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Abstract

Primordial cosmological hypermagnetic fields polarize the early Universe plasma prior
to the electroweak phase transition (EWPT). As a result of the long range parity violating
gauge interaction present in the Standard Model their magnitude gets amplified, opening a
new perturbative way of seeding the primordial Maxwellian magnetic field at EWPT.

1 Introduction

The electroweak phase transition (EWPT) has long been considered as a playing an important
role in the generation of primordial magnetic fields [1, 2, 3].

In the paper [4] we showed how the interplay between the resulting polarization effects
of the early Universe plasma and long range parity violating gauge interaction present the
Standard Model (SM) subsequently amplifies the seed hypermagnetic field till the epoch close
to the EWPT time, after which the evolution of the corresponding Maxwellian magnetic field
is described by the standard MagnetoHydroDynamics (MHD) for relativistic plasma.

While the long-ranged non-Abelian magnetic fields (corresponding to the color SU(3) or
to the weak SU(2)) can not exist because at high temperatures the non-Abelian interactions
induce a magnetic gap ∼ g2T the Abelian hypercharge magnetic fields are never screened and
can survive in the plasma for infinitely long times.

Consider the equations of motion for the hypercharge Yµ-field in the hot plasma and in the
presence of a pre-existing large scale hypermagnetic field BY

0 , regular on scales smaller than
horizon size at T0 > T � TEW . For simplicity we neglect the Abelian anomaly and assume the
Minkowski space.

We start from the SM Lagrangian for hypercharge field Yµ:

L = −1

4
YµνY

µν +
∑

l=e,µ,τ

g
′

Y µ

2

(

−ν̄lLγµνlL − l̄LγµlL − 2l̄RγµlR
)

+

+
N
∑

i

g
′

Y µ

2

[

1

3
ŪiLγµUiL +

1

3
D̄iLγµDiL +

4

3
ŪiRγµUiR −−2

3
D̄iRγµDiR

]

+

+i
g
′

Y µ

2

[

ϕ+Dµϕ −
(

Dµϕ+
)

ϕ
]

, (1)

where l = e, µ, τ , Ui = u, c, t, Di = d, s, b are leptons and quarks correspondingly, ϕ =
(

φ+, φ(0)
)T

- is the Higgs doublet.
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2 Equilibrium conditions above EWPT, T � TEW

There are equilibrium relations among the chemical potentials implied by the corresponding
conversions [5]:

µW = µ− + µ0 (W− ↔ φ− + φ0),

µDL
= µUL

+ µW (W− ↔ ŪL + DL),

µ
(l)
L = µ(l)

νL
+ µW (W− ↔ ν̄

(l)
L + lL),

µUR
= µ0 + µUL

(φ0 ↔ ŪL + UR),

µDR
= −µ0 + µDL

(φ0 ↔ DL + D̄R),

µ
(l)
R = −µ0 + µ

(l)
L (φ0 ↔ lL + l̄R). (2)

Let us note that chemical potentials are connected each other due to the global plasma
neutrality. In particular, the electroneutrality condition < Q >= 0 and the absence of the
isospin component < Q3 >= µW = 0 mean the hypercharge neutrality < Y >= 0,

Y = 2(Q − Q3) = 2

[

−2
∑

l

µ
(l)
L + 6µuL + 14µ0

]

= 0, (3)

which in turn allows to get the chemical potential for the neutral Higgs boson:

µ0 =

∑

l µ
(l)
L − 3µuL

7
. (4)

Notice also the sphaleron equilibrium condition valid above EWPT,
∑

l

µ
(l)
L = −9µuL, (5)

allows to express all chemical potentials through the lepton sum
∑

l µ
(l)
L , or accounting for the

third line in Eq. (2), through the sum of neutrino chemical potentials,
∑

l µ
(l)
νL

, which we denote

below as
∑

l µ
(l)
νL

= µν .
From the Dirac equation for massless fermions in a seed large-scale hypermagnetic field,

B0 = ∇×Y(0) = (0, 0, BY
0 ),

[

p̂ − f (a)(g
′

)Ŷ (0)
]

Ψ(a) = 0, f (a)(g
′

) =
g
′

ya

2
, (6)

where ya is the hypercharge, one finds the Landau spectrum for fermions (including neutrinos)
in JWKB approximation, g

′

BY
0 � T 2,

ε(pz, n, λ) =
√

p2
z+ | f (a)(g

′

) | BY
0 (2n + 1 ∓ λ) ≈ p∓ | f (a)(g

′

) | BY
0

λ

2p
. (7)

Here p =
√

p2
z + p2

⊥
with the relation p2

⊥
=| f (a)(g

′

) | BY
0 (2n + 1) is the fermion momentum,

the upper sign applies to particles and the lower one to antiparticles and the last paramagnetic

term in (7) is given by the spin projection on the seed hypermagnetic field BY
0 , (σz)λ′

λ = λδλ
′
λ.

Together with chirality for leptons and quarks γ5Ψ(l,q)R,L
= ±Ψ(l,q)R,L

it is a good quantum
number since [γ5,Σz] = 0.

As a result in JWKB approximation the equilibrium density matrix includes the spin dis-
tribution term:

f
(a,ā)

λ
′
λ

=
δλ

′
λ

exp[(ε(pz, n, λ) ∓ µa)/T ] + 1
≈ δλ

′
λ

2
f

(a,ā)
0 (p) +

σj

λ
′
λ

2
S

(a,ā)j
0 (p), (8)
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where f
(a,ā)
0 (p) = [exp(p ∓ µa)/T ] + 1]−1 is the Fermi distribution, S

(a,ā)j
0 (p) is the equilibrium

spin distribution given by

S
(a,ā)
0 (p) = −BY

0

| fa(g
′

) |
2p

df
(a,ā)
0 (p)

dp
=

BY
0

BY
0

S
(a,ā)
0 (p). (9)

Using the equilibrium spin distribution (9) we exclude in the statistically averaged four-pseudovector

JY
µ5 ∼∑λ,λ

′ < ˆ̄Ψpλγµγ5Ψ̂p
′
λ
′ > its time component:

JY
05 ∼

∫

d3p

(2π)3
(p · S(a,ā)(p,x, t))

p
→ 0, if S(a,ā)(p,x, t) → S

(a,ā)
0 (p),

while the 3-pseudovector component differs from zero,

JY
5 ∼

∫

d3p

(2π)3
p(p · S(a,ā)(p,x, t))

p2
∼ BY

0 6= 0, if S(a,ā)(p,x, t) → S
(a,ā)
0 (p).

3 Maxwell equations for hypercharge fields

Maxwell equations for hypercharge fields EY and BY given by the SM Lagrangian Eq. (1) take
the form

∇ ·BY = 0,

∇ ·EY = 4π
[

JY
0 (x, t) + JY

05(x, t)
]

,

∂BY

∂t
= −∇×EY ,

−∂EY

∂t
+ ∇×BY = 4π

[

JY (x, t) + JY
5 (x, t)

]

, (10)

which differs from the Maxwell equations for QED plasma due to the presence of pseudovector
currents JY

µ5 originated by the parity violation in SM.
The total vector (pseudovector) currents in Maxwell equations (10) are the following. The

total vector current JY
µ =

∑

l J
Y
lµ + 3NJY

(q)µ + JY
(φ)µ includes lepton, quark and Higgs contribu-

tions. In particular, the lepton vector current

JY
lµ(x, t) = −g

′

4

[

2δjlR
µ (x, t) + δjlL

µ (x, t) + δjνlL
µ (x, t)

]

is given by the lepton asymmetries,

δj(a)
µ = j(a)

µ − j(ā)
µ =

∫

d3p

(2π)3
pµ

p

[

f (a)(p,x, t) − f (ā)(p,x, t)
]

.

Accounting for the fermion (antifermion) particle number densities for small asymmetries µa/T �
1,

n(a,ā) =

∫

d3p

(2π)3
1

exp([p ∓ µa]/T ) + 1
≈ neq

[

1 ± π2

9ζ(3)

(µa

T

)

+ O

(

(µa

T

)2
)]

,

where neq = 3ζ(3)T 3/4π2 is the equilibrium fermion density when µa = 0, one can show that
the hypercharge density vanishes in correspondence with Eq. (3),

JY
0 = −γneq

(

2π2

9ζ(3)

)

(

g
′

4T

)[

−2
∑

l

µl
L + 6µuL + 14µ0

]

= 0 since < Y >= 0,
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while the hypercharge 3-current differs from zero,

JY (x, t) =
∑

a

f (a)(g
′

)

2
γneq[V

(a) −Vā] 6= 0.

The total pseudovector current in Maxwell Eq. (10) consists of the fermion (antifermion)
terms only, JY

µ5 =
∑

l J
Y
lµ5(x, t) + 3NJY

(q)µ5(x, t). In particular, the lepton pseudovector current

JY
lµ5(x, t) = −g

′

2

∫

d3p

p(2π)3
δA(lR)

µ (p,x, t) +
g
′

4

∫

d3p

p(2π)3
δA(lL)

µ (p,x, t)+

+
g
′

4

∫

d3p

p(2π)3
δA(νlL)

µ (p,x, t),

is given by the spin distribution asymmetries δA
(a)
µ (p,x, t) = A

(a)
µ (p,x, t)−A

(ā)
µ (p,x, t) through

the four component pseudovector functions:

A(a)
µ (p,x, t) =

[

(p · S(a)(p,x, t));
p(p · S(a)(p,x, t))

p

]

.

Substituting the equilibrium spin distributions Eq. (9) one gets

JY
05 = 0 since odd integrand :

∫

d3p

(2π)3
(p · S(a,ā)

0 (p))

p
= 0,

while 3-vector part differs from zero in equilibrium plasma,

(JY
5 )eq =

g
′2

96π2

[

−2
∑

l

µl
L + 10µuL + 32µ0

]

BY
0 =

47

1512π2
g
′2µνB

Y
0 6= 0 . (11)

Now instead of general Eq. (10) we get finally Maxwell equations for hypercharge fields EY ,
BY in hot equilibrium plasma at T � TEW as

∇ · BY = 0, ∇ · EY = 0,

∂BY

∂t
= −∇×EY ,

−∂EY

∂t
+ ∇×BY = 4π

[

JY (x, t) +
47

378
× g

′2µν

π
BY

]

, (12)

where µν =
∑

l µ
(l)
νL

and l = e, µ, τ .

4 Faraday equation and α
2 -dynamo

In the rest frame V = 0 of the isotropic early Universe plasma combining last Maxwell-like
equations in Eq. (12) and the Ohm law JY = σcondEY we can write the Faraday equation
describing so-called α2-dynamo [6] of hypermagnetic field:

∂BY

∂t
= ∇× αBY + η∇2BY . (13)

Here η = (4πσcond)
−1 is the magnetic diffusion coefficent, the parameter α is the hypermagnetic

helicity coefficent given as

α =
47g

′2µν

1512π2σcond

(14)
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plays crucial role in the evolution of hypermagnetic field [4]. We can solve Eq. (13) through
Foirier harmonics as BY (x, t) =

∫

(d3k/(2π)3)BY (k, t)eikx where BY (k, t) is expressed as

BY (k, t) = BY
0 exp

[
∫ t

t0

[α(t
′

)k − η(t
′

)k2]dt
′

]

. (15)

For 0 < k < α/η, or correspondigly correlation length scales η/α < Λ < ∞ such field gets
exponentially amplified, but differently for different scales Λ. E.g. for the Fourier mode k =
α/2η (or Λ ' 2η/α) one gets the maximum amplification γ = αk − ηk2 = α2/4η [6, 7]

BY (t) = BY
0 exp

[

∫ t

t0

α2(t
′

)

4η(t′)
dt

′

]

= BY
0 exp



32

∫ x0

x

dx
′

x′2

(

ξν(x
′

)

0.001

)2


 , (16)

where we introduced the new variables x = T/TEW , ξν = µν/T and BY
0 is the assumed initial

amplitude of the hypermagnetic field at T � TEw.
For larger scales, Λ > 2η/α, the amplification factor in the exponent (16) becomes less than

∼ 32, nevertheless, it is enough both for a strong enhancement of the initial hypermagnetic field
and to survive against ohmic dissipation (magnetic field diffusion) if Λ > ldiff =

√
ηlH .

5 Discussion

In contrast to the mechanism suggested in refs. [2] and [8] ours [4] does not rely on the Chern-
Simons anomaly term added to the SM Lagrangian [9]. The presence of the anomaly acting at
the later EWPT epoch could play an important role in the subsequent evolution of the lepton
asymmetry produced by the parity violating hypercharge interaction. Here we do not study
the EWPT conversion of the hypercharge field to the Maxwellian magnetic field B. However
we note that the seed value BY ∼ 0.3T 2 < T 2

EW ∼ 1024 Gauss can be easily reached through
our Eq. (16). This provides a strongly first order EWPT that, in turn, allows to avoid the
sphaleron constraint for the baryogenesis within the Standard Model [10].

There is a difference between the amplification (exponential) factors for α2 -dynamo mech-
anisms acting before (T � TEW in Eq. (16) here) and after EWPT, T � TEW (see Eq. (14) in
paper [7]). Such difference with the dependence ∼ x

′10 in the integrand of Eq. (14) [7] follows
from the low energy approximation, q2 � M2

W , leading to the point-like Fermi interaction of
neutrinos with plasma that, in turn, corresponds to short-range weak forces. While in the first
case for T � TEW the massless hypercharge field Yµ provides long-range forces for neutrino
-plasma interaction leading to the dependence ∼ 1/x

′2 in the integrand of Eq. (16).
Let us comment on the physical interpretation of the new magnetic helicity term. The

original seed field BY
0 polarizes the fermions and antifermions (including neutrinos) propagating

along the field in the main Landau level, n = 0. This polarization effect causes fermions
and antifermions to move in opposite directions with a relative drift velocity proportional to

the neutrino asymmetry µν =
∑

l µ
(l)
νL

. The existence of a basic parity violating hypercharge
interaction in the SM induces a new term in the hypermagnetic field in Eq. (13) ∇ × αBY

which winds around the rectilinear pseudovector hypercharge current J5 parallel to BY . This
term amplifies the seed hypermagnetic field BY

0 according to Eq. (16).
In summary, we described a simple (polarization) mechanism [4] for amplification of hyper-

magnetic field based on the SM in particle physics and plasma physics that is different from the
mechanism based on Abelian anomaly for hypercharge field [2, 8]. The lepton number violation
through hypermagnetic helicity change ∼ EY ·BY given by the Abelian anomaly [2] can be com-
pleted by the standard evolution equation for the hypermagnetic helicity H =

∫

Y ·BY d3x that
will be the subject of a future work. It is interesting also fo follow conversion of hypermagnetic
helicity to the Maxwellian one [11] at the EWPT time, T ∼ TEW .
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