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Abstract

If one assumes that fundamental degrees of freedom at TeV scale obey the so called
infinite statistics and condense, it is possible to get exponentially large multiplicity and
shift gravitational scale seen by low energy observer from a few TeV range to 1019 GeV by
induced gravity mechanism.

A truly remarkable phenomenon one often observes in Nature is coexistence of a few vastly
different scales in one theoretical framework, widely known as a problem of ”large numbers”.
The best known and physically the most interesting example of this kind is given by the Standard
Model. As is well known this theory contains a set of scales starting from the electron mass
me = 511keV/c2 and going up to QCD scale mp = 938MeV/c2, weak scale mW = 80GeV/c2 and
finally ending by the Planck scale MP = 1.2 · 1019 GeV/c2 which represents, as many physicists
believe, the ultimate ultraviolet edge of our world.1 Despite each large ratio in this tower calls
for explanation, of particular interest is the parameter MP in the weak scale units, which is
given by the number of order of 1017. The danger this large number is of for the stability of
radiative corrections to Higgs boson mass has been widely discussed in the literature.

A new approach to the hierarchy problem known as TeV-scale gravity and extra-dimensions
scenarios came about a decade ago. These models assume that the geometric properties of our
familiar (3+1) dimensional space-time change at some scale L, which is supposed to be much
larger than LP = 1/MP and perhaps of (1-2 TeV)−1 range. This change can be accompanied
by appearance of some additional particles, for example of the Kaluza-Klein type. Among
attractive features of these models is emergent nature of the Planck scale LP . In the original
proposal [1, 2] the fundamental ratio between LP and L takes the form

(

L

LP

)2

∼ Vn

Ln
(1)

where L is electroweak scale, n - number of compact extra dimensions and Vn - their volume.
Soft SM fields propagates only in 4 dimensions, while gravitons feel the full 4 + n dimensional
geometry. In this scenario the smallness of the ratio L/LP follows from the large (in units of
L, i.e. sub-millimeter for the most phenomenologically interesting case n = 2) size of extra
dimensions. The picture suggested in [3, 4] is different: the model with one warped extra
dimension generates the hierarchy

log
L

LP
∼ πrc

L
(5)
P

(2)

where πrc is the size of compact extra dimension and L
(5)
P - fundamental five dimensional Planck

length. The logarithmic function maps huge hierarchy between L and LP into much weaker
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1We leave aside the lower part of this tower, corresponding to smaller energies relevant for condensed matter

physics, chemistry and biology.
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hierarchy between rc and L
(5)
P . In other words the weakness of gravity in this approach follows

from the fact that only exponential tail of the full graviton’s wave function can be seen by
four-dimensional observer.

In a broader prospective, both these scenarios reduce hierarchy of the mass scales to some
geometrical hierarchy. However, in functional terms, (1) and (2) are quite different. While the
power law (1) makes LP small introducing some large artificial scale R - extra dimension size:
L/LP ∼ (R/L)n/2; expression (2) corresponds to exponential increase: L/LP ∼ exp γ, where
huge number L/LP is mapped into not so huge number γ. The physical reason for appearance
of the exponent in [3] is quantum tunneling of gravitons.

Recently the extra-dimensional approach to the hierarchy problem has been given a new
interpretation in [5, 6] (see also earlier papers [7, 8, 9]). It is based on the following physical
idea: suppose that above some scale L there is a dramatic rise of multiplicity, i.e. the number
of relevant degrees of freedom N becomes huge at energies E >∼ 1/L. Then one can argue,
both on perturbative and on nonperturbative grounds, that the number of stable species with
typical mass M must not exceed the following bound:

NM2 . M2
P (3)

up to some logarithmic corrections. Another incarnation of the same idea takes a single par-
ticle species of mass M but carrying exactly conserved quantum number of periodicity N , for
example, ZN gauge symmetry charge. Then the gravitational cutoff in such theories goes down
to MP /

√
N and can be lowered to a TeV scale (thus solving the hierarchy problem, or, at least,

giving it a completely new prospective) if one takes N of the order of 1032.
The bound (3) can be given a natural interpretation from Sakharov’s induced gravity [10]

point of view. Indeed, typical contribution Einstein-Hilbert gravitational Lagrangian gets from
one-loop effective action of matter particles in curved space can be written as:

M2
P =

1

G
=

1

G0
− 1

2π
Tr s

[

M2 − µ2 log

(

M2

µ2

)]

(4)

where G0 is ”bare gravitational constant” (taken to be equal to infinity in original Sakharov’s
approach), trace Tr s is taken over the spectrum with the corresponding numerical factors
accounting for particle content of the theory and M is ultraviolet cutoff. If there are N particle
species of a given type2 in the theory, the trace scales as −Tr s[..] ∝ N . Then, making original
Sakharov’s one-loop dominance assumption, one has from (4): 1/G ∼ NM 2, i.e. just eq.(3).
The physical interpretation of this result is clear. The rigidity of space, i.e. its resistance against
an attempt to curve it is proportional to the number of particle species living in quantum vacuum
in this space because the curvature costs energy. Roughly speaking, more different particle types
the theory contains, weaker is the gravity in this theory,3 i.e. rich and non-degenerate spectrum
tends to wash space-time distortions out.

As another example it is instructive to consider large Nc QCD. Let us take SU(Nc) Yang-
Mills gauge theory with two flavors of light fundamental quarks u and d. There are 2Nc spinor
degrees of freedom in the theory with 2 staying for the number of flavors and Nc for the number
of colors. At low energies the relevant excitations are three light pseudoscalar pions π+, π−, π0

and the corresponding lowest order effective Lagrangian has the standard form:

L =
1

4
F 2Tr

(

∂µU †∂µU
)

+
1

2
F 2BTr

(

m
(

U + U †
))

(5)

where the SU(2) matrix field U is expressed in terms of the pion fields ~π(x) =
(

π1(x), π2(x), π3(x)
)

,
mass matrix m = diag(mu,md), and F is just pion decay constant (up to O(m) corrections).

2Say, N light noninteracting scalars. Of course, if both bosons and fermions present in the theory, they partly

cancel each other.
3Again, leaving aside supersymmetric-like cancelations.
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The Lagrangian rewritten in terms of the pion fields takes the following form (neglecting O(~π4)
terms):

L = (mu + md)F
2B +

1

2
(∂~π)2 − 1

2
(mu + md)B~π2 (6)

with the obvious assignment m2
π = (mu + md)B. If as a next step one compares the vacuum

energy expression from the effective low-energy theory described by the Lagrangian (6) : ∆E =
−V (mu+md)F

2B with the energy shift from the original theory (i.e. QCD): ∆E = V 〈0|muūu+
mdd̄d|0〉, the Gell-Mann - Oakes - Renner relation immediately follows:

(mu + md)〈q̄q〉 = −F 2m2
π (7)

It is worth noticing that despite the Lagrangian (6) does not contain Nc explicitly, the low energy
description as such is valid up to pion momenta smaller than ultraviolet cut-off Λ ∼ 4πF . The
latter is Nc-dependent quantity (of course one can formally remove Nc-dependence from the
Lagrangian (5) away by redefinition of the pion fields but we prefer not to do it). Indeed, taking
into account that quark condensate scales linearly with Nc and mπ → const in large Nc limit,
one has from (7): F 2 ∼ Nc. Thus induced contribution of pions to gravitational constant scales
as4

δ

(

1

G

)

pions

∼ Λ2 ∼ Nc (8)

The meaning of (8) is the same as has been just discussed: the ultraviolet cut-off of the low
energy theory encodes information about the number of degrees of freedom in the ”fundamen-
tal” theory.5 More degrees of freedom (associated with color in the considered example) the
underlying theory contains, weaker its low-energy excitations interacts with the gravity. This
is exactly original idea behind [6] and it is not surprising that (8) is nothing than (3) seen from
a different prospective.

If weakness of gravity is indeed a consequence of the fundamental theory huge multiplicity,
a natural question to ask is what could be possible ways to get it? The main message of
the scenario we are going to describe below is the following: one needs much less number of
different species, if they satisfy non-conventional statistics. To be more precise, we take n
degrees of freedom, which are neither bosons nor fermions, but of quon type and suppose that
they are condensed below some energy scale 1/L, while low energy modes of normal statistics
are excitations above this nontrivial vacuum.

Quons, i.e. objects satisfying quantum Boltzmann statistics

aia
†
j = δij (9)

augmented by the Fock-state representation defining relation ai|0〉 = 0 are known for a long
time in mathematical (e.g. free random variables [11] and stochastic dynamics [12]) and physical
(quon field theories [13], black holes statistics [14], D0 branes and matrix theory [15]) contexts.

Let us remind some basic facts about quon states. The m-particle state is constructed as

|m〉 = (a†i1)
k1(a†i2)

k2 ...(a†il)
kl |0〉 (10)

with k1 + k2 + ... + kl = m. All such states have positive norm and can be normalized to unity
by the condition 〈0|0〉 = 1. The states created by any permutations of creation operators are
orthogonal, i.e.

(a†i ..a
†
m|0〉)† · (a†i ..a†m|0〉) = 〈0|am..aia

†
i ..a

†
m|0〉 = 1

(a†i ..a
†
k..a

†
l ..a

†
m|0〉)† · (a†i ..a

†
l ..a

†
k..a

†
m|0〉) = 0 for any k 6= l (11)

4At large Nc pure gluon contribution scaling as N
2

c starts to dominate, but it is not seen at low energies until

Λ becomes of the order of the lowest glueball mass.
5For Λ larger than masses of other, non-Goldstone hadrons, they have to be included as well.
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For particles of the type i one can define the number operator Ni such that

Ni|m〉 = ki|m〉 ; and [Ni, ai]− = −ai (12)

as
Ni = a†iai +

∑

l

a†l a
†
iaial +

∑

l,m

a†ma†l a
†
iaialam + ... (13)

For free normal-ordered Hamiltonian one has H0 =
n
∑

i=1
E i

0Ni The condition (9) automatically

makes any product of quon operators normally ordered. It is a very important property of
quon statistics that free Hamiltonian is given by an infinite series in creation and annihilation
operators (in contrast with conventional Bose or Fermi case where free Hamiltonian is or can be
made quadratic). Nevertheless there is no rich dynamics in free quon theory due to (9). Indeed,
any state of the kind (10) or superposition of such states is an eigenstate of the Hamiltonian
with an eigenvalue

n
∑

i=1

E i
0ki (14)

This is nothing than the standard harmonic oscillator equidistant spectrum.
Leaving the domain of free theory, suppose that we turn on the interactions in such a way

that the ground state of the interacting quon Hamiltonian is given by superposition

|Φ〉l = cl

∑

P

a†i1a
†
i2

...a†il |0〉 (15)

where cl is normalization factor and H|Φ〉l = 0. In fact, one can think of different symmetry
properties of |Φ〉l, but typically for l ∼ n one has cl ∼ n−n/2. It is also important that the state
|Φ〉l is not quon vacuum anymore:

ai|0〉 = 0 , but ai|Φ〉l 6= 0 (16)

Now we have come to the spectrum over this nontrivial vacuum consisting of excitations of
two types. The first are created by the effective low-energy operators f †

i such that fi|Φ〉l =

0 where these operators fi, f
†
i obey conventional statistics (e.g. Fermi-Dirac one for totally

symmetric choice of (15)). These are ”light” excitations, i.e. their mass spectrum is unrelated
to the masses of quon states. On the other hand, there is also a zoo of ”heavy” excitations over
the unbroken vacuum subject to the condition FP |0〉 = fiai1ai2 ...ail |Φ〉l = 0. The corresponding
scale Ll is a dynamical scale of the interacting quon theory.

The excitation pattern described above easily allows to get exponential multiplicity of states
needed to screen gravitational constant. Indeed, computing induced contribution one gets

δ

(

1

G

)

= i
π

6

∫

d4xx2〈T (T̃ (x)T̃ (0))〉 ∼ n

c2
l L

2
l

(17)

where T̃ (x) = T µ
µ (x) − 〈T µ

µ (x)〉. Thus the typical pattern we have is given by

M2
PL2

n ∼ exp(ng(n)) with g(n) ∼ log n (18)

and the exponent function here has combinatorial and not tunneling origin. Of course, actual
numerical values depend on the concrete choice of the vacuum (15), but for most general case
n is given by number between 20 and 30 for L−1

n ∼ 10 TeV, i.e. is comparable with the number
of species in the Standard Model seen at low energies.

Conclusion. It is very natural to think in induced gravity framework that weakness of
gravity is a consequence of dramatic rise of multiplicity above some TeV-scale 1/L. The only
large number we have in low energy domain is the number of different particle species n.
Assuming change of statistics to the infinite one at the scale 1/L could allow to get factorial
growth in the number of dynamical degrees of freedom and hence in Planck mass as measured
by low-energy observer.
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