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Abstract

. The available data on neutron scattering were reviewed to constrain a hypothetical
new short-range interaction. We show that these constraints are several orders of magnitude
better than those usually cited in the range between 1 pm and 5 nm. This distance range
occupies an intermediate space between collider searches for strongly coupled heavy bosons
and searches for new weak macroscopic forces. We emphasise the reliability of the neutron
contraints in so far as they provide several independent strategies. We have identified a
promising way to improve them.

1 Introduction

The existence of other forces in nature, mediated by new bosons, has been extensively discussed
in the literature, given their possibility in many of the extensions to the standard model of
particle physics [1]. New bosons for example are predicted by most of the Grand Unified
Theories embedding the standard model, with a coupling constant of ≈ 10−1. These strongly
coupled bosons would have to be heavier than ≈ 1 TeV if they were not to conflict with present
observations; heavier bosons will be searched for at the Large Hadron Collider. Lighter bosons
could however have remained unnoticed, provided they interact weakly with matter. Such
bosons would mediate a finite range force between two fermions:

V (r) = Q1Q2
g2

4π

~c

r
e−r/λ (1)

where g is the coupling constant, Q1 and Q2 the charges of the fermions under the new in-
teraction, and the range of this Yukawa-like potential λ = ~

Mc is inversely proportional to the
boson mass M . In the following we consider the interactions of neutrons with nuclei of atomic
number A: the charge of the atom under the new interaction is equal Q1 = A; the neutron
charge is equal unity Q2 = 1. A new boson could even be massless, as has been suggested by
Lee and Yang [2] well before the birth of the standard model, to explain the conservation of
the baryon number. This additional massless boson would mediate a new infinite-range force,
and could be seen in searches for violation of the equivalence principle at large distances. The
presence of very light bosons (M � 1 eV) would be shown by deviations from the gravitational
inverse square law. Gravity has been probed down to distances of 0.1 mm [3]; new bosons
lighter than 2 × 10−3 eV must thus have a coupling constant lower than the gravity strength
between nucleons, g2 < 10−37.
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Theories with extra large spatial dimensions [4, 5, 6, 7, 8, 9] provide strong motivation to
search for such forces. If a boson is allowed to travel in large extra-dimensions, with a strong
coupling constant in the bulk, it behaves in our 4D world as a very weakly coupled new boson,
the coupling being diluted in the extra-dimensions. The light dark matter hypothesis also argues
in favour of the existence of new short range interactions [10].

While gravity experiments are most competitive in the distance range > 10 µm, the mea-
surements of the Casimir or Van der Waals forces (for a review, see e.g. [11]) give the best
constraints in the nanometer range (10 nm < λ < 10 µm), and antiprotonic atoms constrain
the domain below 1 pm [12, 13], it has been suggested that experiments with neutrons could
be competitive in the intermediate range [14, 15, 16, 17, 13, 18]. Neutrons could also probe
spin-dependent interactions in a wider distance range [19], or spin-independent interactions in
the range of several micrometers [20, 18, 21].

In this contribution we give the quantitative constraints on the parameters of the additional
interaction, λ and g using the existing data on neutron scattering at nuclei. A detailed analysis
is presented in [22].

2 Slow neutron / nuclei interaction with extra-short-range in-
teractions

The scattering of slow neutrons on atoms is described by the scattering amplitude f(q); this
can be represented by a sum of a few terms [23]:

f(q) = fnucl(q) + fne(q) + fV (q) (2)

The first and the most important term represents the scattering due to the nuclear neutron-
nucleus interaction. At low energies discussed in this article, it is isotropic and energy-independant,
because the nuclear radius is much smaller than the wavelegth of slow neutrons:

fnucl(q) = −b. (3)

The coherent scattering lenght b is the fundamental parameter describing the interaction of
slow neutrons with a nucleus [24].

The second term is the amplitude of so-called electron-neutron scattering due to the inter-
action of the neutron charge distribution with the nucleus charge and the electron cloud. This
amplitude can be written as

fne(q) = −bne(Z − f(Z,q)), (4)

where f(Z,q) is the atomic form-factor measured in the X-rays experiments and bne is a constant
called the electron-neutron scattering length, which is directly related to the neutron charge
radius [23] and to the neutron electromagnetic form-factor GE(q2) by

bne = −
2

a0

m

me

dGE(q2)

dq2

∣

∣

∣

∣

q2=0

, (5)

m and me being the neutron and electron masses, a0 the Bohr radius. This contribution to the
total scattering amplitude is as small as a per cent for heavy nuclei.

In the presence of a new interaction (1), the scattering for a center of mass momentum ~k
due to the extra interaction, within the Born approximation, is given by

fV (θ) = −A
g2

4π
~c

2mλ2/~
2

1 + (qλ)2
(6)

where q = 2k sin(θ/2), θ is the scattering angle.
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Any other possible contributions to the scattering amplitude f(q), due to non zero nuclear
radius, nucleon polarizability, etc. are very small in the energy range discussed here [23].

The nuclear scattering lengths are measured for almost all stable nuclei, using a variety
of methods. A review of the different methods and a complete table of the measured scat-
tering lengths can be found in [25]. We can distinguish two classes of method, with different
sensitivities to a new interaction.

The first class – including the interference method, the total reflection method, the gravity
refractometer method – measures the forward scattering amplitude f(q = 0). These methods
actually measure the mean optical potential of a given material, called the Fermi potential, due
to the coherent scattering of neutrons at many nuclei. The Fermi potential is related to the
forward scattering amplitude.

In the presence of the new force, the measured scattering lenght can be separated into a
nuclear and an additional term

bopt = −f(q = 0) = b + A
mc2

2π~c
g2λ2 (7)

The second class of method – including the Bragg diffraction method and the transmission
method – uses non-zero transferred momentum. In the Bragg diffraction method, the scattering
amplitude for a momentum transfer of qBD = 10 nm−1 is measured. One actually extracts,
besides the nuclear term, an extra contribution according to (6)

bBD = b + A
mc2

2π~c
g2 λ2

1 + (qBDλ)2
(8)

In the case of the transmission method, the total cross-section is measured. Generally, neutrons
with energies of about 1 eV are used; they are much faster than slow neutrons, and no coher-
ent scattering can be observed. An additional interaction would manifest itself by an energy
dependance of the extracted scattering length

bTR(k2) =

√

σtot

4π
= b + A

mc2

2π~c
g2λ2 ln(1 + 4(kλ)2)

4(kλ)2
(9)

Finally, we should also mention the very popular Christiansen filter technique; this measures
relative scattering lengths, so we do not consider this data.

3 Random potential nuclear model

A simple and robust limit on the additional Yukawa forces can be easily obtained by neglecting
the small term due to the neutron-electron scattering and by studing the general A-dependence
of the scattering amplitude. In the domain of λ ≤ 1/qBD, the optical and Bragg diffraction
methods are sensitive to the same amplitude

bMeas = −f(q = 0) = b + A
mc2

2π~c
g2λ2 (10)

as clear from (7) and (8). The presence of additional forces would be apparent from the linear
increase of the measured scattering length as a function of A in addition to the A-dependence
of the nuclear scattering length.

There exists a simple and elegant semi-phenomenological approach that describes the nuclear
dependence [27]. It assumes that a nucleus can be presented as an attractive ”square well”
potential, with radius RA1/3 and depth V0 for slow neutrons. The scattering length would then
be equal to

b(A) = RA1/3

(

1 −
tan(X)

X

)

, (11)
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where X = RA1/3

~

√
2mV0 is supposed to be a random variable distributed uniformly over the

range [π/2, 5π/2] ; the lower value corresponds to the appearance of a bound state and the
upper limit is set sufficiently large not to influence the results of the present analysis; more
details can be found in [27].

This model describes well the distribution of all experimental data; the value of the only free
parameter in this model is estimated to be R = 1.44± 0.05 fm at the 68 % C.L. The likelihood
function at its maximum satisfies ln(L) = −254 for 216 degrees of freedom.

With a short-range new interaction included in the analysis we have to consider the random
variable

bMeas = RA1/3

(

1 −
tan(X)

X

)

+ bExtra A. (12)

where the effect of the extra interaction is the slope bExtra = mc2

2π~c g2λ2 of the linear term. The
linear term is compatible with zero, as expected. We thus obtain a quantitative constraint for
the coupling g(λ) [22]:

g2λ2 ≤ 0.016 fm2 at 95% C.L. (13)

This result is presented in fig. 1 for the distance range of interest, 10−12 − 10−10 m.

4 Constraint from comparaison of forward and backward scat-
tering of neutrons

Another way to constrain on aditional Yukawa forces consists in comparing the scattering
lengths measured by different methods.

As explained above, the scattering lengths measured using the Bragg diffraction method
bBD and the interference method bopt do not show the same sensitivity to a new short-range
interaction. According to (7) and (8), the ratio of the two values should deviate from unity in
the presence of an additional interaction

bopt

bBD

≈ 1 +
A

b

mc2

2π~c
g2 λ2 (qλ)2

1 + (qλ)2
(14)

We found a set of 13 nuclei for which both measurements exist. Taking into account systematic
errors in those experiments as described in [22], we obtain the constraint

g2λ2 (qλ)2

1 + (qλ)2
≤ 0.0013 fm2 at 95% C.L. (15)

corresponding to the bold limit in fig. 1.

5 Electromagnetic effects

Up to now, the amplitude due to a new additional interaction fV (q) has been compared to
the nuclear one fnucl(q) (see (2)). One could compare it to a smaller amplitude due to an
electromagnetic interaction (fne(q)). This idea was first proposed in ref. [14].

One could repeat the previous analysis using measurements of the total cross-section at
energies of ≈ 1 eV (1/k = 5 pm) instead of the Bragg diffraction. If the range of a new
interaction is larger than 1 pm, the scattering length extracted would be free of any extra
contribution. However, the residual electromagnetic effects due to the neutron square charge
radius can mimick in this case an extra-force contribution in the quantity b(1 eV)− bopt, as this
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contribution is energy-dependent and proportional to the charge number of the atoms. The
extracted difference b(1 eV) − bopt therefore contains the two contributions:

b(1 eV) − b(0) = Zbne (16)

− A
mc2

2π~c
g2λ2

(

1 −
ln(1 + 4( λ

5 pm)2)

4( λ
5 pm)2

)

Unfortunately, there is very clear disagreement between the two groups of values for bexp
ne =

b(1 eV)−b(0)
Z known as the Garching-Argonne and Dubna values [28]

bexp
ne = (−1.31 ± 0.03) × 10−3 fm [Gartching-Argonne]

bexp
ne = (−1.59 ± 0.04) × 10−3 fm [Dubna] (17)

The discrepancy is much greater than the quoted uncertainties of the experiments and there
evidently an unaccounted for systematic error in at least one of the experiments.

In order to overcome this difficulty we could determine bne from the experimental data on
the neutron form factor (5). The simplest way to do this consists in using a commonly accepted
general parametrization of the neutron form factor [29]:

GE(q2) = −aµn
τ

1 + bτ
GD, (18)

where µn = −1.91µB is the neutron anomalous magnetic moment, τ = q2/4m2 and

GD(q2) =
1

(1 + q2/0.71 (GeV/c)2)2
, (19)

is so-called dipole form factor ; a and b being fitting parameters.
A fit of an existing set of the neutron form factor experimental data [30] yields the following

values for the parameters:

a = (0.77 ± 0.06)

b = (2.18 ± 0.58)

with χ2/NDF = 15.3/27. The bne determined in this way is

bne = (−1.13 ± 0.08) × 10−3 fm. (20)

Our principal conclusion consists in the observation of (underestimated) systematical uncer-
tainties in the presented experiments. Therefore a single experiment/method can not be used
for any reliable constraint. A conservative estimate of the precision of the bne value could be
obtained from analysing the discrepancies in the results obtained by different methods; it is
equal to ∆bne 6 6 × 10−4 fm. The corresponding contraint at the 2σ level [22]

mc2

2π~c
g2λ2

(

1 −
ln(1 + 4( λ

5 pm)2)

4( λ
5 pm)2

)

6 ∆bne (21)

is represented by the dot-dashed line in fig. 1 and 2.

6 Asymmetry of scattering

As is clear from fig. 1, the best constraint was obtained from the analysis of the energy depen-
dence of the neutron scattering lengths in the bne measurements inspite of systematic errors in
these experiments. However, the precision here is limited by the correction for the bne value
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itself. An obvious proposal for improving this constraint would be to set up experimental con-
ditions free of the bne contribution. This is indeed possible, because neutron-electron scattering
is essential for fast neutrons only, and is absent for slow neutrons.

We propose improving the experiment [26] and measuring the forward-backward asymmetry
of the scattering of neutrons at atoms of noble gases, in the following way: the initial velocity
of the neutrons should correspond to the range of very cold neutrons (VCN); the double differ-
ential measurement of neutron velocity before/after scattering should be used to calculate the
transferred momentum for every collision.

The measurement described above could provide an accuracy of at least 10−3 for the ratio of
forward to backward scattering probabilities and a corresponding constraint for the additional
short-range interaction shown in fig. 1. The relative drop in sensitivity at a few times 10−11 m
is due to the appearance of neutron electron scattering; the range of interest for this possible
constraint is 10−11 − 10−8 m.

7 Conclusion

We analysed the constraints for extra short-range interactions on the basis of the existing data
on neutron scattering. These constraints are several orders of magnitude better than those
usually cited in the range between 1 pm and 5 nm. The reliability of these constraints was
supported by the application of several independant methods with comparable accuracy, as
well as by the use of a major fraction of known neutron scattering lengths and treatment of
the data in a most conservative way. One constraint obtained within the random potential
nuclear model was based on the absence of an additional linear term in the mass dependance
of the neutron scattering lengths. It would be difficult to improve this constraint in either
experimental or theoretical terms. Another constraint was derived by comparing two types
of neutron scattering experiments with different sensitivities to the extra short-range interac-
tions. These are interference experiments measuring forward neutron scattering and the Bragg
diffraction. The accuracy here is limited by the relatively poor precision of the Bragg scattering
technique. Significant improvements in the accuracy of such experiments would be particularly
interesting. Further constraints were estimated using the energy-dependence of the neutron
scattering lengths at heavy nuclei. They are limited by the precision of our knowledge of the
neutron-electron scattering length. An elegant method for further improving such constraints
would consist in achieving experimental conditions free of bne contribution. This is indeed pos-
sible, given that neutron-electron scattering is essential for fast neutrons only. The experiment
would consist in scattering very cold neutrons at rare noble gases and in measuring precisely
the differential asymmetry of such scattering as a function of the transferred momentum.
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