11) represent the degrees of freedom in the KS gravity that is the IR regulator
D3 branes imbedded into C4 geometry.

There are two D3 branes defined by the equations

x = 0 H(v, u) = 0 (12)

and
y = 0 H(v, u) = 0 (13)

which intersect along the Riemann surface. The intersecting branes provide the natural fermionic
degrees of freedom on the intersection surface from the open strings stretched between these
branes. The fermions are in external field amounted from the worldvolume gauge connection
on the intersecting branes. In addition to two branes intersecting along the Riemann surface
we introduce the set of Kontsevich -like branes classically localized at the points (vi, ui) at the
Riemann surface. The number of such branes is fixed by the number of the external gluons and
the coordinates of these branes on the surface are defined by some particular cross-ratios. At
quantum level D3 branes are extended along the Lagrangian submanifold in the (u, v) space.
The cross-ratios are the natural coordinates on the moduli space of the punctured spheres that
is the (u, v) space is related to the T ∗M0,4.

At the next step the Riemann surface gets quantized and the branes-fermions should obey
the equation of the quantum Riemann surface that is Baxter equation which provides the wave
functions depending on the separated variables. The Baxter equation in our problem reads as

(e~∂v + ev + 1)Q(v) = 0 (14)

Its solution turns out to be the quantum dilogarithm [23]. Note that the solution to the Baxter
equation in our case can not be presented in the polynomial form that is we have infinite number
of the Bethe roots.

To get the MHV all-loop amplitude in the BDS form we take the semiclassical limit of
the fermionic correlator on this surface. Indeed using the semiclassical limit for the quantum
dilogarithm we can represent the four-point fermionic correlator as

< Ψ̄(z1)Ψ̄(z2)Ψ(z3)Ψ(z4) >∝ exp(~−1(Li2(z3) + Li2(z4) − Li2(z1) − Li2(z2)) (15)
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This expression exactly coincides with the expression for the contribution of the single 2-easy
mass box diagram hence upon the identification of the Planck constant

~
−1 = Γcusp(λ) (16)

we reproduce BDS anzatz for the finite part of the amplitude. Indeed the one-loop answer for
the MHV amplitude can be expressed purely in terms of the sum of 2-mass easy box diagrams
with different grouping of the gluon momenta and therefore in terms of the fermionic correlators.

Since the regulator brane ( D1 ”instanton”) yielding the tree amplitude is localized in the
complexified Minkowski space M c [5] one could ask about similar localization of regulator
branes responsible for the higher loop calculations. To this aim recall that M c is equivalent to
the Grassmanian Gr(2, 4). On the other hand the factor of the Grassmanian by the maximal
torus action is related to the compactified moduli space [43]

Gr(2, 4)//T = M̄0,4 (17)

This representation allows us to represent the complexified Minkowski space itself as the fancy
divisor of the M0,4 [42]. We suggest that this realization implies the localization of the regulator
branes on the submanifold of T ∗(M c//T ). It is natural to identify this manifold with the
Riemann surface where the KS degrees of freedom live.

Let us present the qualitative argument concerning the corresponding A-model picture. In
the A-model we introduce the set of Lagrangian branes with topology S1 × R2. The emer-
gence of the dilogarithm as the wave function of the Lagrangian brane has been discovered
in the C3 geometry in [30]. The brane/asntibrane can be considered as the insertion of the
fermion/antifermion [30] in the fermionic representation of the topological vertex picture [29].

3.2 The regulator brane worldvolume theory

Since fermions in KS framework are identified as the D3 regulator branes the natural question
concerns their four-dimensional worldvolume theory. The theory on the regulator branes share
many features with N=2 and N=1 SYM low-energy sectors. The number of the regulator branes
is fixed by the number of the external gluons so naively one could expect a kind of SU(K) gauge
theory. The worldsheet theory on the regulator branes enjoys the complex scalar corresponding
to the complex coordinate z of the brane on the Riemann surface (11). This is similar to the
situation when the vev of the scalar field corresponds to the position of the D4 branes on the
a-plane in the IIA realization of the N=2 SYM theory [49].

Since the different regulator branes are at the different points on the Riemann surface we can
speak about the Coulomb branch of the regulator worldvolume theory. However their positions
on the Riemann surface are fixed that is we could say about the localization of the D3 branes on
the points of the moduli space M0,4. Similar to the N=1 SYM theory when branes are localized
at positions corresponding to the discrete vacua the D3 regulator branes are localized at some
points parameterized by the cross-ratios. These points correspond to the local rapidities in the
framework of integrability and simultaneously have to correspond to the minima of the effective
superpotentials Weff (zi) in the regulator worldvolume theory.

Since we attributed dilogarithms to the regulator brane wave functions it is necessary to
explain where they come from in the worldvolume theory. The qualitative arguments looks as
follows. In the worldvolume theory there are massive excitations corresponding to the open
strings stretched between two regulator branes. They are analogue of the massive W-bosons
in N=1 SYM theory on the Coulomb branch. In our case the masses of these particles are
related to the cross-ratios. To recover the dilog let us remind that usually in the external
field the effective action develops the imaginary part corresponding to the pair creation. The
probability of the pair creation on the external field is described by the classical trajectory in
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the Euclidean space and in the leading approximation reads as

ImSeff ∝ e−
m2

eE (18)

for a particle of the mass m in the external field E. Upon taking into account the multiple wrap-
ping and the quadratic fluctuations one gets for the scalar particle Schwinger pair production

ImSeff ∝
∑
n

1

n2
e−

nm2

eE (19)

that is dilog plays the role of the decay probability. Hence one can say that we are considering the
Euclidean version of the regulator worldvolume theory and the amplitude from this viewpoint
is described via bounce type configuration corresponding to the creation of the pairs of the
effective massive degrees of freedom. Note that the real part of the effective action corresponds
to the summation over the loops of the same degrees of freedom in the loops.

.
In the A-model one can similarly consider the worldvolume theory on the D2 Lagrangian

regulator branes. In this case the corresponding dilog functions emerge upon summation over
the disc instantons with boundaries located at the corresponding Lagrangian branes which
provide the effective superpotential in the worldvolume theory

Weff ∝
∑

n

dn

n2
e−nA (20)

where A -is the corresponding area of the target disc. Note that in the A model D2 branes
wrapped around the ideal tetrahedrons whose Kahler classes are defined by the cross-ratios
provide the masses of the same effective ”W-bosons” as in B-model.

Let us comment on the identification of the Planck constant providing the quantization of
the KS gravity as the inverse cusp anomalous dimension inspired by the BDS anzatz. At the
first glance it looks completely groundless however the argument supporting this identification
goes as follows. The emergence of the cusp anomaly in the exponent means from the worldsheet
viewpoint that it plays the role of the effective string tension or equivalently the inverse Planck
constant. Such effective tension emerges if one considers the string whose boundary is extended
along the light-like contours. It was shown [17] that in the limit suggested in [44] the string
worldsheet action can be identified with O(6) sigma model and the energy of the ground state
in O(6) model is proportional to the length of the string multiplied by the Γcusp(α). That is
indeed Γcusp(α) plays the role of the effective tension of the string in this special kinematics.
Since in our case the boundary of the string worldsheet lies on the Wilson polygon the effective
tension involving the cusp anomalous dimension is natural.

However certainly this point is far from being clarified. For instance in the Ward identity
for the special conformal transformation Γcusp enters as the multiplier in the anomalous contri-
bution. This claim has been explicitly checked at the first loops in the gauge theory calculations
and the arguments that it holds true at all orders have been presented. This means that in
the anomalous Ward identity it plays the role of the Planck constant not the inverse one. To
match both arguments we could suggest that in the Ward identity we are considering the S-dual
formulation and therefore the D1 string worldsheet action instead of the F1 one in O(6) sigma
model. This would imply that the Wilson polygon equivalent to the MHV amplitude could be
considered as the boundary of the D1 string as well.

In more general setup it is highly desirable to realize the meaning of the relation of such type
in the first quantized language. Since the cusp anomalous dimension is just the renormalization
factor for the self-crossing of the worldline it is very interesting to understand if such self-
crossing is involved into the quantization issue. In particular in the Ising model the effect of the
self-crossing is captured by the topological term and in the description of the topological string
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on C3 somewhat similar θ term in six dimensions plays the role of the quantization parameter
indeed [28]. In the gauge theory language such objects are related to the renormalization of the
double-trace operators couplings.

4 Integrability behind the scattering amplitudes

4.1 General remarks

In this Section we shall discuss the hidden integrability behind the scattering amplitudes and
present the arguments that similarly to the integrability pattern behind effective actions in N=2
SYM theory two integrable systems are involved. The degrees of freedom of both integrable
systems are related to the coordinates of the regulator branes. One of these systems which
we identify as the Whitham-like 3-KP one plays the role of RG flows in the regulator brane
worldsheet theory or equivalently the motion of the regulator brane along the ”radial” RG-
coordinate. The second integrable system generalizing the Hitchin-like or spin chain models
involves the effective interactions between the regulator branes. We shall give arguments that
this system is based on the Faddeev-Volkov solution to the Yang-Baxter equation for the infinite-
dimensional representations of the noncompact SL(2, R) group.

Recall how two integrable systems are involved into the description of the low energy effective
actions of N=2 SYM theories. The first finite dimensional system is of the Hitchin or spin chain
type and its complex Liouville tori are identified with the Seiberg-Witten curves. This spectral
curve emerges in the gauge theory upon the summation over the infinite number of instantons
[36].

Following [25] one can canonically define the dual integrable system whose phase space is
built on the integrals of the motion of the first one. In the simplest case of SU(2) theory the
phase space for the dual system has the symplectic structure [45]

ω = da ∧ daD (21)

where the variables (a, aD) are the standard variables in N=2 SYM framework [48]. The pre-
potential F can be identified with the generating function of the Lagrangian sub-manifold in
the dual system with the a, aD phase space

H(a(u),
∂F

∂a
)) = u (22)

and obeys the Hamilton-Jacobi equation

∂F

∂logΛ
= H (23)

In the brane setup the prepotential defines the semiclassical ”wave function” of the D4 brane
Ψ(a) ∝ exp(~−1F(a)) in the IIA brane picture where perturbatively the argument of the wave
function can be identified with coordinate of the D4 brane on the NS5 brane. The total per-
turbative prepotential in SU(Nc) can be considered as a sum of the exponential factors in the
product of the wave functions of Nc D4 branes. In the A-model side these wave functions can
be considered in the Kahler gravity framework and the arguments of the wave function have to
be treated as the Kahler classes of the blow-upped spheres.

The integrals of motion provide the moduli space of the complex structures in the Calabi-
Yau geometry in the B model hence we are precisely in the KS framework. In this B-model
formulation we consider the argument of the brane wave function as the coordinate on the
moduli space of the complex structures. The dual Whitham-type integrable system naturally
defines the τ -function of the 2d Toda theory formulated in terms of the chiral fermions on the
Riemann surface with two marked points.
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4.2 3-KP system

Let us turn to the integrable structure relevant for the scattering amplitudes at generic kine-
matics and first identify the degrees of freedom and evolution ”times”. As we have described
above the fermionic degrees of freedom correspond to the noncompact branes localized on the
Riemann surface. The two-dimensional field theory corresponds to the reduction of the KS
theory on the two-dimensional surface. The fields on the surface are in the external abelian
connection of the Berry type which tells how the B- branes transform under the change of the
complex structure fixed by the momenta of external particles.

The form of the Riemann surface H(u, v) = 0 dictates that there are three infinities and
therefore we are dealing with the particular solution to 3-KP integrable system. To describe
the integrable system it is convenient to introduce the chiral fermions with the following mode
expansion

ψ(xi) =
∑
n

ψi
n+1/2

x−n−1

i , ψ∗(xi) =
∑

n

ψ∗i
n+1/2

x−n−1

i (24)

around the i-th infinity, i = 1, 2, 3 and the commutation relations

{ψi
n, ψ

∗j
m } = δijδn+m,o (25)

Defining the vacuum state by relations

ψn|0 >= 0, ψ∗

n|0 >= 0, n > 0 (26)

the generic state |V > can be presented in the form

|V >= exp(
∑
i,j

∑
n,m

aij
nmψ

i
−n−1/2

ψ∗i
−m−1/2

)|0 > (27)

where the point of Grassmanian representing the topological vertex was derived in [23].
Hence we can define the classical τ function of the 3-KP system we are working with

τ(Tk) =< t|Ψ(z1)....Ψ(zk)|Vtv > (28)

It is this tau-function of the 3-KP system that plays the role of the generating function for
the MHV amplitudes. In fact the semiclassical limit of the tau-function is of the most interest
when we consider the classical Riemann surface before any quantization. In the semiclassical
approximation we can safely consider the differential

dS = vdu (29)

which yields the semiclassical brane wave function

Ψqs ∝ exp(−~
−1

∫ x

v(u)du) (30)

involving the dilogs. The tau-function obeys the 3-KP equation and there are the additional
W1+∞ Ward identity written in terms of the fermions

∮
u
ψ∗(u)enuψ(u) + (−1)n

∮
v
ψ∗(v)envψ(v) +

∮
s
ψ∗(s)ensψ(s) = 0 (31)

where the sum over three asymptotic regions is considered.
The quantization of the system can be done most effectively in terms of the Baxter equation.

The Baxter equation implies that the regulator branes are localized on the surface. Hence the
whole set of the equations determining amplitudes involve the dual conformal transformations
on the regulator worldvolume and the set of Ward identities for the coordinate of regulator
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brane in the transverse moduli space. It is these Ward identities which fix the dependence of
the amplitude on the conformal invariants for large number of external legs.

The precise higher Hamiltonians from W1+∞ responsible for the higher conservation laws
in the scattering amplitude problem can be written as the fermionic bilinears [23]. Generically
as was discussed in [23] one has some unbroken part of W∞ which annulate the τ -function
corresponding to the topological vertex and therefore the scattering amplitude in the form of
BDS anzatz.

4.3 On the Faddeev-Volkov model

Let us turn now to the description of the second integrable system representing the particular
solitonic sector of the infinite-dimensional integrable system. We shall conjecture that the
integrable system at the generic kinematics is the generalization of the SL(2,C) spin chain
relevant for the Regge limit of the amplitudes.

The finite-dimensional integrable systems can be usually defined in terms of the R-matrix.
The Faddeev-Volkov model is defined via the Drinfeld solution to the Yang-Baxter equation
which provides the universal R-matrix acting on Uq(SL(2, R))⊗Uq(SL(2, R)). The correspond-
ing statistical model describes the discrete quantum Liouville theory [31] with the following
partition function

Z =

∫ ∏
ij

Wp−q(Si − Sj)
∏
kl

W̄p−q(Sk − Sl)
∏

i

dSi (32)

where the Boltzmann weights depend only on the differences of the spins Sk at the neighbor
cites and rapidity variables at the ends of the edge. The first product is over the horizontal
edges(i,j) while the second product is over the vertical edges (k,l). The integral is over all
internal spin degrees of freedom. In the fundamental R-matrix the cross-ratios of the relative
rapidities of the particles play the role of the local inhomogeneities in the lattice model and
Boltzmann weights are defined as [31]

Wθ(s) = F (θ)−1e2ηθs Ψ(s+ icbθ/π)

Ψ(s− icbθ/π)
(33)

where spin s and local rapidity variables θ are combined together in the argument of the function

Ψb(z) = exp(
1

4

∫
e−2izxdx

xsinh(bx)sinh(b−1x)
) (34)

cb = 1/2(b+b−1) and F (θ) is normalization factor. The relative importance of the spin variables
and the local inhomogeneities depends on the value of the YM coupling constant and the
kinematical region.

Semiclassically when b→ 0 the spin variables are frozen and the Boltzmann weight behaves
as

Wθ(ρ/2πb)) = exp(−
A(θ|ρ)

2πb2
+ ...) (35)

where
A(θ|ρ) = iLi2(−e

ρ−iθ) − iLi2(−e
ρ+iθ) (36)

The extremization of the semiclassical action yields the Bethe Anzatz type equations connecting
the dynamical spin variables with the local rapidities

∏
i

eρi + eρj+θij

eρj + eρi+θij
= 1 (37)
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The Regge limit is described in terms of the SL(2,C) spin chains when the number of sites in
the chain corresponds to the number of reggeons. The possible limit which could yield such spin
chain from the Faddeev-Volkov model or statistical model [31] looks as follows. In the model
[31] the statistical weights depend on the sum of the local rapidities and the spin variables.
It is clear that one can not expect the quasiclassical limit of the quantum dilogarithm to be
relevant since the reggeization of the gluon happens upon the nontrivial resummation of the
perturbation series.

Fortunately there is the limit [31] corresponding to the strong coupling region in the Liouville
theory when the quantum dilogarithms reduce to the ratio of Gamma functions depending on
the SL(2, R) spin variables

Ψcb→0(s+ ηx) ∝
Γ(1 − s+ ix/2)

Γ(1 − s− ix/2)
(38)

where |b| = 1 . The leading argument depends on the difference of two infinite-dimensional
representations in the neighbor sites and the expression coincides with the fundamental R-
matrix involved into the SL(2, R) spin chains. That is in this particular limit we get the
statistical weights or R-matrixes depending only on the SL(2,R) spins similar to the BFKL-
type Hamiltonian [47] while the local rapidity yields the ”time” variable logs. Note that clearly
this suggestive argument need for further clarification.

5 Conclusion

We have suggested the relation between the loop MHV amplitudes and the KS gravity in the
momentum space which allows us to recover the relevant integrability pattern. The key idea is
that the scattering of the particles induces the back-reaction on the geometry of the momentum
space through the nontrivial dynamics on the emerging moduli space. That is one can say
that the tree amplitude is dressed by the gravitational degrees of freedom which can be treated
within the Kahler gravity in the A type geometry or KS gravity in the type B model. They
are identified with the coordinates of Lagrangian branes in the A model or the corresponding
noncompact branes in the B model. On the field theory side the four-fermion correlator on the
moduli space is identified with the two-mass easy box amplitude which is the basic block in the
whole answer.

The BDS anzatz corresponds to the semiclassical limit in the KS gravity and Γcusp has
to be identified with the inverse Planck constant in KS gravity. There are several natural
generalizations of the BDS anzatz. First one could imagine that the quantization parameter
can be generalized to more complicated function than cusp anomalous dimension respecting
the S-duality of N=4 theory. The next evident point concerns the full quantum theory in the
KS framework which effectively substitutes the dilogarithm function in the BDS anzatz by the
quantum dilogarithm. However these modifications do not produce higher polylogaritms which
are known to appear in higher loop calculations of the amplitudes and Wilson polygons. The
most natural way to get higher polylogarithms in our picture is to consider the nontrivial Feyn-
man diagrams in the two-dimensional KS theory probably involving loops. Indeed increasing
the number of vertexes in the KS tree diagrams we increase the trancendentality of the answer.
We expect that all mentioned generalizations are necessary to get the correct all-loop answer.

We have identified the most natural integrable structure behind the scattering amplitudes
which are considered as a kind of the ”wave functions” in the particular model. The KS
gravity in our case naturally involves the 3-KP hierarchy and the role of the ”time” variables
are played by the combination of the conformal cross-ratios. The second finite-dimensional
integrable system is conjectured to be related to the Faddeev-Volkov model however this point
deserves for further investigation. The integrability is responsible for the conservation laws in
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addition to the dual superconformal symmetry. The relevant Ward identities correspond to the
area preserving symplectomorphysms of the spectral curve.

The additional IR regulator branes added into the picture are responsible for the blow up
of the internal momentum space in the manner dictated by the scattering process. The blow
up of the internal geometry physically corresponds to the IR regularization of the field theory
and the anomaly in the transformations in the momentum space tells that the regularization
does not decouple completely. This a little bit surprising picture implies that we have to take
into account the dynamics of the regulator degrees of freedom as well. Naively they are treated
semiclassically but generically the fermions representing the regulator branes obey the quantum
Baxter equation.

One of the most inspiring findings is the appearance of the hidden ”new massive degree of
freedom”. They correspond on the A model side to the D2 brane wrapped around the 2-cycle
created by the scattering states or the open string stretched between two IR regulator branes
in the B model. It is somewhat similar to the W-boson state however its mass is fixed by the
kinematical invariants of the scattering particles. In the Regge limit we anticipate its important
role in the Reggeon field theory.

In is evident that the results of this paper are qualitative in many respects and represent
only part of the whole picture. In particular the clear understanding of the amplitudes of the
gluon scattering with generic chiralities is absent and our proposal for the improvement of the
BDS anzatz deserves for the further evidences. Nevertheless we believe that the dual picture we
have suggested is the useful step towards the clarification of the scattering geometry responsible
for the summation of the perturbative series in YM theory.

I would like to thank the organizers of Quarks − 2008 for providing the nice atmosphere.
The work was supported in part by grants INTAS-1000008-7865 and PICS- 07-0292165.

References

[1] L.N. Lipatov, JETP Lett. 59 (1994) 596;

[2] L.D. Faddeev, G.P. Korchemsky, Phys. Lett. B 342 (1995) 311.

[3] A. V. Belitsky, V. M. Braun, A. S. Gorsky and G. P. Korchemsky, Int. J. Mod. Phys. A
19, 4715 (2004) [arXiv:hep-th/0407232].

[4] S. J. Parke and T. R. Taylor, Phys. Rev. Lett. 56, 2459 (1986).

[5] E. Witten, Commun. Math. Phys. 252, 189 (2004) [arXiv:hep-th/0312171].

[6] V. P. Nair, Phys. Lett. B 214, 215 (1988).

[7] F. Cachazo, P. Svrcek and E. Witten, JHEP 0410, 074 (2004) [arXiv:hep-th/0406177].

[8] F. Cachazo, P. Svrcek and E. Witten, JHEP 0409, 006 (2004) [arXiv:hep-th/0403047].

[9] W. A. Bardeen, Prog. Theor. Phys. Suppl. 123, 1 (1996).

[10] A. A. Rosly and K. G. Selivanov, Phys. Lett. B 399, 135 (1997) [arXiv:hep-th/9611101].

[11] A. Gorsky and A. Rosly, JHEP 0601, 101 (2006) [arXiv:hep-th/0510111].

[12] P. Mansfield, JHEP 0603, 037 (2006) [arXiv:hep-th/0511264].

[13] M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Commun. Math. Phys. 165, 311 (1994)
[arXiv:hep-th/9309140].

[14] L. F. Alday and J. M. Maldacena, JHEP 0706 (2007) 064 [arXiv:0705.0303 [hep-th]].

13



[15] Z. Bern, L. J. Dixon, D. A. Kosower, R. Roiban, M. Spradlin, C. Vergu and A. Volovich,
arXiv:0803.1465 [hep-th].

[16] Z. Bern, L. J. Dixon and V. A. Smirnov, Phys. Rev. D 72, 085001 (2005) [arXiv:hep-
th/0505205].

[17] L. F. Alday and J. M. Maldacena, JHEP 0711, 019 (2007) [arXiv:0708.0672 [hep-th]].

[18] J. M. Drummond, J. Henn, G. P. Korchemsky and E. Sokatchev, arXiv:0803.1466 [hep-th].

[19] J. M. Drummond, J. Henn, G. P. Korchemsky and E. Sokatchev, Nucl. Phys. B 795, 52
(2008) [arXiv:0709.2368 [hep-th]].

[20] J. M. Drummond, J. Henn, G. P. Korchemsky and E. Sokatchev, arXiv:0807.1095 [hep-th].

[21] J. M. Drummond, J. Henn, G. P. Korchemsky and E. Sokatchev, arXiv:0712.1223 [hep-th].

[22] S. Katz, P. Mayr and C. Vafa, Adv. Theor. Math. Phys. 1, 53 (1998) [arXiv:hep-
th/9706110].

[23] M. Aganagic, R. Dijkgraaf, A. Klemm, M. Marino and C. Vafa, Commun. Math. Phys.
261, 451 (2006) [arXiv:hep-th/0312085].

[24] A.M. Polyakov, Nucl. Phys. B 164 (1980) 171.

[25] V. Fock, A. Gorsky, N. Nekrasov and V. Rubtsov, JHEP 0007, 028 (2000) [arXiv:hep-
th/9906235].

[26] E. K. Sklyanin, Prog. Theor. Phys. Suppl. 118, 35 (1995) [arXiv:solv-int/9504001].

[27] L. D. Faddeev and R. M. Kashaev, Mod. Phys. Lett. A 9, 427 (1994) [arXiv:hep-
th/9310070].

[28] A. Iqbal, N. Nekrasov, A. Okounkov and C. Vafa, JHEP 0804, 011 (2008) [arXiv:hep-
th/0312022].

[29] M. Aganagic, A. Klemm, M. Marino and C. Vafa, Commun. Math. Phys. 254, 425 (2005)
[arXiv:hep-th/0305132].

[30] N. Saulina and C. Vafa, arXiv:hep-th/0404246.

[31] V. V. Bazhanov, V. V. Mangazeev and S. M. Sergeev, Nucl. Phys. B 784, 234 (2007)
[arXiv:hep-th/0703041].
V. V. Bazhanov, V. V. Mangazeev and S. M. Sergeev, Phys. Lett. A 372, 1547 (2008)
[arXiv:0706.3077 [cond-mat.stat-mech]].

[32] L. D. Faddeev and A. Y. Volkov, Lett. Math. Phys. 32, 125 (1994) [arXiv:hep-th/9405087].

[33] R. Dijkgraaf, L. Hollands, P. Sulkowski and C. Vafa, JHEP 0802, 106 (2008)
[arXiv:0709.4446 [hep-th]].

[34] A. Brandhuber, P. Heslop and G. Travaglini, Nucl. Phys. B 794, 231 (2008)
[arXiv:0707.1153 [hep-th]].

[35] A. Gorsky, I. I. Kogan and G. Korchemsky, JHEP 0205, 053 (2002) [arXiv:hep-
th/0204183].

[36] N. A. Nekrasov, Adv. Theor. Math. Phys. 7, 831 (2004) [arXiv:hep-th/0206161].

14



[37] L. D. Faddeev, Math. Phys. Stud. 21, 149 (2000) [arXiv:math/9912078].

[38] N. Berkovits and J. Maldacena, arXiv:0807.3196 [hep-th].

[39] N. Beisert, R. Ricci, A. Tseytlin and M. Wolf, arXiv:0807.3228 [hep-th].

[40] N. Beisert, B. Eden and M. Staudacher, J. Stat. Mech. 0701, P021 (2007) [arXiv:hep-
th/0610251].

[41] J. Bartels, L. N. Lipatov and A. S. Vera, arXiv:0802.2065 [hep-th].
J. Bartels, L. N. Lipatov and A. Sabio Vera, arXiv:0807.0894 [hep-th].

[42] K. Altmann and G. Hein, math/0607174

[43] M. Kapranov, math/9210002

[44] A. V. Belitsky, A. S. Gorsky and G. P. Korchemsky, Nucl. Phys. B 748, 24 (2006)
[arXiv:hep-th/0601112].

[45] A. Losev, N. Nekrasov and S. L. Shatashvili, Nucl. Phys. B 534, 549 (1998) [arXiv:hep-
th/9711108].

[46] L. F. Alday and J. Maldacena, JHEP 0711, 068 (2007) [arXiv:0710.1060 [hep-th]].

[47] E. A. Kuraev, L. N. Lipatov and V. S. Fadin, Sov. Phys. JETP 45 (1977) 199 [Zh. Eksp.
Teor. Fiz. 72 (1977) 377].
I. I. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys. 28 (1978) 822 [Yad. Fiz. 28 (1978)
1597].

[48] N. Seiberg and E. Witten, Nucl. Phys. B 426, 19 (1994) [Erratum-ibid. B 430, 485 (1994)]
[arXiv:hep-th/9407087].

[49] E. Witten, Nucl. Phys. B 500, 3 (1997) [arXiv:hep-th/9703166].

15


