Direct CPV and extraction of angle α : $B \rightarrow \pi\pi, \rho\rho, \rho\pi, K\pi$ decays – Updated talk in Repino

M.I.Vysotsky, ITEP, Moscow

A.B.Kaidalov, M.V:

Phys. Lett. B 652 (2007) 203 and paper in preparation

QUARKS 2008, Sergiev Posad

PLAN

- importance of FSI phases in $B \rightarrow M_1 M_2$ decays
- $B \to \pi \pi$ and $B \to \rho \rho$ branching ratios: absence of color suppression of $B \to \pi^0 \pi^0$ decay probability
- phenomenology
- **•** FSI phases for $\pi\pi$ and $\rho\rho$ from experimental data
- a model for FSI phases for B decays into 2 light mesons
- origin of the FSI phases difference
- "description" of CP asymmetries in $B \to \pi^+\pi^-$ decay,
 UT angle α
- prediction of large CP asymmetries in $B \to \pi^0 \pi^0$ decay
- conclusions

why FSI are interesting

1. to predict/explain ratios of branching ratios, $\pi\pi, \rho\rho$ is very spectacular example

2. to study strong interactions

3. DCPV: $C \sim \sin \alpha \sin \delta$, so: to forsee in what decays CPV is large, or even to detemine α from the measured value of C

branching ratios

C-averaged branching ratios of $B \rightarrow \pi \pi$ and $B \rightarrow \rho \rho$ decays.

no color suppression (naive factor $1/3^2/2 = 1/18$ in decay probability) of $\pi^0\pi^0$ mode

diagrams

"t-convention" for penguin amplitudes:

 $(V_{ub}V_{ud}^* + V_{cb}V_{cd}^* + V_{tb}V_{td}^*)f(m_c/M_W) = 0$

is subtracted from decay amplitudes;

in this convention CKM phases difference of *T* and *P* amplitudes is $\alpha \approx 90^{\circ}$ that is why they do not interfere in C-averaged decay probabilities

phenomenology

$$M_{\bar{B}_{d}\to\pi^{+}\pi^{-}} = \frac{G_{F}}{\sqrt{2}} |V_{ub}V_{ud}^{*}| m_{B}^{2} f_{\pi} f_{+}(0) \left\{ e^{-i\gamma} \frac{1}{2\sqrt{3}} A_{2} e^{i\delta_{2}^{\pi}} + e^{-i\gamma} \frac{1}{\sqrt{6}} A_{0} e^{i\delta_{0}^{\pi}} + \left| \frac{V_{td}^{*} V_{tb}}{V_{ub} V_{ud}^{*}} \right| e^{i\beta} P e^{i(\delta_{P}^{\pi} + \tilde{\delta}_{0}^{\pi})} \right\},$$

$$M_{\bar{B}_{d}\to\pi^{0}\pi^{0}} = \frac{G_{F}}{\sqrt{2}} |V_{ub}V_{ud}^{*}| m_{B}^{2} f_{\pi} f_{+}(0) \left\{ e^{-i\gamma} \frac{1}{\sqrt{3}} A_{2} e^{i\delta_{2}^{\pi}} - e^{-i\gamma} \frac{1}{\sqrt{6}} A_{0} e^{i\delta_{0}^{\pi}} - \left| \frac{V_{td}^{*} V_{tb}}{V_{ub} V_{ud}^{*}} \right| e^{i\beta} P e^{i(\delta_{P}^{\pi} + \tilde{\delta}_{0}^{\pi})} \right\} ,$$

$$M_{\bar{B}_u \to \pi^- \pi^0} = \frac{G_F}{\sqrt{2}} |V_{ub} V_{ud}^*| m_B^2 f_\pi f_+(0) \left\{ \frac{\sqrt{3}}{2\sqrt{2}} e^{-i\gamma} A_2 e^{i\delta_2^\pi} \right\} .$$

why all δ are different

There are meson resonances in *s*-channel with I = 0, but not with I = 2 - a trivial reason why δ_2 and δ_0 are different.

penguin amplitude has 2 strong phases: δ_P^{π} which comes from zig-zag diagram and depends on quarks distribution in pion; estimate of imaginary part of charmed penguin gives $\delta_P^{\pi} \approx 10^o$.

The reason why $\tilde{\delta}_0^{\pi}$ differs from δ_0^{π} is more involved: both originate from rescattering of light hadrons at large distances.

I will demonstrate below that large part of δ_0^{π} comes from $\rho^+\rho^-$ intermediate state, being proportional to $\sqrt{(\text{Br}B_d \to \rho^+\rho^-)_T/(\text{Br}B_d \to \pi^+\pi^-)_T} \approx \sqrt{(\text{Br}B_d \to \rho^+\rho^-)/(\text{Br}B_d \to \pi^+\pi^-)} \approx 2.1$ quite opposite production of vector mesons by penguin operator is suppressed:

$$\sqrt{(\operatorname{Br}B_d \to \rho^+ \rho^-)_P / (\operatorname{Br}B_d \to \pi^+ \pi^-)_P} \approx \sqrt{(\operatorname{Br}B_u \to K^{0*} \rho^+) / (\operatorname{Br}B_u \to K^0 \pi^+)} \approx 0.76$$

(On quarks: $\bar{u}\gamma_{\mu}u$ is a sum of left and right currents; the latter after Fierz transformation generate operator $\bar{u}_R d_L$ which can not produce vector ρ -meson from vacuum.)

that is why $(\tilde{\delta}_0^{\pi})_{\rho\rho} \approx 1/2.8 (\delta_0^{\pi})_{\rho\rho}$

Thus it was shown that all four δ 's are different.

W

penguins

$$\operatorname{Br}(B_d \to \rho^+ \rho^-)_P = \left(\frac{f_{\rho}}{f_{K^*}}\right)^2 \left[\lambda \sqrt{\eta^2 + (1-\rho)^2}\right]^2 \frac{\tau_{B_d}}{\tau_{B_u}} \operatorname{Br}(K^{0*} \rho^+) \approx 0.34 \cdot 10^{-6}$$

$$\operatorname{Br}(B_d \to \pi^+ \pi^-)_P = \left(\frac{f_\pi}{f_K}\right)^2 \left[\lambda \sqrt{\eta^2 + (1-\rho)^2}\right]^2 \frac{\tau_{B_d}}{\tau_{B_u}} \operatorname{Br}(K^0 \pi^+) \approx 0.59 \cdot 10^{-6}$$

$(\delta_0 - \delta_2)^{\pi\pi}$ from experimental data

 $B \rightarrow \pi \pi$ neglecting penguin 3 branching ratios \implies 3 parameters $A_0, A_2, |\delta_0 - \delta_2|$

$$\cos(\delta_0^{\pi} - \delta_2^{\pi}) = \frac{\sqrt{3}}{4} \frac{B_{+-} - 2B_{00} + \frac{2}{3}\frac{\tau_0}{\tau_+}B_{+0}}{\sqrt{\frac{\tau_0}{\tau_+}B_{+0}}\sqrt{B_{+-} + B_{00} - \frac{2}{3}\frac{\tau_0}{\tau_+}B_{+0}}} ,$$

$$\begin{split} |\delta_0^{\pi} - \delta_2^{\pi}| &= 48^o \\ B \to \pi\pi \text{ taking penguin into account} \\ \text{tree-penguin interference term cancels in C-averaged Br's} \\ \text{for } \alpha &= 90^o \text{; } P^2 \text{ term we extract from } \text{Br}(K^0\pi^+)\text{:} \\ \text{Br}(B_d \to \pi^+\pi^-)_P &\approx 0.59 \cdot 10^{-6}\text{; subtracting it from} \\ \text{experimental data we get: } |\delta_0^{\pi} - \delta_2^{\pi}| = 37^o \pm 10^o \end{split}$$

recent fit of $B \rightarrow \pi \pi, \pi K$ data (Chiang, Zhou): $\delta_0^{\pi} - \delta_2^{\pi} =$

$(\delta_0 - \delta_2)^{ ho ho}$ from experimental data

there are 3 polarization amplitudes for 2 vector mesons production in B decays making complete analysis highly nontrivial. Fortunately ρ -mesons produced in B decays are almost completely longitudinal polarized - analysis goes just like for π -mesons:

 $|\delta_0^{\rho} - \delta_2^{\rho}| = 20^o + 8^o - 20^o$, one sigma from zero (unlike pion case)

This difference of FSI phases is responsible for different patterns of $B \rightarrow \pi\pi$ and $B \rightarrow \rho\rho$ decay probabilities.

We want to understand why FSI phases are large in $B \to \pi \pi$ amplitudes but small in $B \to \rho \rho$ amplitudes.

which intermediate states matter

 $b \rightarrow u \bar{u} d$ decay produce mostly 3 isotropically oriented jets of light mesons, each having about 1.5 GeV energy. In $e^+e^$ annihilation at 3 GeV c.m. energy average charged particles (pions) multiplicity is about 4 - so, taking π^0 's into account in B-mesons decays to light quarks in average 9 "pions" are produced, flying in 3 widely separated directions (or almost isotropically, taken transverse momentum into account). Branching ratio of such decays is large, about 10^{-2} . However such states NEVER rescatter into 2 pions or 2 ρ mesons.

Which intermediate states will transform into two mesons final state we easily understand studing inverse process of 2 light mesons scattering at 5 GeV c.m. energy. In this process 2 jets of particles moving in the directions of initial particles are formed. Energy of each jet is $M_B/2$, while its invariant mass squared is not more than $M_B\Lambda_{QCD}$.

Following these arguments in the calculation of the imaginary parts of decay amplitudes we will take two particle intermediate states into account, to which branching ratios of *B*-mesons are maximal.

model for FSI phases

$$\int dk_0 dk_z = 1/(2 \cdot M_B^2) \int ds_X ds_Y$$

Hadron dynamics: integrals over *s* rapidly decrease with *s* increase since only low mass clusters contribute into amplitude of 2 meson production. In this way we get:

$$M_{\pi\pi}^{I} = M_{XY}^{(0)I} (\delta_{\pi X} \delta_{\pi Y} + iT_{XY \to \pi\pi}^{J=0})$$

Since $BrB \rightarrow \rho\rho$ is large it contributes a lot in FSI phase of $B \rightarrow \pi\pi$ decay; NOT VICE VERSA! $B \rightarrow \rho\rho \rightarrow \pi\pi$ chain with the help of unitarity relation; for small *t* we can trust elementary π -meson exhange in *t*-channel.

Im
$$M(B \to \pi\pi) = \int \frac{d\cos\theta}{32\pi} M(\rho\rho \to \pi\pi) M^*(B \to \rho\rho)$$

Introducing f/f $exp(t/\mu^2)$ for $\mu^2 = 2m_\rho^2$ we obtain:

 $\delta_0^{\pi}(\rho\rho) = 15^o$, $\delta_2^{\pi}(\rho\rho) = -5^o$, $\delta_0^{\pi}(\rho\rho) - \delta_2^{\pi}(\rho\rho) = 20^o$ and half of experimentally observed phase difference is explained.

Let us stress, that $\delta^{\pi}_{I}(\rho\rho) \sim 1/M_B \rightarrow 0$

It is remarkable that FSI phases generated by $B \to \pi \pi \to \rho \rho$ chain are damped by $Br(B \to \rho^+ \rho^-, \rho^+ \rho^0)/Br(B \to \pi^+ \pi, \pi^+ \pi^0)$ ratios and are a few degrees:

 $\delta_0^{\rho}(\pi\pi) - \delta_2^{\rho}(\pi\pi) \approx 4^o$

$\pi\pi$

for $\pi\pi$ intermediate state we take Regge model expression for $T_{\pi\pi\to\pi\pi}$, which takes into account pomeron, ρ and ftrajectories exchange. Pomeron exchange produce imaginary T and do not contribute to phase shifts as far as it is critical, $\alpha_P(0) = 1$. However, for the amplitude of the supercritical P exchange we have:

 $T \sim (s/s_0)^{\alpha_P(t)}(1 + exp(-i\pi\alpha_P(t)))/(-\sin(\pi\alpha_P(t))) =$ $(s/s_0)^{(1+\Delta)}(i + \Delta\pi/2)$, where in the last expression t = 0was substituted and $\alpha_P(0) = 1 + \Delta, \Delta \approx 0.1$ was used.

$$\delta_0^{\pi}(\pi\pi) = 5.0^o , \ \delta_2^{\pi}(\pi\pi) = 0^o$$

πa_1

 πa_1 intermediate state should be accounted for as well. Large branching ratio of $B_d \to \pi^{\pm} a_1^{\mp}$ -decay ($\operatorname{Br}(B_d \to \pi^{\pm} a_1^{\mp}) = (40 \pm 4) * 10^{-6}$) is partially compensated by small $\rho \pi a_1$ coupling constant (it is 1/3 of $\rho \pi \pi$ one):

$$\delta_0^{\pi}(\pi a_1) = 4^o , \ \delta_2^{\pi}(\pi a_1) = -2^o ,$$

where we assume that the sign of πa_1 contribution into phases difference is the same as that of the elastic channel.

Finally:
$$\delta_0^{\pi} = 23^o$$
, $\delta_2^{\pi} = -7^o$, $\delta_0^{\pi} - \delta_2^{\pi} = 30^o$, and the accuracy of this number is not high.

δ_P^{π} in Regge model

charmed mesons intermediate states: $B \to \overline{D}D, \overline{D}^*D, \overline{D}D^*, \overline{D}D^* \to \pi\pi.$ In Regge model all these amplitudes are described at high energies by exchanges of $D^*(D_2^*)$ -trajectories. An intercept of these exchange-degenerate trajectories can be obtained from masses of $D^*(2007) - 1^-$ and $D_2^*(2460) - 2^+$ resonances, assuming linearity of Regge-trajectories: $\alpha_{D^*}(0) = -1$ and the slope $\alpha'_{D^*} \approx 0.5 GeV^{-2}$. However since at large t the slope growth to universal value $\approx 1 GeV^2$ it is natural to suppose that for small t it diminishes

and as a result $\alpha_{D^*}(0) = -0.7$ or even larger.

$$T_{D\bar{D}\to\pi\pi}(s,t) = -\frac{2e^{-i\pi\alpha(t)}}{\pi}g_0^2\Gamma(1-\alpha_{D^*}(t))(s/s_{cd})^{\alpha_{D^*}(t)} ,$$

 $s_{cd} \approx 2.2 GeV^2$, the sign of the amplitude is fixed by the unitarity in the *t*-channel (close to the D^* -resonance). The constant g_0^2 is determined by the width of the $D^* \rightarrow D\pi$ decay: $g_0^2/(16\pi) = 6.6$. For $\alpha_{D^*}(0) = -0.7$, $\alpha'_{D^*} \approx 0.5 GeV^{-2}$ we obtain:

 $\delta_P^{\pi} \approx -5^o$. A smallness of the phase is due to the low intercept of D^* -trajectory. The sign of δ_P is negative - opposite to the positive sign which was obtained in perturbation theory. Since $D\overline{D}$ -decay channel constitutes only $\approx 10\%$ of all two-body charm-anticharm decays of B_d -meson taking these channels into account we can easily get

$$\delta_P \sim -10^o$$
,

which may be very important for the interpretation of the experimental data on direct CP asymmetry C_{+-} .

CPV in
$$B_d(\bar{B}_d) \to \pi^+\pi^-$$

$$C_{+-} = -\frac{\tilde{P}}{\sqrt{3}} \sin \alpha [\sqrt{2}A_0 \sin(\delta_0 - \tilde{\delta}_0 - \delta_P) + A_2 \sin(\delta_2 - \tilde{\delta}_0 - \delta_P) \\ / \left[\frac{A_0^2}{6} + \frac{A_2^2}{12} + \frac{A_0 A_2}{3\sqrt{2}} \cos(\delta_0 - \delta_2) - \sqrt{\frac{2}{3}}A_0 \tilde{P} \cos \alpha \cos(\delta_0 - \tilde{\delta}_0 - \delta_P) - \frac{A_2 \tilde{P}}{\sqrt{3}} \cos \alpha \cos(\delta_2 - \tilde{\delta}_0 - \delta_P) + \tilde{P}^2\right] ,$$

where

$$\tilde{P} \equiv \left| \frac{V_{td}^* V_{tb}}{V_{ub} V_{ud}^*} \right| P$$

٠

$$\frac{\operatorname{Br}(B_u \to K^0 \pi^+)}{\operatorname{Br}(B_u \to \pi^0 \pi^+)} = \frac{f_K^2 P^2 |V_{ts}^* V_{tb}|^2}{f_\pi^2 \frac{3}{8} A_2^2 |V_{ud}^* V_{ub}|^2} ,$$

$$\frac{A_0}{A_2} = 0.80 \pm 0.09 , \frac{\tilde{P}}{A_2} = 0.21(0.04) ,$$

 $\begin{array}{l} C_{+-}\approx -0.56\sin((\delta_0+\delta_2)/2-\tilde{\delta}_0-\delta_P)\\ \text{Here are experimental results:}\\ C_{+-}^{Belle}=-0.55(0.09) \ , C_{+-}^{BABAR}=-0.16(0.11) \ , \text{now}\\ C_{+-}^{BABAR}=-0.21(0.09), \text{2.5 standard deviations difference.}\\ \text{"Our" values: } \delta_0=37^o, \delta_2=0^o, \text{ neglecting small values of } \tilde{\delta}_0\\ \text{and } \delta_P \text{: } C_{+-}\approx -0.18 \ . \end{array}$

With nonperturbative penguin phase $\delta_P = -10^o$, $\delta_0 = 30^o$, $\delta_2 = -7^o$ we obtain $C_{+-} \approx -0.21$.

It is instructive to compare the obtained numbers with the value of C_{+-} which follows from the asymmetry $A_{CP}(K^+\pi^-)$ if $d \leftrightarrow s$ symmetry is supposed :

$$C_{+-} = \left(\frac{f_{\pi}}{f_{K}}\right)^{2} A_{CP}(K^{+}\pi^{-}) \frac{\Gamma(B \to K^{+}\pi^{-})}{\Gamma(B \to \pi^{+}\pi^{-})} \frac{\sin(\beta + \gamma)}{\sin(\gamma)} \left|\frac{V_{td}}{V_{ts}\lambda}\right| = 1.2^{(-2)} (-0.093 \pm 0.015) \frac{19.8}{5.2} \frac{\sin 82^{o}}{\sin 60^{o}} 0.87 = -0.24 \pm 0.04$$

S_{+-}

from experimental data (now BABAR and Belle agree in S_{+-}): $S_{+-}^{exper} = -0.62 \pm 0.09$. Neglecting the penguin contribution we get:

$$S_{\pm -} = \sin 2\alpha^{\mathrm{T}} , \alpha^{\mathrm{T}} = 108^{\circ} \pm 3^{\circ}$$

Penguin shifts the value of α . The accurate formula looks like:

$$S_{+-} = \left[\sin 2\alpha \left(\frac{A_0^2}{6} + \frac{A_2^2}{12} + \frac{A_0A_2}{3\sqrt{2}}\cos(\delta_0 - \delta_2)\right) - \frac{A_2\tilde{P}}{\sqrt{3}}\sin\alpha\cos(\delta_2 - \tilde{\delta}_0 - \delta_P) - \sqrt{\frac{2}{3}}A_0\tilde{P}\sin\alpha\cos(\delta_0 - \tilde{\delta}_0 - \delta_0) - \left(\frac{A_0^2}{6} + \frac{A_2^2}{12} + \frac{A_0A_2}{3\sqrt{2}}\cos(\delta_0 - \delta_2) - \sqrt{\frac{2}{3}}A_0\tilde{P}\cos\alpha\cos(\delta_0 - \delta_0)\right]$$

$$- \frac{A_2\tilde{P}}{\sqrt{3}}\cos\alpha\cos(\delta_2 - \tilde{\delta}_0 - \delta_P) + \tilde{P}^2],$$

taking $\delta_0 = 30^o, \delta_2 = -7^o$ and neglecting $\tilde{\delta}_0$ and δ_P we get: $\alpha_{\pi\pi} = 88^o \pm 4^0(ex) \pm 10^0(th; P; d - s)$ UT fit: $\alpha^{CKMfitter} = (99.0^{+4.0}_{-9.4})^o, \alpha^{UTfit} = (93 \pm 4)^o$

The relative smallness of penguin contribution to $B \rightarrow \rho \rho$ decay amplitudes allow us to determine α with better theoretical accuracy: $(S_{+-}^{exper})^{\rho\rho} = -0.06 \pm 0.18$

$$(\alpha)_{\rho\rho} = 87^o \pm 5^0(ex) \pm 3^0(th; P; d-s)$$
.

CPV in $B_d(\bar{B}_d) \to \pi^0 \pi^0$

From analogous formulas we get predictions for large CPV in this decay:

 $C_{00} \approx -0.60, \quad S_{00} = 0.70 \pm 0.15$

experimental measurement of C_{00} has large uncertainty:

 $C_{00}^{exper} = -0.36(0.32)$, while S_{00} is still not measured.

$BrB_d(\bar{B}_d) \to \\ \to \rho^{\pm} \pi^{\mp}$	$A_{\rm CP}^{\rho\pi}$	$C_{ ho\pi}$	$\Delta C_{\rho\pi}$	$S_{\rho\pi}$	$\Delta S_{\rho\pi}$
$(23.1 \pm 2.7)10^{-6}$	-0.13	0.01	0.37	0.01	-0.04
	± 0.04	± 0.07	± 0.08	± 0.09	± 0.10

Consideration similar to that for $\pi\pi$ and $\rho\rho$ decays was performed. Small penguin and high accuracy of $S_{\rho\pi}$ allow record accuracy:

$$\alpha_{\rho\pi} = 84^o \pm 3^o(\exp) \pm 3^o(\text{theor}) \quad .$$

Conclusions

- a model of FSI in $B \rightarrow M_1 M_2$ decays is suggested;
- the model explains the absence of color suppression of $B \to \pi^0 \pi^0$ decay;
- ✓ relatively small $B → \pi^+\pi^-$ branching ratio is the reason why $B → \rho^0 \rho^0$ mode remains small;
- $B \rightarrow \pi^+\pi^-$: we can not reproduce C_{+-} value measured by Belle, while BABAR result is much more acceptable;
- $\alpha = 88^{o} \pm 4^{0}(exper) \pm 5^{0}(theor)$ from $S^{exper}_{+-} = -0.62 \pm 0.09$
- and predict almost maximal CPV in $B(\bar{B}) \rightarrow \pi^0 \pi^0$ decays: $C_{00} \approx -0.60 \quad S_{00} \approx 0.70$