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Abstract

Presence of sizeable (up to 10 nG) turbulent magnetic field in intergalactic space may
essentially change the observed UltraHigh Energy Cosmic Ray (UHECR) spectrum. We
have developed a quasi-analytical approach allowing to account for magnetic fields. The
method is based on generalization of Syrovatsky solution. It is shown that the problem
of superluminal propagation may be solved using an appropriate generalization of Jüttner
propagator. This allows a smooth interpolation between high-energy rectilinear and low-
energy diffusive propagation modes.

1 Introduction

UltraHigh Energy (UHE) Cosmic Ray (CR) particles hit the atmosphere at energies up to E ∼
3×1020 eV, producing Extended Air Showers (EAS) [1, 2, 3, 4, 5, 6]. To observe these rare events
one needs extremely large (3000 km2 in case of Pierre Auger Observatory (PAO) [7]) arrays
of surface scintillator or water Cherenkov detectors. Due to excitation of nitrogen high in the
atmosphere, the energy of an event may be measured by detection of the concomitant fluorescent
light, provided the conditions (moonless cloudless night) were appropriate. Fluorescence method
allows to calibrate the surface array in case of hybrid detector like PAO.

In spite of great efforts, neither type nor origin of UHECR particles are known after more
than 50 years of research. The observed isotropy in the arrival directions and lack of reliable
candidates among known Galactic sources hint that these particles are of extragalactic origin.
Since photons and neutrinos are practically ruled out by observations, the conservative point
of view is to assume UHECR are protons or nuclei accelerated in distant extremely powerful
sources like AGN or GRB. At the moment there is no good source model allowing to accelerate
CR up to such high energies. Typically one assumes that protons or nuclei are accelerated at
shocks, though too large magnetic field and shock radius in a source are needed.

In the following only protons will be discussed as UHECR particles. Clear observations [4, 8,
6] of the predicted [9] dip due to e+e−-pair production in measured spectra of all experiments at
E ∼ (1018−4×1019) eV and the spectrum suppression (most probably indicating the beginning
of the GZK cutoff [10, 11] due to pion photoproduction) at E & 5×1019 eV are in favor of such
a model.

An alternative point of view is that dip in the spectrum is due to intersection of rapidly
decreasing Galactic CR spectrum (which extends up to E ∼ 1019 eV in this case) and a flatter
extragalactic one, the latter being a mixture of protons and heavier, up to iron, nuclei (see
e.g. [12]). The PAO observation [13] of heavy nuclei fraction enhancement at E & 1019 eV is
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actually in favor of such an approach. However, low accuracy of depth of shower maximum Xmax

measurements and large systematic errors make this result uncertain. The HiRes measurements
of Xmax, on the contrary, indicate the pure proton composition at all energies [14].

Since sources of UHECR, most likely AGN, are unknown, one may guess them to be dis-
tributed isotropically in the universe with average spacing d ∼ (30 − 60) Mpc, in accordance
with MC simulations [15, 16]. All sources are assumed to emit identical power-law decreasing
with energy fluxes of protons,

Qg(E, z) = Q0 × (1 + z)m × (E/E0)
−γg , (1)

with spectrum indexes γg = 2.2− 2.7, m = 0− 3 accounting for a possible evolution of sources,
z being a redshift of the epoch. Q0 is the free normalization parameter relating to the total
luminosity of sources. Additional parameters are Emax and zmax, the maximum energy of
acceleration and time when sources have been ”switched on”, respectively. We shall concentrate
on the propagation of CR through CMBR, with special emphasis on influence of turbulent
InterGalactic Magnetic Fields (IGMF) on the observed spectra.

2 Universal spectrum

As the first step, let us neglect the point-like nature of sources, assuming they are homogeneously
spread over the volume. In this case the ”universal spectrum” arises as a solution of the equation
for density np of UHE protons,

∂

∂t
np(E, t) −

∂

∂E

[

b̃(E, t)np(E, t)
]

= Qg(E, t) , (2)

with b̃(E, t) = EH(t) + b(E, t), where H(z) = H0

√

Ωm(1 + z)3 + ΩΛ is the Hubble constant
at epoch z with Ωm = 0.3 and ΩΛ = 0.7. Here EH(t) describes adiabatic energy loss and
b(E, t) = dE/dt – those due interaction with CMB, i.e. p+γ → e+ + e− + p, p+γ → π +X [9].

Written in the equivalent form

∂

∂t
np(E, t) − b̃(E, t)

∂

∂E
np(E, t) − np(E, t)

∂b̃(E, t)

∂E
= Qg(E, t) , (3)

this first order partial differential equation reduces to an ordinary differential equation on char-
acteristic E(t) = Eg(E, t), the solution of

dE/dt = −b̃(E, t) (4)

with the initial condition E(0) = E. The solution of obtained ODE reduces to the quadrature
[9]:

np(E) =

zmax
∫

0

dz′

(1 + z′) H(z′)
Qg

[

E(z′)
]

×
dEg

dE
[E(z′)] ; (5)

dEg

dE
[E(z′)] = (1 + z′) × exp

z′
∫

0

dz′′
(1 + z′′)2

H(z′′)
×

∂b[(1 + z′′) E(z′′), 0]

∂E
. (6)

Fitting actually parameters of the model to experimental data one get the universal spectrum
which shows both dip and GZK-cutoff.

The analysis is especially convenient in terms of ”modification factor” η(E) = Jp(E)/Junm
p (E).

Here Jp(E) = cnp(E) is calculated according to (5) and Junm
p (E) is the spectrum calculated

under an assumption that CMB energy losses are absent.
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3 UHECR spectrum in case of grid of sources

Assume now sources are located in vertices of some cubic grid with comoving spacing d. The
average luminosity of the comoving volume remains equal to that in case of universal spectrum.
For rectilinear propagation, UHECR flux at Earth, lying in the origin of the 3D coordinate
system, is a sum of contributions from point-like sources with coordinates {id, jd, kd}:

Jp(E) =
c

4πd2

∑

i,j,k

Qg(xijk, E)

[(i + 1/2)2 + (j + 1/2)2 + (k + 1/2)2](1 + zijk)

dEg(xijk, E)

dE
, (7)

where
xijk = d

√

(i + 1/2)2 + (j + 1/2)2 + (k + 1/2)2 (8)

is the distance to the source and dEg/dE is given by Eq. (6).
The difference between these two approaches is significant only at very high energies. The

lower is the spacing, the closer calculated spectrum is to the universal one. Calculated spectra
[9] are shown in Fig. 1 in comparison with Akeno-AGASA spectrum.

Figure 1: Proton spectra for rectilinear propagation from discrete sources. Sources are located
in vertices of 3D cubic grid with spacing d = 60, 40, 20, 10, 5 and 1 Mpc. The calculations are
performed for zmax = 4, Emax = 1 × 1022 eV and γg = 2.7.

It should be noted that more accurate calculations based on MC simulations, kinetic and
Fokker-Plank equations practically coincide with the found spectrum. A small difference, the
so called second dip, is discussed in [17].

4 Diffusion in magnetic field

It is quite natural to assume the intergalactic space to be filled with weak magnetic fields (for
review see e.g. [18]). The scale and distribution of these fields are practically unknown. Hydro-
dynamical MC simulations of large scale structure formation, with magnetic field amplitude in
the end rescaled to those observed in clusters of galaxies [15, 19], give different results: strong
average magnetic field in calculations of [15] and weak in [19] simulation. Hence < | ~B| > may
vary in the range (10−3 − 10) nG.
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Propagating through magnetized plasma particles do not loose their energy. However the
diffusive path from a source to the detector gets longer as compared to the rectilinear one. En-
ergy losses on CMB shift the particle to low energies, suppressing the spectrum. Since diffusive
propagation proceeds as consecutive scatterings off different turbulent scales, it is important
to set the highest coherent scale in magnetized plasma, lc. This assumption determines the
diffusion coefficient D(E) at the highest energies when the proton Larmor radius, rL(E) � lc:

D(E) =
c

3

r2
L(E)

lc
. (9)

At “low” energies, when rL(E) . lc the dependence of diffusion coefficient on energy is
unknown. One can discuss two possibilities:

• the Kolmogorov diffusion coefficient

DK(E) =
c lc
3

[

rL(E)

lc

]1/3

, (10)

• and the Bohm diffusion coefficient

DB(E) =
c

3
rL(E) . (11)

The characteristic energy Ec of the transition between the ’high’- and ’low’-energy regimes is
determined by the condition rL(E) = lc:

Ec = 0.93

(

B

1 nG

)(

lc
Mpc

)

EeV . (12)

5 Syrovatsky solution in Galaxy

The diffusive propagation of high energy protons in turbulent Galactic magnetic fields was first
discussed by S. I. Syrovatsky in 1959 [20]. For the case of energy dependent energy losses,
b(E), and a diffusion coefficient, D(E), and a source located at distance ~r from a detector the
diffusion equation reads

∂

∂t
np(E,~r, t) − div [D(E)∇np] −

∂

∂E
[b(E)np] = Q(E,~r)δ3(~r − ~rg) . (13)

Here np(E,~r, t) is the space density of particles p with energy E at time t at the point ~r,
Q(E,~r, t) is the source generation function. Syrovatsky found an exact analytic solution, the
Green function, to this diffusion equation. For a single-source spherically-symmetric case (13)
it can be presented [21] as

np(E, r) =
1

b(E)

∫ ∞

E
dEg Q(Eg)

exp
[

− r2

4λ(E,Eg)

]

[4πλ(E,Eg)]
3/2

, (14)

where r = |~r| and

λ(E,Eg) =

∫ Eg

E
dE′ D(E′)

b(E′)
(15)

is the Syrovatsky variable which has the meaning of the squared distance traversed by a particle
in the observer direction, while its energy diminishes from Eg to E.
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6 Diffusion in intergalactic space

The problem of proton diffusion in intergalactic space is more complicated. Both diffusion
coefficient and energy losses now depend on time; the adiabatic energy losses are to be taken
into account as well. An unknown complicated space distribution of magnetic fields (in general
low in voids and high in filaments and clusters of galaxies) makes the problem especially difficult.

Many authors studied the propagation of UHECR in extragalactic space using different
methods. It is difficult to cite all papers with correct chronology, and we do not intend to make
a complete list of them. For example, a MC simulation approach was undertaken in Ref. [22].
However, due to a rapid increase of the consumed processor time with energy decreasing, the
study was limited by E & 3×1019 eV. Actually, this is a common problem for all MC simulations:
it is slow and expensive to vary parameters so that to see the dependence of spectra on them.
On the other hand, uncertainties in input parameters make the account for fluctuation (an
otherwise great advantage of MC method) useless in this case.

An analytical analysis of propagation in magnetic fields was made in Refs. [23, 24]. It was
shown that due to the limited age of universe and to the rapid GZK energy losses increase,
there arises a ’magnetic horizon’ for sources yielding to the observed spectrum. In fact, such a
horizon was already present in the paper of Syrovatsky [20]. Really, due to presence of upper
limit Emax to acceleration energy in any source, the maximum squared distance traversed by
a particle in the observer direction, λ(E,Eg) (15), is limited. This parameter actually is the
squared size of magnetic horizon. At small energies the horizon is defined by the age of universe,
t0 ∼ H−1

0 .
In paper [25] the analytical approach of Syrovatsky was extended from Galaxy to the whole

universe. Since Syrovatsky solution exists just for the time-independent diffusion coefficient
and energy losses, it was done under an assumption of ’static universe’. The dependence
of the coefficients just on energy was assumed, and additionally the adiabatic energy losses
were included in the model. Such an approach was valid at high energies, especially when
the diffusion equation solution was taken in a combination with the rectilinear one at highest
energies. The problem of transition from the rectilinear near the source or at extremely high
energy propagation to the diffusion description was solved there by interpolation between these
solutions. An important ’propagation theorem’ has been proved in this paper. It stated that if
distance between sources is much less than all propagation distances, such as energy-attenuation
length, latt, and diffusion length ldiff , the spectrum is not distorted and has a universal (standard)
shape. So, the universal spectrum could be regarded as an upper limit to all solutions taking
into account the IGMF.

An important problem of a low-energy (E . 1 EeV) flattening of the extragalactic proton
spectrum due to diffusion in IGMF was solved in Ref. [26]. Using a technique similar to that
developed in Ref. [25], it was shown that the account for IGMF do allows so solve the problem
of transition from the Galactic to extragalactic CR spectrum at E ∼ 1 EeV.

The solution of diffusion equation

∂

∂t
np(E,~r, t) − div [D(E, t)∇np] −

∂

∂E
[b(E, t)np] = Q(E,~r, t)δ3(~r − ~rg) , (16)

with time dependent coefficients D(E, t) and b(E, t) in the expanding universe has been obtained
in paper [27]. It generalized the Syrovatsky solution by introducing new variable λ(E, t, t ′),
which was analogous to (15)

λ(E, t, t′) =

∫ t

t′
dt′′

D[E(t′′), t′′]

a2(t′′)
, (17)

where a(t) is the scale factor of the expanding universe and E(t′) = E(E, t, t′) is the characteristic
trajectory, the solution of differential equation

dE

dt
= −b(E, t) , (18)
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with an initial condition E(0) = E. The main idea was to change the integration with respect to
energy (15) by integration along the curved characteristic lines, given by solutions of Eq. (18).
The derivation of this solution was given in the paper using Fourier transformation in the
comoving space.

The found solution, similar to the Syrovatsky one, was

n(~x,E) =

∫ zg

0
dz

∣

∣

∣

∣

dt

dz

∣

∣

∣

∣

(1 + z) Q(Eg, z) exp

[
∫ z

0
dz′
∣

∣

∣

∣

dt′

dz′

∣

∣

∣

∣

∂bint(E
′, z′)

∂E ′

]

×

exp[−(~x − ~xg)
2/4λ(E, z)]

[4πλ(E, z)]3/2
(19)

with ~x being the comoving system coordinate of observation and ~xg being the coordinate of a
source; bint(E, t) is the energy loss due to interactions with CMB.

The method was tested by checking the convergence of solutions to universal spectrum and
to rectilinear solution in limiting cases.

With the help of solution (19) proton spectra were recalculated in papers [28, 29]. In spirit
of approach of paper [30], sources have been distributed in vertices of 3D cubic grid with equal
spacing d = (20 − 100) Mpc in the comoving system. Again, at very high energies, when the
diffusion length ld = 3D(E)/c is higher that distance to a source, the rectilinear solution (7) was
applied. At lower energies the solution (19) was used. In fact, these two solutions did not meet
smoothly each other, signaling the problem. Different interpolation have been used to treat
the problem, but it was unavoidable and revealed itself in the proton spectrum at intermediate
energies after summation over grid.

One more severe problem was the presence of unphysical superluminal propagation signal
in the diffusion solution, which is quite natural for the non-covariant diffusion equation. This
is the fundamental problem, well known for diffusion equations.

However, the spectra calculated in paper [28] were correct in low- and high-energy limits and
they converged to the universal spectrum, as it has been expected. In this paper the probable
evolution of average magnitude of IGMF was also studied.

7 Jüttner propagator

The problem of superluminal propagation in non-relativistic diffusion is well-known for a long
time. Many authors tried to solve it, e.g. using the telegraph equation

τd
∂2

∂t2
n +

∂

∂t
n − D∇2n = Q , (20)

by adding one more small parameter τd; in the limit τd → 0 Eq. (20) reduces to the ordinary
diffusion equation. Nonetheless, the satisfactory solution of the problem is still not found.

In our case the problem of superluminal propagation shows itself by particle immediate
arriving from a source to the detector, so that no energy loss occurs; it must be considered as
an unphysical signal. In terms of Syrovatsky solution (14) the problem is that integration starts
at Emin = E, while it is forbidden for any distant source due to finite energy losses. It implies
the velocity of a particle v → ∞.

The physical value of the minimal generation energy Emin
g (E, r) is given by the rectilinear

propagation and it can be easily calculated if b̃(E) = −dE/dt (4) is known. But with this Emin
g

Eq. (14) is not any more the solution of Eq. (13). In the left panel of Fig. 2 the unphysical
region of the solution (14) with superluminal velocity is shown as the hatched area.

In the work [31] it was observed that the problem of relativization of the Maxwell distribution
is similar to the relativization of diffusion propagator (the Green function). The normalized
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Figure 2: The superluminal problem in the Syrovatsky solution caused by energy losses of UHE
protons for Bc = 100 nG and distance to the source r = 30 Mpc. In the left panel is shown the
region in (Eg , E) plane (above Eg = E line) allowed by Eq. (14). The line Eg = Erect

g (E, r)
corresponds to rectilinear propagation and to the physical lower limit in the solution (14). The
hatched region between Eg = E and Eg = Erect

g corresponds to superluminal velocities. For
E . 1×1020 eV the solutions practically do not have superluminal velocities. In the right panel
the integrand of Eq. (14) is shown as the function of Eg for fixed E with values indicated by
the numbers, given in eV. The dashed lines show the rectilinear physical lower limits Emin

g . At
E . 1 × 1020 eV the regions below these limits, i.e. with v > c are negligibly small.

(per unit phase volume) probability density function of the Maxwell distribution is given by

PM (v) =
( m

2πkT

)3/2
exp

(

−
mv2

2kT

)

. (21)

Changing v → x and kT/m → 2Dt, one obtains the Green function of the 3D diffusion
equation

Pdiff(r, t) =
1

(4πDt)3/2
exp

(

−
r2

4Dt

)

, (22)

where r is a distance to the source and D is time-independent diffusion coefficient. Therefore, it
is reasonable to use the Jüttner function [32] for the diffusive Green function, where superluminal
velocities are absent.

Using the propagator P (E, t, r), where E is the observed energy, t is the propagation time
and r is the distance to a source, the yield to the observed space density is

n(E, r) =

∫ ∞

0
dt Q[Eg(E, t), t] P (E, t, r)

dEg

dE
(E, t), (23)

where Eg(E, t) is the energy of a particle at time t, analytic expression for dEg/dE is given by
Eq. (6), and Q(E, t) is the source generation function. P (E, t, r) can be thought of as a Green
function of an unknown relativistic equation of propagation.

For rectilinear propagation of ultrarelativistic particles with v ≈ c the propagator is given
by

Prect(E, t, r) =
1

4πc3t2
δ(t −

r

c
) , (24)

and Eq. (23) results in

n(E, r) =
q[Eg(E, r/c), r/c]

4πcr2

dEg

dE
, (25)

7



which coincides with expression obtained from conservation of number of particles. For the case
of diffusion the propagator Eq. (19) was

Pdiff(r, t) =
1

[4πλ(E, t)]3/2
exp

(

−
r2

4λ(E, t)

)

, (26)

Both propagation functions Prec(E, t, r) and Pdiff(E, t, r) are normalized by unity

∫

dV P (E, t, r) = 1 (27)

and thus they have a meaning of probability to find a particle in a unit volume at distance r
from a source at time t after emission.

The modified Jüttner distribution in terms of r = v and 2Dt = kT/m, is given in [31] as

PJ (E, t, r) =
θ(ct − r)

(ct)3Z(c2t/2D) [1 − r2/(c2t2)]2
exp

[

−
c2t/2D

[1 − r2/(ct)2]1/2

]

, (28)

where
Z(y) = 4πK1(y)/y (29)

with K1(y) being the modified Bessel function. The superluminal propagation with r > ct is
forbidden for this propagator.

In paper [33] we introduced instead of the Jüttner function (28) the generalized Jüttner
function PgJ(E, t, r), imposing to it two limiting conditions of transition to rectilinear propaga-
tor (24) and the Syrovatsky propagator (22), and keeping the condition of subluminal velocities
r ≤ ct. For this aim we substituted in Eq. (28)

c2t

2D
→

c2t2

2λ[Eg(E, t)]
≡ α(t) , (30)

(λ[Eg(E, t)] is given by Eq. (17)) and introduced instead of t a new variable

ξ(t) = r/ct . (31)

Both new quantities are dimensionless.
The generalization imposed by Eq. (30) is motivated by time-dependent diffusion coefficient

D[Eg(t)] and by the presence of energy losses b(E) = −dE/dt. In this case we generalize the
quantity D · t in the Jüttner distribution (28) to

∫

D(t)dt = λ(E, t) given by Eq. (17). As a
result we have

c2t

2D
=

c2t2

2Dt
→

c2t2

2
∫

D(E, t)dt
=

c2t2

2λ(E, t)
≡ α(E, t) . (32)

In terms of ξ and α(E, t) the generalized Jüttner function PgJ (E, t, x) and density of particles
n(E, r) are given by:

PgJ(E, t, r) =
θ(1 − ξ)

4π(ct)3
1

(1 − ξ2)2
α(E, ξ)

K1[α(E, ξ)]
exp

[

−
α(E, ξ)
√

1 − ξ2

]

, (33)

n(E, r) =
1

4πcr2

1
∫

ξmin

dξ
Q[Eg(E, ξ)]

(1 − ξ2)2
ξ

α(E, ξ)

K1[α(E, ξ)]
exp

[

−
α(E, ξ)
√

1 − ξ2

]

dEg

dE
. (34)

Various regimes of propagation are defined mostly by parameter α. In particular, α � 1
corresponds to rectilinear propagation and α � 1 to diffusion. In Fig. 3 the evolution of α(E, z)
is presented as function of redshift z, along the energy trajectories Eg = E(E, z), where E is
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Figure 3: Parameter α(E, z) as function of observed energy E and redshift z for magnetic
field configuration (Bc, lc) = (0.1 nG, 1 Mpc). Parameter α changes along the particle energy
trajectory Eg = E(E, z). The mode of space propagation (diffusive, intermediate, rectilinear) is
changing accordingly. The regions of propagation correspond to diffusion (α ≥ 10), rectilinear
(α ≤ 0.1) and intermediate (0.1 ≤ α ≤ 10). The observed energies in EeV are shown at the
evolutionary curves. Along each trajectory the energy Eg increases and α typically decreases
due to increasing of λ(E,Eg).

the observed energy. The evolution is shown for different E and magnetic field configuration
(Bc, lc) =(0.1 nG, 1 Mpc).

It is easy to prove that Eqs. (33) and (34) have the correct rectilinear and diffusive asymptotic
behavior (see [33]).

Since generalized Jüttner propagator (33) is a smooth differentiable function of energy and
has the correct asymptotic behaviors (rectilinear at high energy and diffusive at low energies), it
provides the smooth interpolation between these solutions with superluminal propagation being
excluded. Thus it solves simultaneously both problems of non-relativistic diffusion equation.

Using the generalized Jüttner propagator (33) the proton spectra have been calculated in
[33] for several sets of parameters, values of average magnetic fields B(E, t), types of diffusion
at low energies (Kolmogorov or Bohm), largest coherent scale in magnetized plasma lc and
different spacing between sources according to a formula:

Jp(E) =
c

4πH0

q0(γg − 2)

E2
0

∑

s

1

4πcx2
s

1
∫

ξmin

ξsdξs

1 + z(ξs)

[Eg(E, ξs)]
−γg

(1 − ξ2
s )2

α

K1(α)
exp

(

−
α

√

1 − ξ2
s

)

dEg

dE
.

(35)
In Figs. 4, 5 spectra calculated using interpolation of [28] and with the help of generalized

Jüttner propagator are compared. The advantage of the latter approach is clearly seen. It
does not allow the superluminal propagation of particles, smoothly interpolates between known
asymptotics and provides an efficient definition of the type of propagation in terms of one
dimensionless parameter α(E, z) (32).
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Figure 4: Comparison of the Jüttner solution with the combined diffusive and rectilinear solution
(BG dotted curves) from work [28]. The left panel shows the case Bc = 0.1 nG, and the right
panel Bc = 1 nG, the distance between sources d = 50 Mpc in both cases and γg = 2.7. The
universal spectrum is also presented for γg = 2.7. The features seen in the BG spectra are
artifacts produced by assumption about transition from diffusive to rectilinear propagation (see
text). These features are small: note the large scale on the ordinate axis.

8 Conclusions

The present state of the problem of propagation of UHECR, presumably mostly protons,
through intergalactic turbulent magnetic fields was discussed. Simultaneous analytical descrip-
tion of both rectilinear and diffusive parts of a particle trajectory from a source to a detector
remains a serious problem. We have traced the development of ideas in this field starting from
the fundamental Syrovatsky solution applied to Galaxy to the description with help of gen-
eralized Jüttner propagator in the expanding universe. With certain set of parameters, the
found solution allows to satisfactorily explain the measured UHECR spectra, conserving such
predicted features as dip at E ∼ 1 − 40 EeV and GZK cutoff at E & 50 EeV.

It should be noted that the alternative mixed composition model [34] also allows the account
for IGMF. In paper [35] an interesting study of UHECR, including also the pure proton fluxes,
propagation in IGMF was performed. A combination of MC simulations and analytical approach

Figure 5: The same as in Fig. 4 for Bc = 0.01 nG.
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for simultaneous diffusive and ’ballistic’ parts of trajectory was used.
Different methods of description of UHECR propagation in the universe are to be developed

in future. A careful measurement of chemical composition of UHECR flux and of accompanying
cosmogenic ultrahigh energy neutrino fluxes will also allow to better understand the IGMF.
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