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Abstract

Charmonium distribution amplitudes are the key ingredient of any hard exclusive process
with charmonium production. Study of these amplitudes can lead to a better understanding
of charmonium production. This report is devoted to the study of the leading twist light
cone distribution amplitudes of 1S and 2S charmonium mesons (in particular J/Ψ, ηc,Ψ

′, η′
c

). The moments of distribution amplitudes have been calculated within three approaches:
potential models, nonrelativistic QCD and QCD sum rules. Using the results obtained
within these approaches the models for the distribution amplitudes of the leading twist have
been proposed.

1 Introduction

Charmonium distribution amplitudes (DA) are universal nonperturbative objects that
parametrize nonperturbative affects of the hadronization of partons into charmonium mesons in
hard exclusive processes [1]. The universality of DAs and the variety of the processes where these
functions can be used make the study of charmonium DAs to be a very important task. However,
despite the fact that charmonium DAs are very important in understanding hard exclusive
processes with charmonium production there is a very limited knowledge of the properties of
these functions. In this report study of 1S and 2S states charmonium DAs is discussed. The
models for the DAs are built and applied to the study of double charmonium production. The
results that are presented in this report were first obtained in papers [2, 3, 4].

Let us begin from the definition of DAs of S-wave charmonium states. There is one leading
twist light cone wave function (DA) of 1S0 meson φ0(ξ, µ) and there are two leading twist DAs of
3S1 meson φL(ξ, µ), φT (ξ, µ). The function φL(ξ, µ) is twist two DA of longitudinally polarized
3S1 meson. The function φT (ξ, µ) is twist two DA of transversely polarized 3S1 meson. These
DAs can be defined as follows [1]

〈0|Q̄(z)γαγ5[z,−z]Q(−z)|P (p)〉µ = ifηpα

∫ 1

−1
dξ ei(pz)ξφ0(ξ, µ),

〈0|Q̄(z)γα[z,−z]Q(−z)|V (ǫλ=0, p)〉µ = fLpα

∫ 1

−1
dξ ei(pz)ξφL(ξ, µ),

〈0|Q̄(z)σαβ [z,−z]Q(−z)|V (ǫλ=±1, p)〉µ = fT (µ)(ǫαpβ − ǫβpα)

∫ 1

−1
dξ ei(pz)ξφT (ξ, µ),

where the following designations are used: x1, x2 are the parts of momentum of the whole
meson carried by quark and antiquark correspondingly, ξ = x1 − x2, p is the momentum of
corresponding meson, µ is the energy scale at which DAs are difined. The factor [z,−z], makes
the matrix elements to be gauge invariant [1]. The dependence of the DAs φ0,L,T (x, µ) on scale
µ can be found in [1].
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Commonly, charmonium mesons are considered as a nonrelativistic bound states of quark-
antiquark pair. At leading order approximation in relative velocity of quark-antiquark pair 1S0

and 3S1 mesons cannot be distinguished. So within this approximation 1S0 and 3S1 mesons
have identical DAs at scale µ ∼Mc

φ0(ξ, µ) = φL(ξ, µ) = φT (ξ, µ) = φ(ξ, µ). (1)

One can expect that in the case of 2S mesons corrections to this approximation can be large.
However, present accuracy does not allow one to distinguish DAs φ0,L,T (x, µ). For this reason
the approximation (1) will be used.

In this report DAs will be parameterized by their moments at some scale: 〈ξn
0,L,T 〉. It is

worth noting that, the DAs φ0,L,T (ξ, µ) are ξ-even. Thus all odd moments 〈ξ2k+1
0,L,T 〉 equal zero

and one needs to calculate only even moments.

2 Study of charmonium distribution amplitudes.

There are two approaches to the study of DAs. The first one is a functional approach. It is
based on Bethe-Salpeter equation. The second approach is an operator approach. It is based on
the possibility to parameterize DA by matrix elements of some QCD operators. In this report
these matrix elements will be studied within NRQCD or QCD sum rules.

2.1 Functional approach.

It is known that in the center mass frame Bether-Salpeter equation of nonrelativistic system
can be reduced to Schrodinger equation. Now the question arises if the solution of Schrodinger
equation is known how it is possible to find DA. The answer to this question is given by
Brodsky-Huang-Lepage (BHL) [5] which can be written [2] as

φ(ξ) ∼ (1 − ξ2)

∫

dt ψ

(

t+
ξ2M2

c

1 − ξ2

)

. (2)

Here Mc is a quark mass in potential model. If the DA is known than it is not difficult to
find the moments. It should be noted here that the larger the power of the moment the larger
the contribution coming from the end point regions (x ∼ 0 and x ∼ 1) to this moment. From
formula (2) one sees that the motion of quark-antiquark pair in these regions is relativistic and
cannot be considered reliably in the framework of potential models. Thus it is not possible to
calculate higher moments within potential models. Due to this fact the calculations have been
restricted by few first moments.

2.2 Operator approach: NRQCD.

As was noted above: it is possible to parameterize DA by matrix elements of some QCD
operators. For nonrelativistic system such as charmonium these operators can be expended in
relative velocity. At leading order approximation one can get simple formula that allows one to
connect the moments of DA with matrix element of NRQCD operators

〈ξn〉 =
〈vn〉

n+ 1
, 〈v2k〉 =

〈0|χ+((i
↔

D)2)kψ|ηc(p)〉

〈0|χ+ψ|ηc(p)〉
. (3)

Recently the matrix elements of NRQCD operators was studied in paper [6] where the following
results were obtained 〈vn〉 = γn. The constant γ can be expressed through the value of the
matrix element 〈v2〉. Substituting the last formula into (3) one has the following expression for
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〈ξn〉 Buchmuller-Tye Cornell NRQCD QCD
model model sum rules

〈ξ2〉1S 0.086 0.084 0.075 ± 0.011 0.070 ± 0.007

〈ξ2〉2S 0.16 0.16 0.22 ± 0.14 0.18 +0.05
−0.07

〈ξ4〉1S 0.020 0.019 0.010 ± 0.003 0.012 ± 0.002

〈ξ4〉2S 0.042 0.046 0.085 ± 0.110 0.051 +0.031
−0.031

〈ξ6〉1S 0.0066 0.0066 0.0017 ± 0.0007 0.0032 ± 0.0009

〈ξ6〉2S 0.015 0.016 0.039 ± 0.077 0.017 +0.016
−0.014

Table 1: The moments of DAs of 1S and 2S charmonium states obtained within different
approaches. In the second and third columns the moments calculated in the framework of
Buchmuller-Tye and Cornell potential models are presented. In the fourth column NRQCD
predictions for the moments are presented. In last column contains the results obtained within
QCD sum rules.

the moments at leading order approximation in relative velocity 〈ξn〉 = γn/(n + 1). It is not
difficult to show that this result for the moments can be reproduced by the following DA

φ(ξ) =
1

2γ
θ(γ − |ξ|), (4)

which can be considered as a DA of nonrelativistic meson at leading order approximation in
relative velocity.

2.3 Operator approach: QCD sum rules.

Another approach to the calculation of the moments is based on QCD sum rules [7]. The
application of QCD sum rules for the study of DAs was developed by Chernyak and Zhitnitsky
[1, 8]. In this report this approach will not be considered in detail. The details can be found
in papers [2, 3, 4]. Here it should be noted that the main advantage of QCD sum rules in
comparison to the approaches considered above is that in the framework of QCD sum rules
one does not treat quarkonium as a nonrelativistic system. This allows one to avoid the main
source of uncertainty – the relativistic corrections. For this reason, QCD sum rules is the most
accurate approach to the calculation of the moments.

2.4 Numerical results and models for the distribution amplitudes.

Numerical results of the calculation are collected in Table I. As it was shown in papers [2, 3, 4]
these results can be represented by the following models of DAs:

φ1S(ξ, µ ∼ mc) ∼ (1 − ξ2) Exp

[

−
β

1 − ξ2

]

φ2S(ξ, µ ∼ mc) ∼ (1 − ξ2)(α + ξ2) Exp

[

−
β

1 − ξ2

]

(5)

For 1S charmonium state the constant β can vary within the interval 3.8 ± 0.7. For 2S char-
monium state the constants α and β can vary within the intervals 0.03+0.32

−0.03 and 2.5+3.2
−0.8 corre-

spondingly.
In papers [2, 3, 4] it was shown that due to evolution DAs have some interesting properties.

The first one is that due to the radiative corrections nonrelativistic QCD velocity scaling rules
are violated in hard exclusive processes. Next property can be formulated as follows: it is not
difficult to show that at scale µ ∼ mc distribution amplitudes (5) are the DAs of nonrelativis-
tic system. This results from the fact that functions (5) strongly suppress end point regions
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|ξ| ∼ 1 where the motion is relativistic. However, at larger scales due to the evolution there
appears relativistic tail. From the NRQCD perspective this means that the role of higher order
NRQCD operators is greatly enhanced by radiative corrections. The last property consists in
the improvement of the accuracy of any model at scales larger than mc. For instance, at scale
µ ∼ mc the result for the second moment of 1S state found above is 〈ξ2L〉 = 0.070 ± 0.007.
At scale µ = 10 GeV this result transforms to 〈ξ2L〉 = 0.123 ± 0.005. In the case of 2S state,
at scale µ ∼ mc we have 〈ξ2L〉 = 0.18+0.05

−0.07. At scale µ = 10 GeV this result transforms to

〈ξ2L〉 = 0.19 +0.03
−0.04. Similar improvement takes place for higher moments.
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