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Abstract

The current most precise determination of UT triangle angle α is performed. Recent
results on direct CP asymmetries in B → Kπ decays are discussed as well.

1 Introduction

In papers [1, 2] we developed an approach to the calculation of the strong interaction phases
of the amplitudes of B-meson decays into two light mesons. Our approach is based on the
accounting of the final state rescattering of the produced in B-decays two particle states to
which branching ratios of B-decays are maximal. In papers [1, 2] B → ππ and B → ρρ decays
were analyzed and we get understanding of the very special picture of the branching ratios of
B-decays to final states with different electric charges (π+π−, π±π0, π0π0, ρ+ρ−, ρ±ρ0, ρ0ρ0).

Inspired by this success we made the next steps in the present paper.
In Sect. 2 we analyze experimental data on Bd → ρ±π∓ decays and find, in particular, a

value of CKM triangle angle α which follows from the data. It nicely coincides with values
of α extracted in [2] from data on B → ππ and B → ρρ decays and has the best accuracy.
Since penguin contribution shifts value of α extracted from Bd → π+π− decay by 20o, while
that extracted from Bd → ρ+ρ− and Bd → π±ρ∓ decays by 5o - 6o, their coincidence signal in
favor of small (if any) contributions of New (non MFV) Physics in b → sg and b → dg penguin
amplitudes.1

Experimental data on direct CP violation in B → Kπ decays confirmed recently by Belle
get natural explanation in our approach (Sect. 3).

2 Analysis of Bd(B̄d) → ρ±π∓ decays

The time dependence of these decays are given by the following formula [4]:

dN(Bd(B̄d) → ρ±π∓)

d∆t
=

(

1 ± Aρπ
CP

)

e−t/τ ×

× [1 − q(Cρπ ± ∆Cρπ) cos(∆mt) + q(Sρπ ± ∆Sρπ) sin(∆mt)] , (1)

∗
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1The latter was calculated from the former with the help of s ↔ d interchange symmetry of strong interactions,
accuracy of which as well as that of experimental data on CP asymmetries S bound contribution of New non
Minimal Flavor Violating (MFV) [3] Physics in penguin amplitudes to be smaller than that of SM.
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where q = −1 corresponds to the decay of a particle which was Bd at t = 0, while q = 1
corresponds to the decay of a particle which was B̄d at t = 0. According to [4]

Aρπ
CP =

|A+−|2 − |Ā−+|2 + |Ā+−|2 − |A−+|2

|A+−|2 + |Ā−+|2 + |Ā+−|2 + |A−+|2
, (2)

where A±∓ are the amplitudes of Bd → ρ±π∓ decays, while Ā±∓ are the amplitudes of B̄d →
ρ±π∓ decays. Introducing the ratios of decay amplitudes

λ±∓ =
q

p

Ā±∓

A±∓
, (3)

where q/p = e−2iβ comes from Bd− B̄d mixing and β is an angle of unitarity triangle, we obtain
the expressions for remaining parameters entering Eq. (1):

Cρπ ± ∆Cρπ =
1 − |λ±∓|2

1 + |λ±∓|2
, Sρπ ± ∆Sρπ =

2Imλ±∓

1 + |λ±∓|2
, (4)

where Cρπ and Sρπ (as well as Aρπ
CP) are CP-odd observables, while ∆Cρπ and ∆Sρπ are CP-

even. Experimental data for observables entering Eq. (1) accompanied by averaged branching
fraction are presented in Table 1 [5].

Table 1

BrBd(B̄d) → Aρπ
CP Cρπ ∆Cρπ Sρπ ∆Sρπ

→ ρ±π∓

(23.1 ± 2.7)10−6 −0.13 0.01 0.37 0.01 −0.04
±0.04 ±0.07 ±0.08 ±0.09 ±0.10

Experimental values of observables which describe Bd(B̄d) → ρ±π∓ decays.

Decay amplitudes Ā±∓ are described by shown in Fig. 1 Feynman diagrams. Analogous
diagrams describe amplitudes A±∓. The corresponding formulas look like:

Ā−+ = A1e
−iγ + P1e

i(β+δ1) ,

A−+ = A2e
iγ + P2e

−i(β−δ2) ,

Ā+− = A2e
−iγ + P2e

i(β+δ2) ,

A+− = A1e
iγ + P1e

−i(β−δ1) ,

A1/A2 ≡ a1/a2e
iδ̃ ,

P1/P2 ≡ p1/p2e
iδ̃ , (5)

where γ and β are angles of unitarity triangle, while δ1 and δ2 are the difference of FSI strong
phases between penguin and tree amplitudes (for penguin amplitudes we use the so-called t-
convention, subtracting charm quark contribution to penguin amplitudes).

In all we have seven parameters in Eq.(5) specific for ρπ final states (a1, a2, p1, p2, δ1, δ2 and
δ̃) plus UT angle α = π − β − γ, while the number of experimental observables in Table 1 is
six. To go further we should involve additional theoretical information in order to reduce the
number of parameters. If we find the values of p1 and p2 even with considerable uncertainties
it will be very helpful for determination of UT angle α, since penguin amplitudes shift α by
small amount proportional to pi/ai, and even large uncertainty in this shift lead to few degrees
(theoretical) uncertainty in α (see below).

2



The most straightforward way is to calculate matrix elements of the corresponding weak
interactions lagrangian with the help of factorization, as it was done in [6]. However the
accuracy of such a calculation can not be determined theoretically. From the experimental
data for direct CP-asymmetry in Bd(B̄d) → π+π− decays we know that factorization strongly
underestimate the contribution of penguin diagram into the decay amplitude [1, 2]. Another
approach is to extract penguin amplitudes from the branching ratios of the B− → K̄0∗π+ and
B− → K̄0ρ+ decays in which penguin dominates with the help of s ↔ d quark interchange
symmetry, analogously to what was done for penguins in B → ππ [7] and B → ρρ [8] decays.

Feynman diagrams responsible for these decays are drawn in Fig. 2.
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Figure 1: Diagrams for the amplitudes A1 and A2 (a) and P1 and P2 (b).

*o oKK

- -d

u

d

s

uB
ρπ

b

Figure 2: B− decays in which penguin diagram dominates.

Comparing Fig. 2 with Fig. 1 (b) we readily get the following relations:

Br(B̄d → π+ρ−)P1
=

τBd

τBu

Br(B− → K̄0∗π−)

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

2

= (6)

=
1

1.071
(10.7 ± 0.8) · 10−6 · (0.20)2 = 0.40(4) · 10−6 ,

Br(B̄d → ρ+π−)P2
=

τBd

τBu

Br(B− → K̄0ρ−)

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

2

= (7)

=
1

1.071
(8.0 ± 1.5) · 10−6 · (0.20)2 = 0.30(6) · 10−6 ,

from which values of p1 and p2 follow:

p2
1 = 0.40(4) · 10−6 , p2

2 = 0.30(6) · 10−6 , (8)

where here and below we neglect common factor 16πmBΓBd
, to which squares of amplitudes

are proportional. Remaining 8 − 2 = 6 parameters entering Eq.(5) we will determine from the
six experimental numbers presented in Table 1.
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From Eq. (5) we get the following relation for the averaged branching ratio of Bd(B̄d) decays
to ρ±π∓:

a2
1 + a2

2

2
+

p2
1 + p2

2

2
= 23.1(2.7) · 10−6 , (9)

where penguin-tree interference terms are omitted (being proportional to cos(π−β−γ) = cos α
they are very small since UT is almost rectangular, α ≈ π/2).

To determine values of ai an equation for ∆Cρπ is helpful:

∆Cρπ =
a2

1 − a2
2

a2
1 + a2

2

+ O

(

p2
i

a2
i

)

, (10)

and from (8) - (10) and experimental value for ∆Cρπ from the Table 1 we get:

a2
1 = 31(3) · 10−6 , a2

2 = 14(3) · 10−6 . (11)

Now from the equations for Cρπ and Aρπ
CP using experimental data from Table 1 we are able

to extract FSI phases δ1 and δ2:

Cρπ =
2p1a1 sin δ1 + 2p2a2 sin δ2

a2
1 + a2

2

+
a2

1 − a2
2

(a2
1 + a2

2)
2
[2p2a2 sin δ2 − 2p1a1 sin δ1] ,

Aρπ
CP =

2p1a1 sin δ1 − 2p2a2 sin δ2

a2
1 + a2

2

, (12)

sin δ1 = −0.55(30) , sin δ2 = 0.51(40) (13)

and we see that large experimental errors of Cρπ and Aρπ
CP do not allow accurate determination

of the values of FSI phases.
From equations for S and ∆S we will determine the values of α and δ̃:

Sρπ + ∆Sρπ = (14)

= 2
a1a2 sin(2α − δ̃) − p1a2 cos(δ1 − δ̃) − p2a1 cos(δ2 − δ̃) + 2p1a2 sin δ1 sin δ̃

a2
1 + a2

2 + 2p1a1 sin δ1 − 2p2a2 sin δ2
,

Sρπ − ∆Sρπ = (15)

= 2
a1a2 sin(2α + δ̃) − p2a1 cos(δ2 + δ̃) − p1a2 cos(δ1 + δ̃) − 2p2a1 sin δ2 sin δ̃

a2
1 + a2

2 + 2p2a2 sin δ2 − 2p1a1 sin δ1
,

where in (small) terms proportional to pi we have substituted α = π/2. Substituting numerical
values for parameters in denominators we get:

[(6 ± 4)Sρπ − (45 ± 4)∆Sρπ]10−6 = 2a1a2 sin δ̃ cos 2α , (16)

[(45 ± 4)Sρπ − (6 ± 4)∆Sρπ]10−6 = 2a1a2 sin 2α cos δ̃ −

−2p2a1 cos(δ̃ − δ2) − 2p1a2 cos(δ̃ + δ1) . (17)

From the first equation we see that δ̃ equals zero or π with ±50 accuracy. For UT angle α from
the second equation neglecting penguin contributions we obtain:

αT
ρπ = 90o ± 3o(exp) , (18)

while taking penguins into account we get:

αρπ = 84o ± 3o(exp) , (19)
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where δ1 ≈ −30o and δ2 ≈ 30o were used.
Thus penguins shift α by 6o and even assuming only 50% accuracy of d ↔ s symmetry

which was used to determine numerical values of pi allows us to determine αρπ with theoretical
accuracy which equals the experimental one, originating from that in Sρπ and pointed out in
(19):

αρπ = 84o ± 3o(exp) ± 3o(theor) . (20)

Consideration of Bd(B̄d) → ππ decays performed in [2] leads to the following result:

αππ = 88o ± 4o(exp) ± 10o(theor) , (21)

where relatively large theoretical error is due to big (20o) shift of tree level value of αππ by
poorely known penguins and this time (unlike in [2]) we suppose 50% theoretical uncertainty
in the value of penguin amplitude.

In the case of Bd(B̄d) → ρ+ρ− decays penguin shifts the value of α by the same amount as
in considered in this paper Bd(B̄d) → ρ±π∓ decays, so theoretical uncertainty is the same:

αρρ = 87o ± 5o(exp) ± 3o(theor) , (22)

while larger experimental uncertainty is due to that is Sρρ,

Sρρ = −0.06 ± 0.18 , (23)

which is twice that in Sρπ.
It is interesting to compare numerical values (19), (21), (22) with the recent results of the

fit of Unitarity Triangle [9, 10]:
αCKMfitter = 88o ± 6o , (24)

αUTfit = 91o ± 6o . (25)

Large New Physics contribution in b → dg penguin could help to avoid large FSI phases
since now enhancement of direct CPV seen in Aρπ

CP will originate from closeness of tree level and
penguin amplitudes. Also puzzle of large BrBd(B̄d) → π0π0 can be resolved by NP contribution
into b → dg penguin comparable with SM one recalculated from Bu → K0π+ decay. The bound
on such contribution comes from the close values of α extracted from B → ππ, ρπ and ρρ decays,
where penguin contributions are very different.2

These are strong arguments in favor of measurements of the parameters of B → ππ, ρπ and
ρρ decays with better accuracy, which can be performed at LHCb and Super B factory. A search
of NP manifestation by different values of UT angle α extracted from B → ππ and B → πρ, ρρ
decays is analogous to one suggested in [11] through the difference of α extracted from the
penguin polluted B → ππ decay and from UT analysis based on tree dominated observables
Vcb, γ and Vub.

At the end of this section let us note that results (21) and (22) were obtained in analysis based
on isotopic invariance of strong interactions from violation of which the additional uncertainty
in α could follow [12]. Fortunately since in the absence of penguin amplitudes relation Sππ,ρρ =
sin 2αT is free from this type of uncertainty, it manifests only as several percent correction to
an induced by penguin shift of α which is negligible even for B → ππ decays.

2The same argument can be applied against large NP contributions to b → sg penguin: if the same NP does
not enhance b → dg penguin the value of α from B → ππ data will be closer to αT

ππ = 109o and disagree with
that from απρ and αρρ.
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3 Direct CPV in B → πK decays

Recently Belle published new results of the measurement of CP asymmetries in Bd(B̄d) →
K+π−(K−π+) and B+(B−) → K+π0(K−π0) decays [13]:

ACP (K+π−) ≡
Γ(B̄d → K−π+) − Γ(Bd → K+π−)

Γ(B̄d → K−π+) + Γ(Bd → K+π−)
= −0.094(18)(8) , (26)

ACP (K+π0) ≡
Γ(B− → K−π0) − Γ(B+ → K+π0)

Γ(B− → K−π0) + Γ(B+ → K+π0)
= 0.07(3)(1) . (27)

In [13] the 4.5 standard deviations difference of these asymmetries was considered as a
paradox in the framework of the Standard Model which it really would be IF one neglects color
suppressed tree quark amplitude. Taking into account QCD penguin diagram and tree diagrams
one easily gets the following relation between CP asymmetries [14]:

ACP (K+π−) = ACP (K+π0) + ACP (K0π0) , (28)

where ACP (K0π0) is proportional to color suppressed amplitude C. Experimental value of
ACP (K0π0) has large uncertainty:

ACP (K0π0) = −0.14 ± 0.11 , (29)

however with the help of d ↔ s interchange symmetry it can be related with CP asymmetry
C00 of Bd(B̄d) → π0π0 decays:

ACP (K0π0) =
Γ(Bd → π0π0) + Γ(B̄d → π0π0)

Γ(Bd → K0π0) + Γ(B̄d → K̄0π0)

∣

∣

∣

∣

VusVts

Vtd

∣

∣

∣

∣

sinγ

sinα
C00 , (30)

where opposite signs in definitions of ACP and C00 are compensated by negative sign of Vts.
Experimental uncertainty of C00 is also very large, that is why we use for numerical estimate
obtained in [2] result:

C00 ≈ −0.6 . (31)

Substituting (31) in (30) and (26), (27) and (30) in (28) we finally obtain:

−0.094(20) = 0.07(3) − 0.07 , (32)

resolving in this way paradox noted in [13] (remaining ≈ 2σ difference can be safely attributed
to statistical fluctuation). Concluding this Section let us remind that the absence of color
suppression of the tree amplitude C in Bd → π0π0 decay is explained in [2] by large FSI phases
difference of tree amplitudes with isospin zero and two.
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