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Abstract

The explicit form of kinetic momentum and spin projection operators is found for neutral
particle with anomalous magnetic moment interacting with dense matter and electromag-
netic field. Possible applications of obtained results for neutrino physics are discussed.

1 Introduction

In mathematical apparatus of quantum field theory an elementary particle is usually identified
with an irreducible unitary representation of the Poincare group. The irreducible representa-
tions are characterized by values of two invariants of the group:

P 2 ≡ P µPµ = m2, (1)

W 2 ≡W µWµ = −m2s(s+ 1). (2)

The translation generators P µ are identified with the particle momentum, and the Pauli–
Lubanski–Bargmann vector

W µ = − 1

2
eµνρλMνρPλ (3)

characterizes the particle spin. The invariant m2 is the particle mass square and s is the value
of the particle spin.

The space of unitary representation is marked out by the condition called ”wave equation
for a particle possessing the mass m and the spin s”. The wave equation for particles with spin
s = 1/2 is the Dirac equation

(p̂−m)Ψ(x) = 0. (4)

In this case the realization of the momentum and the Pauli–Lubanski–Bargmann vector in
the coordinate representation is

pµ = i∂ µ, wµ =
i

2
γ5(γµ∂̂ − ∂µ), (5)

Operators pµ and wµ commute with the operator of the Dirac equation and can be iden-
tified with observable physical values (since only integrals of the motion can be considered as
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observables in relativistic quantum mechanics [1]) and have a self-conjugate extension on the
solution set of the Dirac equation (4) with regard to the standard scalar product

(Ψf , Ψi) =

∫

dxΨ †
f (x, t)Ψi(x, t). (6)

Three dimensional particle spin vector S is the set of coefficients of the expansion of the W µ

vector in space-like normals nµ
i (i = 1, 2, 3), (niP ) = 0, (ninj) = −δij :

Si = − 1√
P 2

(Wni) . (7)

Obviously,
[

Si, Sj

]

= ieijkSk. (8)

The choice of normals is not unique and it is possible to construct spin operators determining
the spin projection on any direction in an arbitrary Lorentz frame.

The above description of the particle characteristics can not be directly used in the presence
of the external fields. In this case the Dirac equation has the form

(

i∂̂ − eÂ−m
)

Ψ(x) = 0, (9)

and operators pµ and wµ are not always integrals of motion. Linear combinations of operators
pµ and wµ with coefficients depending on coordinates are used for the classification of particle
states in the external field [2]. Generally it is not easy to give physical interpretation for these
operators, and it often leads to logical difficulties.

Even greater difficulties arise in the consideration of the Dirac–Pauli equation with the
phenomenological term describing the interaction of the anomalous magnetic moment µ0 with
the external field:

(

i∂̂ − eÂ− i

2
µ0F

αβσαβ −m

)

Ψ(x) = 0, (10)

or with the axial-vector term describing neutrino propagation in dense matter consisting of
fermions [3]:

(

i∂̂ − 1

2
f̂(1 + γ5) −m

)

Ψ(x) = 0. (11)

In this equation the interaction of neutrino with moving and polarized matter is described by
the effective four-potential fµ, which is a linear combination of currents and polarizations of
the background fermions.

2 Statement of problem

Since the irreducible representation of group is defined accurately up to the equivalence trans-
formation, it is reasonable to state a problem of finding such realization of the Lie algebra of
the Poincare group for which the condition of the representation irreducibility leads to wave
equation describing a particle in the given external field. To solve this problem it is necessary
to find operator U(x, x0) which converts solutions of the wave equation for a free particle

(

D0(x) −m
)

Ψ0(x) = 0 (12)

to solutions of the equation for the particle in the external field

(

D(x) −m
)

Ψ(x) = 0, (13)

i.e.
U(x, x0)Ψ0(x) = Ψ(x). (14)
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The specified operator should satisfy the equation

D(x)U(x, x0) − U(x, x0)D0(x) = 0. (15)

Therefore, generators
P̃ µ = UP µU−1, M̃µν = UMµνU−1 (16)

commute with operator of the wave equation. As a consequence the Pauli–Lubanski–Bargmann
vector and the three dimensional spin vector can be constructed in the same way as in the case
of a free particle.

3 Neutrino in homogeneous electromagnetic field

Let us consider the Dirac–Pauli equation for a neutral particle with the anomalous magnetic
moment µ0 in a stationary homogeneous electromagnetic field:

(

i∂̂ − i

2
µ0F

µνσµν −m

)

Ψ(x) = 0. (17)

When the second invariant of the electromagnetic field tensor F µν is equal to zero

I2 =
1

4
F µνHµν = 0, Hµν = −1

2
eµνρλFρλ,

the special type of the solutions of this equation was found in paper [4]. These solutions can
be presented as a result of action of some integral operator on the solutions of the equation for
a free particle. If the solutions for the free particle are chosen in the plane wave form then the
action of the given operator reduces to the multiplication by the matrix function depending on
the parameter qµ. This parameter satisfies the condition q2 = m2 and can be interpreted as a
kinetic momentum of the particle in the external field.

The explicit form of the wave function system is defined by the formula

Ψqζ0(x) =
1

2

∑

ζ=±1

e−i(Pζx)(1 − ζγ5Ŝtp(q))(1 − ζ0γ
5Ŝ0(q))(q̂ +m)ψ0. (18)

Here
P µ

ζ = qµ − ζHµαHανq
ν/
√
N , Sµ

tp(q) = −Hµνqν/
√
N , (19)

where
N = qµH

µνHνρq
ρ.

The four dimensional vector Sµ
0 defines the initial direction of the particle polarization; ζ0 = ±1

is the sign of the spin projection on this direction; ψ0 is the constant bispinor normalized by
the condition Ψ̄0(x)Ψ0(x) = m/q0.

The system of solutions (18) describes spin coherent states of neutrino and is the complete
system of solutions of equation (17) characterized by the particle kinetic momentum qµ and
by the quantum number ζ0. However this system is not stationary in the general case. The
solutions are stationary when the initial polarization vector Sµ

0 (q) is equal to the vector of the
total polarization Sµ

tp(q): S
µ
0 (q) = Sµ

tp(q).
Let us consider the stationary case Sµ

0 (q) = Sµ
tp(q). In this case wave functions are the

eigenfunctions of the spin projection operator to the Sµ
tp(q) direction with eigenvalues ζ = ±1

and of the canonical momentum operator pµ = i∂µ with eigenvalues P µ
ζ . The orthonormalized

system of the stationary solutions of equation (17) can be written down as

Ψqζ(x) = e−i(Pζx)
√

|J |(1 − ζγ5Ŝtp(q))(q̂ +m)ψ0. (20)
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In this equation J = 1− 2ζI1/
√
N is the transition Jacobian between the variables qµ and P µ

ζ ,

I1 = 1
4F

µνFµν is the first invariant of the F µν tensor. The dispersion law is determined by the
relation

P 2
ζ = m2 − 2I1 − 2ζ∆

√

P µ
ζ HµαHανPζν , ∆ = sign(J(P )). (21)

It follows from the dispersion law that group velocities for particles with different spin
orientations are equal and defined by the equation

vgr =
∂P 0

ζ

∂Pζ

=
q

q0
. (22)

Since wave functions (20) are the eigenfunctions of both the canonical pµ and the kinetic Qµ

momentum operators, it is possible to express eigenvalues of the kinetic momentum operator qµ

in terms of eigenvalues of the canonical momentum operator P µ
ζ . Replacing P µ

ζ by the operator
pµ, we obtain the explicit form of the kinetic momentum operator Qµ:

Q
µ = pµ + γ5H

µαHανp
νHβαp

αγβ

pβHβαHαρpρ

. (23)

On the solutions of the Dirac–Pauli equation, we have

Q̂ = m, Q
2 = m2. (24)

Natural generalization of the Pauli–Lubanski–Bargmann vector to the case of a particle
moving in an external field is given by the following expression:

W µ =
1

2
γ5(γµ

Q̂ − Q
µ).

If we normalize spin operators S by the condition S2 = 1, then a basis in the spin operators
space has the form

Si = −γ5Ŝi(q).

For our task it is convenient to choose the basis in the following way:

Stp = −γ5Ŝtp(q), S1⊥ = −γ5Ŝ1⊥(q), S2⊥ = −γ5Ŝ2⊥(q), (25)

where the normal Stp(q) is defined by equation (19) and

Sµ
1⊥(q)=

Sµ
0 (q) + Sµ

tp(q)(S0(q)Stp(q))
√

1 − (S0(q)Stp(q))2
, Sµ

2⊥(q)=
eµνρλqνS0ρ(q)Stpλ(q)

m
√

1 − (S0(q)Stp(q))2
.

Spin operator Stp with eigenfunctions (20) is defined by the formula

Stp =
γ5γµH

µνQν
√

QβHβαHαρQρ

= sign

(

1 +
2I1γ

5Hµνpνγµ

pβHβαHαρpρ

)

S̃tp, (26)

where

S̃tp =
γ5γµH

µνpν
√

pβHβαHαρpρ

. (27)

Operator Stp is the integral of motion and characterizes a particle spin projection on the
magnetic field direction H0 in the particle rest frame.

Spin operator S0 with non stationary eigenfunctions (18) is a linear combination of operators
(25) with coefficients depending on coordinates:

S0 = −(S0(q)Stp(q))Stp+

+ [cos 2θS1⊥ − sin 2θS2⊥]
√

1 − (S0(q)Stp(q))2,
(28)
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where θ = xµH
µνHνρq

ρ/
√
N .

Form (28) of operator S0 implies that solution (18), which is a linear combination of solutions
(20), describes a state of a neutral particle moving with a constant velocity q/q0 and with a
spin precessing around H0 with frequency ω = 2m|H0|/q0.

It should be emphasized that this state is a pure quantum mechanical state. The existence
of plane wave solutions of the Dirac–Pauli equation (17), describing a pure state of a neutral
particle with a non-conserved spin projection on the fixed space axis is possible only by choosing
the kinetic momentum components as quantum numbers. This state is a spin coherent one, so
solutions (18) do not form an orthogonal basis. The considered system is not overfull, since a
spin operator spectrum is finite, so the system can be easily orthogonalized.

Let us consider now applications of the obtained results to the description of neutrino. In
investigating of the influence of a stationary pure magnetic field on neutrino oscillations in
pioneer paper [5], as well as in others papers, stationary solutions Ψ

pζ̃
(x) first found in [6] were

used as the wave functions of a particle. These solutions are the eigenfunctions of the canonical
momentum operator pµ and of the spin operator S̃tp. It was supposed that the mean value of
neutrino helicity is equal to 1 (in the absolute value) at the fixed time moment and the further
spin evolution is described by linear combinations of the above mentioned wave functions

Ψ(x) =
∑

ζ̃=±1

α
ζ̃
(p)Ψ

pζ̃
(x).

However, such a description is not correct in the general case. Since the standard helicity
operator (Σp)/|p| does not commute with the operator from the Dirac–Pauli equation (17),
the state of the particle with a fixed canonical momentum and with the helicity mean value
equal to 1 (at the fixed time moment) can only be a mixed spin state. But in a mixed state
the change of the polarization can be caused only by a distinction of group velocities of the
neutrino beam components. This effect should disappear on large distances since the beam is
no longer coherent. So our results enable to treat a possible effect of the neutrino polarization
change in electromagnetic field as a precession of the particle spin.

4 Neutrino in dense matter

Generalization of the results for the case of the neutrino interaction with dense matter, i.e.
solution of the equation

(

i∂̂ − 1

2
f̂(1 + γ5) − i

2
µ0F

µνσµν −m

)

Ψ(x) = 0, (29)

was obtained in papers [7–9].
In this case the expression for the wave function takes the form

Ψqζ0(x) =
1

2

∑

ζ=±1

e−i(Pζx)(1 − ζγ5Ŝtp)(1 − ζ0γ
5Ŝ0)(q̂ +m)ψ0. (30)

Here

P µ
ζ = qµ

(

1 + ζ
(fϕ)

2
√

(ϕq)2 −m2ϕ2

)

+
1

2
fµ

(

1 − ζ
√

(ϕq)2 −m2ϕ2

(ϕq)

)

− ϕµ ζ(fϕ)m2

2(ϕq)
√

(ϕq)2 −m2ϕ2
,

(31)

Sµ
tp =

qµ(ϕq)/m− ϕµm
√

(ϕq)2 − ϕ2m2
, (32)
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where
ϕµ = fµ/2 +Hµνqν/m.

It is obvious that the system of solutions (30) is a complete system of solutions of equation
(29), which is characterized by the kinetic momentum of the particle qµ and the quantum
number ζ0 = ±1. In the general case this system is not stationary. The obtained solutions are
stationary only when Sµ

0 = Sµ
tp. In this case the wave functions are the eigenfunctions of the

spin projection operator to the direction Sµ
tp with the eigenvalues ζ = ±1 and of the canonical

momentum operator i∂µ with eigenvalues P µ
ζ . The orthonormalized system of the stationary

solutions of equation (29) can be written down in the following way:

Ψqζ(x) = e−i(Pζx)
√

|J |(1 − ζγ5Ŝtp)(q̂ +m)ψ0, (33)

where J is the transition Jacobian between the variables qµ and P µ
ζ :

J =

(

1 + ζ
(fϕ)

2
√

(ϕq)2 −m2ϕ2

)2(

1 + ζ
fµH

µνqν/2m− 2I1
√

(ϕq)2 −m2ϕ2

)

. (34)

The dispersion law is determined by the relation

P̃ 2 = m2 − f2/4 − 2I1 − 2ζ∆

√

(Φ̃P̃ )2 − Φ̃2m2, (35)

where
P̃ µ = P µ

ζ − fµ/2, Φ̃µ = fµ/2 +HµνP̃ν/m, ∆ = sign(J(P )). (36)

Eigenvalues of the kinetic momentum operator qµ are expressed in terms of eigenvalues of
the canonical momentum operator P µ in the following way:

qµ = P̃ µ +
[

P̃ µ(f Φ̃) − fµ(fP̃ )/2 − 2mHµνΦ̃ν

][

P̃ 2 −m2 + f2/4 + 2I1 − (f̃Φ)
]−1

. (37)

The total polarization vector is connected with P µ by the relation

Sµ
tp = sign

(

1 +
fµH

µν P̃ν/m− 4I1

P̃ 2 −m2 + f2/4 + 2I1 − (f Φ̃)

)

qµ(Φ̃P̃ )/m− Φ̃µm
√

(Φ̃P̃ )2 −m2Φ̃2

. (38)

If we replace in equations (37), (38) P µ by operator pµ (like it was done in Section 3) then we
can find the kinetic momentum operator Qµ and the operator Stp = −γ5Ŝtp(q). However, the
explicit expressions of these operators can not be written down as simple formulae, so we do
not present them here.

The obtained solutions possess the same properties as the solutions of equation (17) consid-
ered above. Hence, they describe a neutrino moving with a constant velocity and with a spin
rotating due to the interaction with dense matter and electromagnetic field.

5 Conclusions

We obtained the exact solutions of the Dirac–Pauli equation for neutrino in dense matter and
electromagnetic field. We found the explicit forms of the kinetic momentum and spin projection
operators. We demonstrated that if the neutrino production occurs in the presence of an external
field and a dense matter, then its spin orientation is characterized by the vector Sµ

tp. Using both
the stationary and the nonstationary solutions obtained in this paper, it is possible to calculate,
in the framework of the Furry picture, the probabilities of various processes with neutrino.

This work was supported in part by the grant of President of Russian Federation for leading
scientific schools (Grant SS — 3312.2008.2).
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