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Abstract

The mass spectra of the ground state and excited heavy baryons consisting of two light
(u, d, s) and one heavy (c, b) quarks are calculated. The heavy-quark–light-diquark picture
is used within the relativistic quark model. The semileptonic heavy-to-heavy decay rates
of these baryons are also calculated both in the heavy quark limit and with inclusion of
first order 1/mQ corrections. An overall good agreement of the obtained predictions with
available experimental data is found.

During last few years a significant experimental progress has been achieved in studying heavy
baryons with one heavy quark. At present masses of all ground states of charmed baryons as well
as of their excitations are known experimentally with rather good precision [1]. The bottom
sector is significantly less studied. Only half of the ground state bottom baryon masses are
known now. The rate of the semileptonic decay Λb → Λceν has been also measured. The
Large Hadron Collider (LHC) will provide us with much more data on properties of ground
state and excited bottom baryons. Here we review our studies of masses of the ground state
and excited heavy baryons containing one heavy quark and their semileptonic decays. All
calculations [2, 3, 4] are performed in the framework of the relativistic quark model based on
the quasipotential approach in QCD. We use the heavy-quark–light-diquark approximation to
reduce a complicated relativistic three-body problem to the subsequent solution of two more
simple two-body problems. The first step is the calculation of the masses, wave functions and
form factors of the diquarks, composed from two light quarks. Next, at the second step, a
heavy baryon is treated as a relativistic bound system of a light diquark and heavy quark. It is
important to emphasize that we do not consider a diquark as a point particle but explicitly take
into account its structure through the diquark-gluon vertex expressed in terms of the diquark
wave functions.

In the adopted approach the diquark is described by the wave function (Ψd) of the two-quark
bound state and by the baryon is described by the wave function (ΨB) of the quark-diquark
bound state, satisfying the quasipotential equations [5] of the Schrödinger type [6]

(

b2(M)

2µR
− p2

2µR

)

Ψd,B(p) =

∫

d3q

(2π)3
Vd,B(p,q;M)Ψd,B(q), (1)

where the relativistic reduced mass is

µR =
M4 − (m2

1 − m2
2)

2

4M3
, (2)

and the on-mass-shell relative momentum squared

b2(M) =
[M2 − (m1 + m2)

2][M2 − (m1 − m2)
2]

4M2
. (3)
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Table 1: Masses of light ground state diquarks (in MeV). S and A denotes scalar and axial
vector diquarks antisymmetric [q, q′] and symmetric {q, q′} in flavour, respectively.

Quark Diquark Mass
content type [2] [9] [10] [11] [12]

our NJL BSE BSE Lattice

[u, d] S 710 705 737 820 694(22)
{u, d} A 909 875 949 1020 806(50)
[u, s] S 948 895 882 1100
{u, s} A 1069 1050 1050 1300
{s, s} A 1203 1215 1130 1440

The kernel Vd,B(p,q;M) in Eq. (1) is the QCD motivated operator of the quark-quark (d)
or quark-diquark (B) interaction. It is constructed with the help of the off-mass-shell scattering
amplitude, projected onto the positive energy states. In the following analysis we closely follow
the similar construction of the quark-antiquark interaction in mesons which were extensively
studied in our relativistic quark model [7]. For the quark-quark interaction in a diquark we use
the relation Vqq = Vqq̄/2 arising under the assumption about the octet structure of the colour
quark interaction. An important role in this construction is played by the Lorentz-structure
of the nonperturbative confining interaction. In our analysis of mesons we adopted that the
effective quark-antiquark interaction is the sum of the one-gluon exchange term and the mixture
of long-range vector and scalar linear confining potentials with the vector confining potential
containing the Pauli term. We use the same conventions for the construction of the quark-quark
and quark-diquark interactions in the baryon. The explicit expressions for the quasipotential
of the quark-quark (qq) interaction in the diquark and quark-diquark (Qd) interaction in the
baryon are given in Refs. [2, 3]. The values of model parameters can be also found in these
references.

At the first step, we calculate the masses and form factors of the light diquark. As it is
well-known, the light quarks are highly relativistic, which makes the v/c expansion inapplicable
and thus, a completely relativistic treatment is required. To achieve this goal in describing
light diquarks, we closely follow our recent consideration of the spectra of light mesons [8] and
adopt the same procedure to make the relativistic quark potential local by replacing ǫ1,2(p) =
√

m2
1,2 + p2 → E1,2 = (M2 − m2

2,1 + m2
1,2)/(2M) (see discussion in Ref. [8]).

The quasipotential equation (1) is solved numerically for the complete relativistic potential
which depends on the diquark mass in a highly nonlinear way [2]. The obtained ground state
masses of scalar and axial vector light diquarks are presented in Table 1. These masses are
in good agreement with values found within the Nambu–Jona-Lasinio model [9], by solving
the Bethe-Salpeter equation with different types of the kernel [10, 11] and in quenched lattice
calculations [12]. It follows from Table 1 that the mass difference between the scalar and vector
diquark decreases from ∼ 200 to ∼ 120 MeV, when one of the u, d quarks is replaced by the s
quark in accord with the statement of Ref. [13].

In order to determine the diquark interaction with the gluon field, which takes into account
the diquark structure, it is necessary to calculate the corresponding matrix element of the quark
current between diquark states. Such calculation leads to the emergence of the form factor F (r)
entering the diquark-gluon vertex [2]. This form factor is expressed through the overlap integral
of the diquark wave functions.

At the second step, we calculate the masses of heavy baryons as the bound states of a heavy
quark and light diquark. For the potential of the heavy-quark–light-diquark interaction we
use the expansion in p/mQ. Since the light diquark is not heavy enough it should be treated
fully relativistically. To simplify the potential we follow the same procedure, which was used
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Table 2: Masses of the ΛQ (Q = c, b) heavy baryons (in MeV).

Q = c Q = b

I(JP ) Qd state M M exp [1] M M exp [1] M exp [15]

0(1
2
+
) 1S 2297 2286.46(14) 5622 5624(9) 5619.7(2.4)

0(1
2

−
) 1P 2598 2595.4(6) 5930

0(3
2

−
) 1P 2628 2628.1(6) 5947

0(1
2
+
) 2S 2772 2766.6(2.4)? 6086

0(3
2
+
) 1D 2874 6189

0(5
2

+
) 1D 2883 2882.5(2.2)? 6197

0(1
2

−
) 2P 3017 6328

0(3
2
−
) 2P 3034 6337

for light quarks in a diquark, and replace the diquark energies Ed(p) =
√

p2 + M2
d → Ed =

(M2 −m2
Q + M2

d )/(2M) in expressions for the quark-diquark quasipotential. This substitution
makes the Fourier transform of the potential local. At leading order in p/mQ the resulting
quasipotentials can be presented in the following forms:
for the scalar diquark

V (0)(r) = V̂Coul(r) + Vconf(r), (4)

and for the axial vector diquark

V (0)(r) = V̂Coul(r) + Vconf(r) +
1

Md(Ed + Md)

1

r

[

Md

Ed
V̂ ′

Coul(r)

−V ′

conf(r) + µd
Ed + Md

2Md
V ′V

conf(r)

]

LSd, (5)

V̂Coul(r) = −4

3
αs

F (r)

r
, Vconf(r) = Ar + B, V V

conf(r) = (1 − ε)(Ar + B),

where V̂Coul(r) is the smeared Coulomb potential (with the account of the diquark structure).
Note that both the one-gluon exchange and confining potential contribute to the diquark spin-
orbit interaction. In this limit the heavy baryon levels are degenerate doublets with respect to
the heavy quark spin, since the heavy quark spin-orbit and spin-spin interactions arise only at
first order in p/mQ. Solving Eq. (1) numerically we get the heavy quark spin-independent part
of the baryon wave function ΨB. Then the total baryon wave function is a product of ΨB and
the spin-dependent part UB [14].

The leading order degeneracy of heavy baryon states is broken by the p/mQ corrections.
The explicit expression for the quark-diquark potential up to the second order in p/mQ is given
in Ref. [3].

The calculated values of the ground state and excited baryon masses are given in Tables 2-5
in comparison with available experimental data [1, 15, 16, 17, 18, 19, 20, 21, 22, 23]. In the
first two columns we put the baryon quantum numbers and the state of the heavy-quark–light-
diquark bound system (in usual notations nL), while in the rest columns our predictions for
the masses and experimental data are shown.

At present the best experimentally studied quantities are the mass spectra of the ΛQ and
ΣQ baryons, which contain the light scalar or axial vector diquarks, respectively. They are
presented in Tables 2, 3. Masses of the ground states are measured both for charmed and
bottom ΛQ and ΣQ baryons. Recently the masses of the ground state Σb and Σ∗

b baryons
were first reported by CDF [18]: MΣ+

b
= 5807.5+1.9

−2.2 ± 1.7 MeV, MΣ−

b
= 5815.2+1.0

−0.9 ± 1.7 MeV,
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Table 3: Masses of the ΣQ (Q = c, b) heavy baryons (in MeV).

Qd Q = c Q = b

I(JP ) state M M exp [1] M exp [16] M exp [17] M M exp [18] M exp [18]

1(1
2
+
) 1S 2439 2453.76(18) 5805 5807.5(2.6) 5815.2(2.0)

1(3
2

+
) 1S 2518 2518.0(5) 5834 5829.0(2.4) 5836.7(2.6)

1(1
2

−
) 1P 2805 6122

1(1
2
−
) 1P 2795 6108

1(3
2
−
) 1P 2799 2802(47) 6106

1(3
2

−
) 1P 2761 2766.6(2.4)? 6076

1(5
2

−
) 1P 2790 6083

1(1
2
+
) 2S 2864 2846(13) 6202

1(3
2

+
) 2S 2912 2939.8(2.3)? 2938(35)? 6222

1(1
2

+
) 1D 3014 6300

1(3
2
+
) 1D 3005 6287

1(3
2

+
) 1D 3010 6291

1(5
2

+
) 1D 3001 6279

1(5
2
+
) 1D 2960 6248

1(7
2

+
) 1D 3015 6262

Table 4: Masses of the ΞQ (Q = c, b) heavy baryons with scalar diquark (in MeV).

Q = c Q = b

I(JP ) Qd state M M exp [1] M exp [19] M M exp[21]
1
2 (1

2
+
) 1S 2481 2471.0(4) 5812 5792.9(3.0)

1
2 (1

2

−
) 1P 2801 2791.9(3.3) 6119

1
2 (3

2

−
) 1P 2820 2818.2(2.1) 6130

1
2 (1

2

+
) 2S 2923 6264

1
2 (3

2
+
) 1D 3030 6359

1
2 (5

2

+
) 1D 3042 3054.2(1.5) 6365

1
2 (1

2

−
) 2P 3186 6492

1
2 (3

2
−
) 2P 3199 6494

MΣ∗+

b
= 5829.0+1.6

−1.7 ± 1.7 MeV, MΣ∗−

b
= 5836.7+2.0

−1.8 ± 1.7 MeV. CDF also significantly improved

the precision of the Λb mass [15]. For charmed baryons the masses of several excited states are
also known. It is important to emphasize that the JP quantum numbers for most excited heavy
baryons have not been determined experimentally, but are assigned by PDG on the basis of
quark model predictions. For some excited charm baryons such as the Λc(2765), Λc(2880) and
Λc(2940) it is even not known if they are excitations of the Λc or Σc.

1 Our calculations show

that the Λc(2765) can be either the first radial (2S) excitation of the Λc with JP = 1
2
+

containing

the light scalar diquark or the first orbital excitation (1P ) of the Σc with JP = 3
2

−
containing

the light axial vector diquark. The Λc(2880) baryon in our model is well described by the second

orbital (1D) excitation of the Λc with JP = 5
2

+
in agreement with the recent spin assignment

[17] based on the analysis of angular distributions in the decays Λc(2880)
+ → Σc(2455)

0,++π+,−.
Our model suggests that the charmed baryon Λc(2940), recently discovered by BaBar[16] and
then also confirmed by Belle [17], could be the first radial (2S) excitation of the Σc with

JP = 3
2

+
which mass is predicted slightly below the experimental value. If this state proves

1In Tables 2, 3 we mark with ? the states which interpretation is ambiguous.
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Table 5: Masses of the ΞQ (Q = c, b) heavy baryons with axial vector diquark (in MeV).

Q = c Q = b

I(JP ) Qd state M M exp [1] M exp [22] M exp [23, 19] M
1
2(1

2
+
) 1S 2578 2578.0(2.9) 5937

1
2(3

2

+
) 1S 2654 2646.1(1.2) 5963

1
2(1

2

−
) 1P 2934 6249

1
2(1

2
−
) 1P 2928 6238

1
2(3

2
−
) 1P 2931 2931(6) 6237

1
2(3

2

−
) 1P 2900 6212

1
2(5

2

−
) 1P 2921 6218

1
2(1

2
+
) 2S 2984 2978.5(4.1) 2967.1(2.9) 6327

1
2(3

2

+
) 2S 3035 6341

1
2(1

2

+
) 1D 3132 6420

1
2(3

2
+
) 1D 3127 6410

1
2(3

2

+
) 1D 3131 6412

1
2(5

2

+
) 1D 3123 3122.9(1.4) 6403

1
2(5

2
+
) 1D 3087 3082.8(3.3) 3076.4(1.0) 6377

1
2(7

2

+
) 1D 3136 6390

to be an excited Λc, for which we have no candidates around 2940 MeV, then it will indicate
that excitations inside the diquark should be also considered. 2 The Σc(2800) baryon can be

identified in our model with one of the orbital (1P ) excitations of the Σc with JP = 1
2
−
, 3

2
−

or
5
2

−
which predicted mass differences are less than 15 MeV. Thus masses of all these states are

compatible with the experimental values within errors.
Mass spectra of the ΞQ baryons with the scalar and axial vector light (qs) diquarks are given

in Tables 4, 5. Experimental data here until recently were available only for charm-strange
baryons. In 2007 the D0 Collaboration [20] reported the discovery of the Ξ−

b baryon with the
mass MΞb

= 5774 ± 11 ± 15 MeV. The CDF Collaboration [21] confirmed this observation
and gave the more precise value MΞb

= 5792.9 ± 2.5 ± 1.7 MeV. Our model prediction MΞb
=

5812 MeV is in a reasonable agreement with these new data. In the excited charmed baryon
sector we can identify the Ξc(2790) and Ξc(2815) with the first orbital (1P ) excitations of the

Ξc with JP = 1
2
−

and JP = 3
2
−
, respectively, containing the light scalar diquark, which is

in agreement with the PDG [1] assignment. Recently Belle [22] reported the first observation
of two baryons Ξcx(2980) and Ξcx(3077), which existence was also confirmed by BaBar [23].
The Ξcx(2980) can be interpreted in our model as the first radial (2S) excitation of the Ξc

with JP = 1
2
+

containing the light axial vector diquark. On the other hand the Ξcx(3077)

corresponds to the second orbital (1D) excitation in this system with JP = 5
2

+
. Very recently

the BaBar Collaboration [19] announced observation of two new charmed baryons Ξc(3055) with
the mass M = 3054.2±1.2±0.5 MeV and Ξc(3123) with the mass M = 3122.9±1.3±0.3 MeV.
These states can be interpreted in our model as the second orbital (1D) excitations of the Ξc

with JP = 5
2

+
containing scalar and axial vector diquarks, respectively. Their predicted masses

are 3042 MeV and 3123 MeV.
For the ΩQ baryons only masses of the ground-state charmed baryons are known. The Ω∗

c

baryon was very recently discovered by BaBar [24]. The measured mass difference of the Ω∗
c

and Ωc baryons of (70.8 ± 1.0 ± 1.1) MeV is in very good agreement with the prediction of our
model 70 MeV [2].

2The Λc baryon with the first orbital excitation of the diquark is expected to have a mass in this region.
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The detailed comparison of our predictions for the heavy baryon mass spectra with results
of other calculations can be found in Refs. [2, 3]. Recent theoretical estimates of the heavy
baryon masses can be also found in Ref. [25].

In order to calculate the exclusive semileptonic decay rate of the heavy baryon, it is necessary
to determine the corresponding matrix element of the weak current between baryon states. In
the quasipotential approach, the matrix element of the weak current JW

µ = Q̄′γµ(1 − γ5)Q,
associated with the heavy-to-heavy quark Q → Q′ (Q = b and Q′ = c) transition, between
baryon states with masses MBQ

, MBQ′
and momenta pBQ

, pBQ′
takes the form [26]

〈BQ′(pBQ′
)|JW

µ |BQ(pBQ
)〉 =

∫

d3p d3q

(2π)6
Ψ̄BQ′ pB

Q′

(p)Γµ(p,q)ΨBQ pBQ
(q), (6)

where Γµ(p,q) is the two-particle vertex function and ΨB pB
are the baryon (B = BQ, BQ′)

wave functions projected onto the positive energy states of quarks and boosted to the moving
reference frame with momentum pB.

The wave function of the moving baryon ΨBQ′ ∆ is connected with the wave function in the
rest frame ΨBQ′ 0 ≡ ΨBQ′

by the transformation [26]

ΨBQ′ ∆(p) = D
1/2
Q′ (RW

L∆
)DI

d (RW
L∆

)ΨBQ′ 0(p), I = 0, 1, (7)

where RW is the Wigner rotation, L∆ is the Lorentz boost from the baryon rest frame to a
moving one, D1/2(R) and DI(R) are rotation matrices of the heavy quark and light diquark
spins, respectively.

The hadronic matrix elements for the semileptonic decay ΛQ → ΛQ′ are parameterized in
terms of six invariant form factors:

〈ΛQ′(v′, s′)|V µ|ΛQ(v, s)〉 = ūΛQ′
(v′, s′)

[

F1(w)γµ + F2(w)vµ + F3(w)v′µ
]

uΛQ
(v, s),

〈ΛQ′(v′, s′)|Aµ|ΛQ(v, s)〉 = ūΛQ′
(v′, s′)

[

G1(w)γµ + G2(w)vµ + G3(w)v′µ
]

γ5uΛQ
(v, s), (8)

where uΛQ
(v, s) and uΛQ′

(v′, s′) are Dirac spinors of the initial and final baryon with four-
velocities v and v′, respectively; q = MΛQ′

v′ − MΛQ
v, and

w = v · v′ =
M2

ΛQ
+ M2

ΛQ′
− q2

2MΛQ
MΛQ′

.

In the heavy quark limit mQ → ∞ (Q = b, c) the form factors (8) can be expressed through the
single Isgur-Wise function ζ(w) [27]

F1(w) = G1(w) = ζ(w),
F2(w) = F3(w) = G2(w) = G3(w) = 0. (9)

At subleading order of the heavy quark expansion two additional types of contributions arise
[28]. The first one parameterizes 1/mQ corrections to the HQET current and is proportional to
the product of the parameter Λ̄ = MΛQ

− mQ, which is the difference of the baryon and heavy
quark masses in the infinitely heavy quark limit, and the leading order Isgur-Wise function
ζ(w). The second one comes from the kinetic energy term in 1/mQ correction to the HQET
Lagrangian and introduces the additional function χ(w). Therefore the form factors are given
by [28]

F1(w) = ζ(w) +

(

Λ̄

2mQ
+

Λ̄

2mQ′

)

[2χ(w) + ζ(w)] ,

G1(w) = ζ(w) +

(

Λ̄

2mQ
+

Λ̄

2mQ′

)[

2χ(w) +
w − 1

w + 1
ζ(w)

]

,
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F2(w) = G2(w) = − Λ̄

2mQ′

2

w + 1
ζ(w),

F3(w) = −G3(w) = − Λ̄

2mQ

2

w + 1
ζ(w). (10)

In our model we obtain the following expressions for the semileptonic decay ΛQ → ΛQ′ form
factors up to subleading order in 1/mQ

F1(w) = ζ(w) +

(

Λ̄

2mQ
+

Λ̄

2mQ′

)

[2χ(w) + ζ(w)]

+4(1 − ε)(1 + κ)

[

Λ̄

2mQ′

1

w − 1
− Λ̄

2mQ
(w + 1)

]

χ(w),

G1(w) = ζ(w) +

(

Λ̄

2mQ
+

Λ̄

2mQ′

)[

2χ(w) +
w − 1

w + 1
ζ(w)

]

−4(1 − ε)(1 + κ)
Λ̄

2mQ
wχ(w),

F2(w) = − Λ̄

2mQ′

2

w + 1
ζ(w)

−4(1 − ε)(1 + κ)

[

Λ̄

2mQ′

1

w − 1
+

Λ̄

2mQ
w

]

χ(w),

G2(w) = − Λ̄

2mQ′

2

w + 1
ζ(w) − 4(1 − ε)(1 + κ)

Λ̄

2mQ′

1

w − 1
χ(w),

F3(w) = −G3(w) = − Λ̄

2mQ

2

w + 1
ζ(w) + 4(1 − ε)(1 + κ)

Λ̄

2mQ
χ(w), (11)

where the leading order Isgur-Wise function of heavy baryons

ζ(w) = lim
mQ→∞

∫

d3p

(2π)3
ΨΛQ′

(

p + 2ǫd(p)

√

w − 1

w + 1
e∆

)

ΨΛQ
(p), (12)

and the subleading function

χ(w) = −w − 1

w + 1
lim

mQ→∞

∫

d3p

(2π)3
ΨΛQ′

(

p + 2ǫd(p)

√

w − 1

w + 1
e∆

)

Λ̄ − ǫd(p)

2Λ̄
ΨΛQ

(p), (13)

here e∆ = ∆/
√

∆2 is the unit vector in the direction of ∆ = MΛQ′
v′ −MΛQ

v. It is important
to note that in our model the expressions for the Isgur-Wise functions ζ(w) (12) and χ(w) (13)
are determined in the whole kinematic range accessible in the semileptonic decays in terms of
the overlap integrals of the heavy baryon wave functions, which are known from the baryon
mass spectrum calculations. Therefore we do not need to make any assumptions about the
baryon wave functions or/and extrapolate our form factors from the single kinematic point, as
it was done in most of previous calculations.

For (1 − ε)(1 + κ) = 0 the HQET results (10) are reproduced. This can be achieved either
setting ε = 1 (pure scalar confinement) or κ = −1. In our model we need a vector confining
contribution and therefore use the latter option. This consideration gives us an additional
justification, based on the HQET, for fixing one of the main parameters of the model κ. In the
heavy quark limit the wave functions of the initial ΨΛQ

and final baryon ΨΛQ′
coincide, and thus

the HQET normalization condition ζ(1) = 1 is exactly reproduced. The subleading function
χ(w) vanishes for w = 1. The function χ(w) is very small in the whole accessible kinematic
range, since it is roughly proportional to the ratio of the heavy baryon binding energy to the
baryon mass.
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The Λb → Λc differential decay rate near zero recoil [28]:

lim
w→1

1√
w2 − 1

dΓ(Λb → Λceν)

dw
=

G2
F |Vcb|2
4π3

M3
Λc

(MΛb
− MΛc)

2|G1(1)|2 (14)

is governed by the square of the axial current form factor G1, which near this point has the
following expansion

G1(w) = 1 − ρ̂2(w − 1) + ĉ(w − 1)2 + · · · , (15)

where in our model with the inclusion of the first order heavy quark corrections (11)

ρ̂2 = 1.51, and ĉ = 2.03.

This value of the slope parameter of the Λb-baryon decay form factor is in agreement with the
recent experimental value obtained by the DELPHI Collaboration [29]

ρ̂2 = 2.03 ± 0.46+0.72
−1.00

and lattice QCD [30] estimate
ρ̂2 = 1.1 ± 1.0.

Our prediction for the branching ratio of the semileptonic decay Λb → Λceν for |Vcb| = 0.041
and τΛb

= 1.23 × 10−12s [1]
Brtheor(Λb → Λclν) = 6.9%

is in agreement with available experimental data

Brexp(Λb → Λclν) =

{ (

5.0+1.1
−0.8

+1.6
−1.2

)

% DELPHI [23]
(

8.1 ± 1.2+1.1
−1.6 ± 4.3

)

% CDF [25]
(16)

and the PDG branching ratio [1]

Brexp(Λb → Λclν + anything) = (9.1 ± 2.1)%. (17)

The comparison of our model predictions with other theoretical calculations [31, 32, 33, 34,
35, 36, 37, 38] is given in Table 6. In nonrelativistic quark models [31, 32, 33] form factors of the
heavy baryon decays are evaluated at the single kinematic point of zero recoil and then different
form factor parameterizations (pole, dipole) are used for decay rate calculations. The relativistic
three-quark model [34], Bethe-Salpeter model [35] and light-front constituent quark model [36]
assume Gaussian wave functions for heavy baryons. The authors of the nonrelativistic quark
model [37] use for the form factor evaluations the set of variational wave functions, obtained
from baryon spectra calculations without employing the quark-diquark approximation. Finally,
Ref. [38] presents the recent QCD sum rule prediction. Calculations of Refs. [33, 34, 35] are
done in the heavy quark limit only, while the rest include first order 1/mQ corrections for the
decays of Λ-type baryons. From Table 6 we see that all theoretical models give close predictions
for the semileptonic decays of heavy baryons with scalar diquark (Λb → Λceν and Ξb → Ξceν),
which are consistent with the available experimental data (16) and (17) for the Λb → Λceν
semileptonic decay. The results for averaged asymmetries of these decays (see [4]) are also close
in most of the considered approaches. Thus one can conclude that the precise measurement
of the semileptonic Λb → Λceν decay rate will allow an accurate determination of the CKM
matrix element Vcb with small theoretical uncertainties.

All predictions for heavy baryon decays with the axial vector diquark listed in Table 6 were
obtained in the heavy quark limit. Here the differences between predictions are larger. The
nonrelativistic quark model [31] gives for these decay rates values more than two times larger
than other estimates. Our model values for these decay rates are the lowest ones. Among the
relativistic quark models the closest to our predictions is given in [35]. Unfortunately, it will
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Table 6: Comparison of different theoretical predictions for semileptonic decay rates Γ (in
1010s−1) of bottom baryons.

Decay this work [31] [32] [33] [34] [35] [36] [37] [38]

Λb → Λceν 5.64 5.9 5.1 5.14 5.39 6.09 5.08 ± 1.3 5.82 5.4 ± 0.4
Ξb → Ξceν 5.29 7.2 5.3 5.21 5.27 6.42 5.68 ± 1.5 4.98
Σb → Σceν 1.44 4.3 2.23 1.65
Ξ′

b → Ξ′
ceν 1.34

Ωb → Ωceν 1.29 5.4 2.3 1.52 1.87 1.81
Σb → Σ∗

ceν 3.23 4.56 3.75
Ξ′

b → Ξ∗
ceν 3.09

Ωb → Ω∗
ceν 3.03 3.41 4.01 4.13

be difficult to measure such decays experimentally. Only Ωb will decay predominantly weakly
and thus has sizable semileptonic branching fractions, since a scalar ss diquark is forbidden by
the Pauli principle. All other baryons with the axial vector diquark will decay predominantly
strongly or electromagnetically and thus their weak branching ratios will be very small.

In conclusion we emphasize that, in calculating the heavy baryon masses and semileptonic
decays, we do not use any free adjustable parameters, thus all obtained results are pure predic-
tions. Indeed, the values of all parameters of the model (including quark masses and parameters
of the quark potential) were fixed in our previous considerations of meson properties. Note that
the light diquark in our approach is not considered as a point-like object. Instead we use its
wave functions to calculate diquark-gluon interaction form factors and thus take into account
the finite (and relatively large) size of the light diquark. The other important advantage of our
model is the completely relativistic treatment of light quarks in the diquark and of the light
diquark in the heavy baryon. We use the v/c expansion only for heavy (b and c) quarks. The
obtained heavy baryon wave functions are used for the determination of the baryonic Isgur-Wise
functions in the whole kinematic range accessible in semileptonic decays. Therefore we do not
need to make any assumptions about the form of the baryon wave functions or/and extrapolate
the form factors from one point to the whole kinematic region using some ad hoc ansatz as it
was done in most of the previous calculations.

We find that all presently available experimental data for the masses of the ground state
and excited heavy baryons can be accommodated in the picture treating a heavy baryon as
the composite system of the light diquark and heavy quark, experiencing orbital and radial
excitations only between these constituents. The data on semileptonic decays of heavy baryons
are also well described in our approach.

The authors are grateful to M. Ivanov, V. Matveev, M. Müller-Preussker and V. Savrin
for support and discussions. This work was supported in part by the Russian Science Support
Foundation (V.O.G.) and the Russian Foundation for Basic Research (RFBR) (grant No.08-02-
00582) (R.N.F. and V.O.G.).
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