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Abstract

We consider several examples of single-scalar-field inflation models which predict large
amplitudes of the curvature perturbation power spectrum at relatively small scales while
not contradicting with currently available experimental data on large (cosmological) scales.
It is shown that in models with an inflationary potential of double-well type the peaks
in the power spectrum, having, in maximum, the amplitude as large as PR ∼ 0.1, can
exist (if parameters of the potential are chosen appropriately). It is shown also that the
spectrum amplitude of the same magnitude (at large k values) is predicted in the model with
the running mass potential, if the positive spectral index running, n′, exists and is about
0.005 at cosmological scales. Because of the large value of perturbation amplitude on small
scales, such models generally predict significant amount of primordial black holes produced
in the early Universe. The calculations of power spectra are performed numerically, and
comparison with approximate analytic formulae is made.

1 Introduction

Inflation, i.e., accelerated expansion in the early Universe, is known to solve several problems
of the Big Bang cosmology [1, 2, 3]. It also provides the natural mechanism for generation of
primordial curvature perturbations. Standard paradigm states that the quantum fluctuations
in the inflaton field have later revealed as classical density perturbations which led to the sub-
sequent structure formation in the Universe and can be observed also in experiments measuring
the cosmic microwave background (CMB) anisotropy.

To date, a lot of inflationary models have been proposed. Simplest of these models have
only one scalar field φ, with the potential V (φ), the form of which is highly model-dependent (it
should be extracted from the underlying theory, but such a theory does not exist yet). Energy
density and pressure for the spatially homogenous field are

ρ =
φ̇2

2
+ V (φ) ; p =

φ̇2

2
− V (φ) , (1)

and, if the kinetic term is small compared to the potential term V (φ), the equation of state
is just p ≈ −ρ , which is suitable for driving inflation. The evolution of φ(t) is given by the
Klein-Gordon equation in the expanding background,

φ̈ + 3Hφ̇ +
dV

dφ
= 0 , (2)
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with dot meaning d/dt. The Hubble parameter H(t) ≡ ȧ/a during inflation is related to other
quantities by the Friedman equation:

H2 =
8π

3m2
P l

(

φ̇2

2
+ V (φ)

)

, (3)

where mP l = 1/
√

GN is the Planck mass (this constant should not be confused with the reduced
Planck mass, which is MP = 1/

√
8πGN ).

For the perturbed scalar field φ, we can write

φp(t, ~x) = φ(t) + δφ(t, ~x) ; (4)

here, the first term represents the homogenous part and the second is a small perturbation.
The equations for field perturbations become much simpler in gauge invariant formalism, which
introduces a new variable [4, 5, 6]

u = aδφ
∣

∣

∣

flat
, (5)

where “flat” means that δφ must be evaluated is spatially flat gauge (this quantity is gauge
dependent). Variable u is, by its definition, gauge-independent. Another convenient variable,
z, depends only on the background quantities:

z =
aφ̇

H
(6)

(it is sometimes referred to as the “pump field” for scalar perturbations). With this variables,
the equation for the perturbation is (for the Fourier mode with the comoving wave number k):

u′′
k +

(

k2 − z′′

z

)

uk = 0. (7)

Here, the prime means d/dτ , and τ is the conformal time, defined by dτ = dt/a. Eq. (7) is the
equation of the oscillator with time-dependent mass. When the physical length is much smaller
than the Hubble length, aH � k, the solution of Eq. (7) is

uk(τ) =
1√
2k

e−ikτ (8)

(the Bunch-Davies vacuum [7]). The normalization is dictated by the quantum origin of fluc-
tuations.

In the opposite case of super-horizon perturbations, aH � k, the growing mode solution of
Eq. (7) is uk ∼ z. In this case, the comoving curvature perturbation, Rk, becomes asymptoti-
cally constant, due to the connection

Rk =
uk

z
. (9)

The power spectrum of the curvature perturbations is given by

PR(k) =
4πk3

(2π)3
|Rk|2 . (10)

2 Approximate formulas for PR(k) and its numerical calculation

Using Eqs. (7) and (9), we easily obtain the equation for the comoving curvature perturbation

R′′
k + 2

z′

z
R′

k + k2Rk = 0, (11)
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z′

z
= aH(1 + ε − η) . (12)

In the last equality, the Hubble slow-roll parameters are defined by the relations [8]

ε = − Ḣ

H2
=

4π

m2
P l

φ̇2

H2
, δ = − φ̈

Hφ̇
. (13)

If, during inflation, this parameters are small compared to unity, the slow-roll limit applies. In
this case, terms φ̈ in Eq. (2) and φ̇2 in Eq. (3) can be neglected, and approximate solutions of
this equations can be easily obtained. Outside the slow-roll limit, ε and δ are not necessarily
small.

The power spectrum PR(k) to the leading order in the slow-roll approximation is [9]

P1/2
R (k) =

1

2π

H2

|φ̇|

∣

∣

∣

∣

k=aH

=
H

mP l
√

πε

∣

∣

∣

∣

k=aH

, (14)

and to the first order it is given by the Stewart-Lyth formula [10]:

P1/2
R (k) = [1 − (2C + 1)ε + Cδ]

1

2π

H2

|φ̇|

∣

∣

∣

∣

k=aH

; C ≈ −0.73 . (15)

The second-order formulas are also available [11], but they are much more complicated and
involve higher-order slow-roll parameters.

It is well known that in situations when there is a failure of the slow-roll evolution the per-
turbations on super-horizon scales can be amplified and specific features in the power spectrum
can arise [12, 13, 14, 15, 16, 17]. This means that the predictions of the slow-roll approximation
which are based on the assumption that perturbations reach an asymptotic regime outside the
horizon cannot be trusted.

In such cases, the numerical calculation of perturbation amplitude is needed. To do this,
we must solve Eq. (7) or (11) numerically, using the initial condition (8) in the sub-horizon
regime. Sometimes it is even more convenient to change the independent variable to t. The
equation for Rk then becomes

R̈k + HṘk(3 + 2ε − 2δ) +
k2

a2
Rk = 0 . (16)

The numerical integration starts when k = Nund ·aH, with Nund & 100, and proceeds to the
region k � aH, where Rk is effectively constant. We have checked, that the result for PR(k)
calculated by this way does not change when we increase the value of Nund. Of course, PR(k)
also does not depend on the choice of the initial phase in (8), because it is proportional to |Rk|2
(see Eq. (10)), and all coefficients in equation for Rk are real functions.

3 Inflationary models and the formation of primordial black

holes

Since the pioneering works of Zeldovich and Novikov [18] and Hawking [19], the possibility of
black hole formation in the early Universe has been widely discussed (for reviews, see, e.g., [20]
and [21]). Primordial black holes (PBHs), as they are commonly called, can contribute to dark
matter, if they are massive enough (MPBH & 1015g). Evaporation of black holes, predicted by
Hawking [22], causes smaller PBHs to completely evaporate by now, so such PBHs can not
be observed directly, but non-observation of products of their evaporation can, in principle, be
used to constrain their initial abundance and the value of power spectrum PR in the region of
small k values (see, e.g., [23]). The most challenging experimental task here is to observe the
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PBH on the final stage of evaporation. To date, such direct searches have only placed the upper
limits on PBH number density (see recent papers [24, 25, 26]), but the work will undoubtedly
be continued.

In the context of inflationary models with a single scalar field, the possibility of PBH for-
mation was discussed in detail in [13], where a “plateau” inflaton potential (having a flat part
in some region of field values) was considered. The motivation is simple: the slow-roll formula
(14) gives

PR(k) ∼ V 3

(dV/dφ)2
, (17)

so more flat regions of the potential will give higher values of power spectrum. If, on some
small scale k, the values of order 10−3 ÷ 10−1 are approached for PR, the probability for the
density contrast to be of order of unity at the moment of horizon re-entry for perturbations
with comoving size k−1 can be large. The significant PBH production in such case becomes
possible. (One should note that this is not the only possible mechanism of PBH production,
though the most natural one - see reviews [20, 21]).

Several other “toy” potentials have been considered in [14]. In work [27], a scenario with
multiple inflation stages supported by one scalar field was proposed. It was shown that PBH
formation in such case is possible, but the power spectrum of perturbations was only estimated
using approximate formulas at that time. The explicit potential form that was found to be
compatible with PBH production is

V (φ) = −1

2
m2φ2 +

λ

4
φ4

(

ln
∣

∣

∣

φ

v

∣

∣

∣
− 1

4

)

+ V0 , (18)

which is the Coleman-Weinberg (CW) potential [28] with added negative mass term; the con-
stant V0 is determined from the condition V (φm) = 0 and the local minimum of the potential
is approached at φ = ±φm.

Recently, several papers appeared [29, 30, 31, 32], in which single-field inflation models
predicting (potentially) large amplitudes of the curvature perturbations on relatively small
scales are discussed. It is shown in [29] that large class of such models exists, namely, the
models with a potential of hill-top type (the idea of the hill-top inflation was proposed, to
author’s knowledge, in the earlier work [33]). In such models, the potential can be of concave-
downward form at cosmological scales (in accordance with data) and be much flatter at the end
of inflation when small scales leave horizon. Correspondingly, the amplitude of the perturbation
power spectrum can be rather large. However, simplest hill-top potentials, considered by the
authors of [29],

V (φ) = V0

(

1 +
1

2
η0

φ2

M2
P

)

− λ
φp

Mp−4
P

, (19)

with p = 4 and p = 6, were shown not to satisfy observational constraint n′ < 0.01. They
require n′ ∼ 0.1 for significant production of PBHs. The spectral index in such models is
typically growing monotonously from values n < 1 at large scales to n > 1 at smaller ones.

It is noticed in [29] that the running mass model [34, 35], having the potential with the
similar behavior, also can predict the large spectrum amplitude.

Paper [30] discusses also more general scenarios of producing large amplitudes of perturba-
tion spectrum. It shows the limitedness of the standard procedure of potential reconstruction
which can easily miss the potentials leading to large spectrum amplitude and to noticeable PBH
production.

Authors of [31] carried out the numerical calculation of the power spectrum using the CW
potential and explicitly showed that PBH production is possible in single-field models of two-
stage type (“chaotic + new”).

In the present work we continue a study of the problems discussed in the previous papers
[29, 30, 31]. In the following sections we consider several examples of single-scalar-field inflation
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DW CW Wiggle Running mass

Figure 1: Forms of the potentials considered in this work. Shown from left to right are: double-
well, Coleman-Weinberg, wiggle, and running mass model potentials.

models which predict large amplitudes of the curvature perturbation power spectrum at rela-
tively small scales while not contradicting with currently available experimental data on large
(cosmological) scales.

4 The double-well potential

This form of the inflaton potential having an unstable local maximum at the origin has been
discussed many times in studies of eternal and new inflation. The main problem was to realize
the initial condition for the new inflation when system starts from a top of the hill. Ten years
ago the model of “chaotic new inflation” has been proposed [27], in which the system climbs on
the top during dynamical evolution of the inflaton field with initial conditions coinciding with
those of chaotic inflation models. In the approach of [27] the inflation has two stages, chaotic
and new, and during transition from the first stage to the second the slow-roll conditions break
down (in general).

The potential has two parameters (its form is sketched in Fig. 1):

V (φ) =
λ

4
(φ2 − v2)2 . (20)

The inflaton starts with the rather high value of φ (we take φin ∼ 5mP l) and rolls down to the
origin. The parameter λ is fixed by a normalization of the power spectrum on experimental
data,

PR(k = 0.002 Mpc−1) ∼= 2.4 × 10−9, (21)

3 4 5 6 7 8
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Figure 2: The solution of the background equation for inflation with the double-well potential
(20). The parameters of the potential are: v = 0.16286748mP l , λ = 1.7 × 10−13.
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Figure 3: The time dependence of the parameter ε and the combination 1+ ε−η corresponding
to the background field evolution shown in Fig. 2
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Figure 4: (left panel) A time evolution of the curvature perturbation Rk(t) for several different
values of wave number k during inflation with the DW potential. (right panel) The numerically
calculated power spectrum PR(k) for the model with the DW potential (solid line) and the
slow-roll prediction (dashed line). For both panels, the parameters of the potential are the
same as in Fig. 2.

which leads to λ ∼ 10−13. The evolution of the system strongly depends on the value of v: if v
is finely tuned, φ can spend some time near the origin, i.e. on the top, and then roll down to
one of the two minima. In Figs. 2 and 3a the time evolution for the inflaton and the parameter
ε for the definite values of the parameters λ , v are shown. One can see that, really, φ ≈ 0 at
some period of time and, what is important, the slow-roll approximation is invalid (ε ∼ 1) just
at the time of the transition from a rolling to a temporary stay at the top of the potential.

It had been demonstrated in [15] that solutions of the equation (11), at k � aH, i.e., outside
horizon, are well approximated by constant if the coefficient of the friction term, z ′/z, doesn’t
change sign near the horizon crossing. In the opposite case, if z ′/z changes sign at some time,
the friction term becomes a negative driving term, and one can expect strong effects on modes
which left horizon near that time. In the present paper we study the corresponding features of
the power spectrum, following closely the analysis of [15].

According to Eq. (12), z ′/z is proportional to 1 + ε − η and the comoving Hubble wave
number aH. The time dependences of these functions are shown in Fig. 3b. One can see that
the interruption of inflation correlates with the change of the sign of 1 + ε − η.

The time evolution of curvature perturbations for several modes is shown in Fig. 4 (left
panel). It is clearly seen that the perturbations Rk for different modes freeze out at different
amplitudes. The mode which crosses horizon near the moment of time when the sign of 1+ε−η
changes (i.e., near t ≈ 7.5mP l) freezes at maximum amplitude, due to the exponentially growing
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Figure 5: The result for the power spectrum PR(k) calculation for the CW potential (25), for
two sets of parameters. Left peak is for v = 1.113MP , λ = 5.5 × 10−13. For the right peak,
v = 1.112MP , λ = 2.4 × 10−13.

driving term in Eq. (11) (which is most effective just for this mode). It leads to the characteristic
peak in the power spectrum PR(k), shown in Fig. 4 (right panel).

The calculations of Rk (Fig. 4) are carried out up to the end of inflation, and the calculated
power spectrum also corresponds to this moment of time. We estimate approximately the
reheat temperature in our case as ∼ (λv4)1/4 ∼ 1014 GeV. The horizon mass at the beginning
of radiation era is

Mhi ∼ 1017g

(

107GeV

TRH

)2

∼ 103g , (22)

and maximum wave number, which equals the Hubble radius at the end of inflation, is

kend = aeqHeq

(

Meq

Mhi

)1/2

∼ 1023 Mpc−1. (23)

The mass of the produced PBHs is roughly equal to the horizon mass at the moment when
the scale with comoving size k−1

peak enters horizon. So we can write

MBH ≈ Mh = Me

(

ke

kpeak

)2

, (24)

where ke = aeHe (quantities evaluated at the end of inflation). In our case, ke/kpeak ∼ 102, so
MBH ∼ 107 g (in the peak). Such light PBHs have evaporated before nucleosynthesis, but their
existence could still, in principle, lead to observable consequences.

5 The Coleman-Weinberg potential

The CW potential has the form [28]:

V (φ) =
λ

4
φ4

(

ln
∣

∣

∣

φ

v

∣

∣

∣
− 1

4

)

+
λ

16
v4. (25)

It looks very similar to the previous one (see Fig. 1), but the important difference is its behavior
near the origin. Namely, the CW potential behaves as A + Bφ4 ln(φ/v) near the origin, i.e., it
is more flat near zero, in comparison with the DW potential. Therefore, it has more e-folds of
“new inflation” [27] and, as a consequence, the peaks of the power spectrum (arising, as in the
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Figure 6: The result for the power spectrum PR(k) calculation for the wiggle potential.
The parameters used are: A = 136.717; λ = 5 × 10−14; for peaks from top to bottom
B = 0.11155;B = 0.111;B = 0.05.

previous case, due to the temporary interruption of inflation) correspond to relatively smaller
k values.

In Fig. 5 two examples of the power spectrum calculations are shown for two different sets of
parameter values. As before, the peaks are very distinct, although their amplitudes are smaller.

Recently, it has been shown [31] that inflation with CW potential is capable to produce
significant number of PBHs: the parameter v can be chosen (by finest tuning) in such a way
that inflaton field makes several oscillations from one minimum to another before it climbs on
the top and “new inflation” starts.

6 Wiggle potential

Yet another simple example is the wiggle potential, proposed in [14]:

V (φ) = λ(1 + Aφ3 − Bφ) (26)

(see Fig. 1). The bump on the path of the inflaton causes it to slow down, producing a spike
in the power spectrum [14], Fig. 6. In this figure, we show the results for power spectrum
calculation for several sets of model parameters. The more e-folds the inflaton spends in the
wiggle region, the higher is the produced spike. The mechanism of its formation is similar to
one considered in previous sections.

Again, we see that for producing a large spike or a peak in the power spectrum, rather large
fine tuning of parameters of the potential is required.

7 The running mass model

We consider in more detail a case of the running mass inflation model [34, 35, 36, 37, 38, 39, 40]
which predicts a spectral index with rather strong scale dependence. The potential in this case
takes into account quantum corrections in the context of softly broken global supersymmetry
and is given by the formula

V = V0 +
1

2
m2(lnφ)φ2. (27)
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The dependence of the inflaton mass on the renormalization scale φ is determined by the solution
of the renormalization group equation (RGE).

1. The inflationary potential in supergravity theory is of the order of M 4
inf , where Minf is

the scale of supersymmetry breaking during inflation. In turn, the mass-squared of the inflaton
(and any other scalar field) in supergravity has, in general, the order of the square of Hubble
expansion rate during inflation,

|m2| ∼ H2
I =

V0

3M2
P

. (28)

We suppose, for simplicity (see [34, 35, 37, 38]), that Minf ∼ Ms, where Ms is the scale of
supersymmetry breaking in the vacuum,

Ms ∼
√

m̃sMP ∼ 1011GeV ∼ 3 × 10−8MP (29)

(m̃s is the scale of squarks and slepton masses, m̃s ∼ 3 TeV). These assumptions give the scale
of the inflationary potential:

V0 ∼ M4
s ∼ 10−30M4

P , HI ≈ 10−15MP . (30)

2. RGE for the inflaton mass is the following (we consider a model [37, 38] of hybrid inflation
using the softly broken SUSY with gauge group SU(N) and small Yukawa coupling):

m2(t) = m2
0 − Am̃2

0

[

1 − 1

(1 + α̃0t)2

]

, t ≡ ln
φ

MP
, (31)

m2
0 and m̃2

0 are, correspondingly, the inflaton and gaugino masses at φ = MP ,

α̃0 =
Bα0

2π
, (32)

α0 is the gauge coupling constant, α0 = g2/4π. A and B are positive numbers of order 1, which
are different for different variants of the model, even if they are based on the same supersym-
metric gauge group SU(N) (it depends on a form of the superpotential, particle content of
supermultiplets, etc). We use in the present parer the variant of [38] and, correspondingly, put
everywhere below A = 2 and B = N = 2.

3. A truncated Taylor expansion of the potential around the particular scale φ0 (in our case,
φ0 is the inflaton value at the epoch of horizon exit for the pivot scale k0 ≈ 0.002h Mpc−1) is

V (φ) = V0 +
φ2

2

[

m2(ln(φ0)) − c
V0

M2
P

ln
φ

φ0
+ ...

]

. (33)

Here, constant c is defined by the equation

c
V0

M2
P

= − dm2

d lnφ

∣

∣

∣

∣

φ=φ0

. (34)

In turn, a Taylor expansion of Eq. (31) up to linear terms gives (t0 = ln φ0

MP
):

m2(t) = m2(t0) − 4m̃2
0

α̃0

(1 + α̃0t0)3
ln

φ

φ0
. (35)

From eqs. (34) and (35) we obtain the expression for the constant c,

c
V0

M2
P

= 4m̃2
0

α̃0

(1 + α̃0t0)3
. (36)
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Figure 7: a) Evolution of the inflaton field φ(ln a) in the running mass model. b) The depen-
dence of the parameter η on a value of the field φ. For both plots, HI = 10−15MP , c = 0.062,
s = 0.040.

If |m2
0| ∼ m̃2

0 ≈ H2
I , then

c =
4

3

α̃0

(1 + α̃0t0)3
. (37)

It appears (see Fig. 7b) that in our example φ0 ∼ 10−10MP , so, t0 ∼ ln 10−10 ∼ (−23).
Assuming that α0 ∼ 1/24 (as in SUSY-GUT models), one has α̃0 ∼ 2

2π
1
24 . In such a case,

c ∼ 4α̃0 ∼ 0.06.
If we would keep terms of higher order in t − t0 = ln φ

φ0
in the Taylor expansion of m2(t)

in Eq. (35) we would see that the real expansion parameter is α̃0 ln φ
φ0

rather than ln φ
φ0

. The

smallest value of φ, φend, in our case is ∼ 10−16MP (see Fig. 7b). Even for such value of φend,
the expansion parameter is rather small,

α̃0 ln
φend

φ0
∼ α̃0 ln 10−6 ∼ (−0.1) . (38)

Having this in mind, we will use the linear approximation for the inflaton mass (Eq. (35)) in
the entire region of inflaton field values exploited in the present paper.

Following the previous papers, we introduce also another parameter,

s = c ln

(

φ∗

φ0

)

, (39)

where φ∗ is the inflaton value corresponding to a maximum of the potential. This parameter
connects the field value φ0 with the Hubble parameter during inflation and with the normaliza-
tion of the CMB power spectrum:

φ0s =
HI

2πP1/2
R (k0)

. (40)

4. The minimum value of the inflaton field which corresponds to the end of inflation can be
determined from the approximate equation [38]

η = M2
P

V ′′

V
∼= M2

P

V0
m2 = 1 . (41)
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Using RGE, one obtains from this formula the relation

M2
P

V0

(

m2
0 − Am̃2

0 +
Am̃2

0

(1 + α̃0t)2

)

= 1. (42)

Substituting here A = 2, m̃2
0 = |m2

0| = V0/3M
2
P , one has finally the approximate expression for

φend,

φend = MP exp

[

− 1

α̃0

(

1 − 1√
3

)]

, (43)

which shows that the minimum field value is very sensitive to the value of the model parameter
α̃0 and, in our case, does not depend on V0. More exactly, the condition η = 1 means the end of
the slow-roll part of inflation. We suppose, as usual (see, e.g. [34, 35]) that in reality inflation
ends by hybrid mechanism, and the critical value of inflaton field, φcr, is determined by the
value of the Yukawa coupling λ (in spite of the inequality λ2 � α). One can check [38] that
the value of λ can always be chosen such that φcr < φend and slow-roll ends before the reaching
of φcr.

One should note that the accuracy of the approximate formula (43) is not very good. Luckily,
in the approach based on the numerical calculation of the power spectrum there is no need to
use it, because the value of φend appears in a course of the calculation (Fig. 7b).

An analysis of CMB anisotropy data [41, 42], including other types of observation [43], leads
to the following main conclusions:

i) the power spectrum of scalar curvature perturbations is red, i.e., the spectral index at
cosmological scales is smaller than unity,

n = 0.963+0.014
−0.015 ; dn/d ln k = −0.037 ± 0.028 (44)

(WMAP 5-year data, [42]);
ii) observations are consistent, or, at least, are not in contradiction with the small positive

running of the spectral index, n′
0 < 0.01;

iii) the contribution of tensor perturbations in the value of the spectral index is small
(. 10−2) and, as a result, n ≈ 1 + 2η ; it means that η is negative, and the potential must be
concave-downward (i.e., of hill-top type), while cosmological scales cross horizon during inflation
[29] (see, however, recent analysis in [44]: strictly speaking, the present data still admit any
sign of η and V ′′).

These conclusions constrain the possible values of the parameters s and c. Approximately,
for cosmological scale one has

n0 − 1 ≈ 2(s − c) , n′
0 ≈ 2sc . (45)

From the conclusion iii) it follows that c > 0 (it is consistent with Eq. (40)), from the positivity
of n′

0 (the conclusion ii) ) it follows that s > 0. At last, the conclusion i) leads to the inequality
s < c.

We choose for the power spectrum calculation the following values:

c = 0.062 , s = 0.040. (46)

These numbers correspond, at cosmological scales, to the following values of slow-roll parame-
ters:

ε ≈ sφ2
0

M2
P

∼ 10−21 ; η ≈ s − c ∼ (−0.02) , (47)

that seems to be consistent with the present data [32].
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Figure 8: Power spectrum PR(k) in the running mass model, calculated numerically (solid
line), by the approximate analytic formula (48) (long-dashed line) and using the Stewart-Lyth
extended slow-roll approximation (short-dashed line). The parameters of the potential are the
same as used in Fig. 7. The arrow shows the value of kend.

To check the validity of the slow-roll approximation, we calculate the spectrum by the three
ways: i) using the approximate analytic slow-roll formula

PR(k)

PR(k0)
= exp

[

2s

c

(

ec∆N(k) − 1
)

− 2c∆N(k)

]

; ∆N(k) ≡ ln
k

k0
(48)

(this expression is easily derived from the simplest slow-roll prediction (14));
ii) using the Stewart-Lyth approximation [10], which is valid to first order in the slow-roll

approximation, Eq. (15);
iii) by numerical integration of the differential equation for Rk, Eq. (11).
The results of the calculations are presented in Figs. 7 and 8. Fig. 7 shows the evolution

of the inflaton field φ with the scale factor and a growth of the slow-roll parameter η with a
decrease of φ from φ0 to φend. The power spectrum is shown in Fig. 8 for a broad interval of
comoving wave numbers. It is clearly seen that near the end of inflation, when

φ ∼ 10−16MP , k ∼ kend = aendHend = 3 × 1016Mpc−1 , (49)

the slow-roll formulae are inaccurate: they strongly underestimate values of PR.

8 Conclusions

We investigated thoroughly, as a particular example, the model of two-stage inflation with a
potential of the double-well (DW) form, and showed that the characteristic features of the power
spectrum in models of this type (such as an amplitude and a position of the peak, a degree
of tuning of parameters of the potential) are very sensitive to an exact form of the potential.
We considered several other potentials (namely, CW and wiggle) and found that they are
also capable of producing analogous features in PR(k). Further, we carried out the numerical
calculation of the power spectrum in a running mass model and showed that the spectrum
amplitude at small scales can be rather large. Our calculation differs from the previous one [45]
in several aspects: we express the results through the values of parameters s, c, which are used
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nowadays and prove to be very convenient for a comparison with data; we studied, in details,
the difference in predictions of slow-roll and numerical approaches at high k-values; we exactly
specified the value of the positive running, n′, which corresponds to our spectrum prediction.

We used numerical methods for the power spectrum calculation, comparing the results with
ones obtained with approximate analytic formulas. We have shown that in many cases, when
there is a failure of the slow-roll evolution, the difference can be significant.

We showed that several single-field inflationary models exist, in which large power on small
scales is produced, even with the “red” (n < 1) spectrum on large scales. For the running mass
model, this can be achieved even with n ∼ 0.95 and n′ ∼ 10−3 on large scales. In such models,
the significant number of PBHs is produced in the early Universe, so their existence remains an
open possibility.

We calculated the curvature perturbations in terms of the classical trajectories of a scalar
field associating, in particular, points in a field space with definite numbers of e-folds from
the end of inflation. This description becomes incorrect if the quantum diffusion destroys the
classical evolution of the field. In this case we should use the methods of stochastic inflation.
The latter approach operates with the coarse-grained field, which is defined to be spatial average
of the field φ over a physical volume with size larger than the Hubble radius H−1. Our analysis
of the quantum diffusion effects for the running mass model potential can be found in [46].
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