

- Large aperture
   (~ 3000 km<sup>2</sup>, E > 10<sup>18</sup> eV)
- Hybrid cosmic ray detection
- Full sky exposure (2 sites)
- Cosmic rays energy spectrum
- Composition studies
- Anisotropies search

Pierre Auger Observatory - a new stage in the study of the ultra-high energy cosmic rays



Serguei Vorobiov, Nova Gorica U., Slovenia Quarks-2008, Sergiev Posad, May 27



### Southern Auger Observatory Malargüe (Mendoza), Argentina

H

And I

✓ 17 countries

✓ ~ 300 physicists

 $\checkmark$  > 70 institutions / labs

✓ 1600 Water Cherenkov tanks (Surface Detector)

✓ 4 Fluorescence Sites(Fluorescence Detector)









# Atmospheric monitoring

- LIDAR per FD site
- + meteo station per FD site
- Central Laser Facility
- regular balloon flights

Central Laser Facility (connected via fiber to a tank)





Attenuation length
 Aerosols concentration

# r FD site ity hts r Facility



http://www.auger.org/technical\_info/

#### Balloons 🗞 (*T, p*) profiles



Data by the growing array since Jan 1, 2004
 Integrated exposure ~1.1.10<sup>4</sup> km<sup>2</sup> sr yr
 (~1.5 years of the complete array)

### Actual status

Surface detector (SD):
 1644 tanks (> 1600) deployed
 1621 tanks filled with water
 1564 tanks operational
 > 95% achieved

#### Fluorescence Detector (FD): All 4 telescopes operational





### SD event observables Hybrid event $\theta \sim 30^{\circ}$ , ~ 8 EeV





### Precise geometry - the key of the hybrid reconstruction 1 tank is enough !



astro-ph/0608670

### Examples of Auger hybrid events



One of the first high quality "Golden" hybrids

FD: calorimetric energy measurement

# The first « quadruple » hybrid event



20 May 2007 E ~ 10<sup>19</sup> eV

#### Pierre Auger Observatory - a new stage in the ultra-high energy cosmic ray studies

# Energy spectrum

Serguei Vorobiov, Nova Gorica U., Slovenia Quarks-2008, Sergiev Posad, May 27

### Auger energy assignment

#### Energy scale is determined from the data The dependence on interaction models or primary composition is a few %

Surface detector signal at 1000 m of the shower axis, S(1000) - E estimator

S(1000) at zenith angle
 of 38° (constant intensity)

determined for each
 SD event

S(1000) : proportional to the primary energy (MC)

Calibrated on the FD Energy



# Systematic errors in the energy determination by the hybrid method

| Source             | Systematic uncertainty |
|--------------------|------------------------|
| Fluorescence yield | 14%                    |
| P,T and humidity   | 7%                     |
| effects on yield   |                        |
| Calibration        | 9.5%                   |
| Atmosphere         | 4%                     |
| Reconstruction     | 10%                    |
| Invisible energy   | 4%                     |
| TOTAL              | 22%                    |

Fluorescence Detector uncertainties dominate (SD energy estimator uncertainty is ~6% at 10<sup>19</sup> eV & improves with E)

arXiv: 0706.1105, 0709.2125



arXiv:0706.2096

### Cross-check with the inclined events ( $\theta_z > 60^\circ$ )



Muon distribution depends mostly on arrival zenith and azimuth

Its shape is mass and model independent

arXiv:0706.3796

□ Additional exposure & sky coverage

#### Contain essentially muons

number density of muons in shower plane



### Auger energy spectrum of the inclined events



### Auger energy spectrum with the hybrids



arXiv:0706.2643

- ✓ Dist. tank shower < 750 m ✓  $\theta_Z$  < 60°
- ✓ Development in the F.O.V of FD (« fiducial volume cuts » (E))
- $\sqrt{\chi^2/N}$ dof (GH fit) < 2.5
- ✓ Xmax bracketed
- ✓ Cherenkov contrib. < 50%
- ✓ atmospheric measurements available ✓  $\sigma_{\rm F}/{\rm E}$  < 20 %



### **Combined Auger spectrum**



arXiv: 0707.2638, 0801.2321

### Interpretations and astrophysical implications



#### Ankle: galactic/extra-galactic transition ? Suppression : GZK effect? => propagation models Knowledge of MASS is crucial

astro-ph/0607109, arXiv: 0707.2638

#### Pierre Auger Observatory - a new stage in the ultra-high energy cosmic ray studies

# **Composition studies**

Serguei Vorobiov, Nova Gorica U., Slovenia Quarks-2008, Sergiev Posad, May 27

### Studies of the composition variation with energy



E [eV]

#### Comparison with the previous Xmax measurements and with the Auger energy spectrum



arXiv:0706.1495, 0801.2321

## Studying photon contents in the UHECR

 Discrimination between models of UHECR origin

- Photon elongation rate:
- LPM effect,
- magnetic conversion in the terrestrial field (« preshower », > 50 EeV for the Southern Auger site)



- less developed (deeper maximum)
  - with poorer muon contents
  - modelled with greater confidence
- Previous limits by ground arrays only
- Auger: direct X<sub>max</sub> measurement with the hybrid events => upper limit of 16% at 95%CL above 10 EeV



(astro-ph/0606619) Lower hybrid statistics => extract upper limit from SD data

### Resulting upper limits on UHE photons

Upper limits on photon flux and fraction above 10, 20, and 40 EeV at 95% CL Significant improvement upon the results from the previous experiments Exotic models of UHECR production are strongly constrained With the future data, GZK photons level may be reached



#### Flux limit

#### Fraction limit

arXiv:0712.1147

### Auger sensitivity to the up-going tau-neutrinos



### Search for Earth-skimming tau-neutrinos

Shower induced by emerging  $\tau$ : start close to the detector (young) and is very inclined (90°< 9 <95°)



arXiv:0706.1658

### Auger Limit at 90% CL to an $E^{-2}$ diffuse $v_{\tau}$ flux



arXiv:0706.1658, journal paper soon

#### Pierre Auger Observatory - a new stage in the ultra-high energy cosmic ray studies

# Anisotropies search

Serguei Vorobiov, Nova Gorica U., Slovenia Quarks-2008, Sergiev Posad, May 27

#### Detector angular resolution

 Surface detector : event reconstruction from the shower front arrival times, on an event by event basis

$$F(\eta) = \frac{1}{2}(V[\theta] + \sin^2(\theta)V[\phi])$$

$$e^{-\eta^2/2\sigma^2} d(\cos(\eta))d\phi$$

The angular resolution (AR) is defined as the angular radius that contains 68% of showers coming from a point source



#### Coverage map, event map



At large angular scales the Auger sky is compatible with isotropy

### 1 < E < 10 EeV



### Auger Galactic Center studies

Search for extended (in top-hat windows of 10 and 20 degrees) and point-like source (Gaussian beam matching angular resolution)

No excess is found, overdensity distributions compatible with the isotropic sky

### 0.1 < E < 1 EeV



Upper limit on the point-like source allows to exclude most of the neutron production models at the Galactic Center

No confirmation of previous indications for excess from GC region

arXiv:0706.2669

#### Large-scale anisotropies search : motivations

If transition galactic - extragalactic at the ankle: at EeV energies CR diffusive escape from the Galaxy is efficient enough => %-level modulation (model-dependent)
 If transition galactic - extragalactic at 5 · 10<sup>17</sup> eV: at EeV energies the CR sources cosmologically distributed => no large-scale pattern except for CMB-like dipole (~ 0.6%)



=> studies of the large-scale anisotropy and its evolution with primary energy is a tool to learn about origin and the mechanisms of the propagation of the UHECR

#### Large-scale anisotropies search : results

Three complementary analyses of the Right Ascension distribution at EeV energies

No anisotropy found

Upper Limit on the first harmonic modulation of 1.4 % at (1 EeV < E < 3 EeV)



arXiv:0706.2640

#### At the highest energies : smaller magnetic deflections !



| 0.004 | 16 Mpc  |
|-------|---------|
| 0.01  | 40 Mpc  |
| 0.05  | 200 Mpc |
| 0.1   | 415 Mpc |

Anisotropy studies : look for small-scale clustering and the correlations with the candidate astrophysical objects Active galactic nuclei as candidates for the UHECR sources



Quasars

-

Jet

ine Ra

Narrow Line / Region

> Broad Line Region

## Analysis method for the correlation search

□ Under cosmic ray event isotropy hypothesis

Probability *P* that  $\geq k$  out of *N* events (with energy  $\geq E_{min}$ ) correlate by chance with the selected objects (at redshift  $\leq z_{max}$ )

$$P = \sum_{j=k}^{N} \binom{N}{j} p^{j} (1-p)^{N-j}$$

p is the fraction of the sky (exposure-weighted) defined by the regions at angular separation less than  $\psi$  from these objects

□ Scan over parameter space ( $E_{min}$ ,  $z_{max}$ ,  $\psi$ ) for the minimum of P ( $P_{min}$ ) □ Scan over simulated isotropic sets of events : fraction of sets with  $P < P_{min}$  gives the « penalized » probability  $\mathcal{P}$ □ If  $\mathcal{P}$  small enough (~ 10<sup>-3</sup>) : confirmation with an independent data set (Auger anisotropy search protocol)

# Exploratory scan

data selection

- 01/2004 05/2006 (≈ 480.000 events)
- quality criteria "ICRC05-T5"  $\rightarrow$  angular resolution  $\sigma_{\Psi} < 1^{\circ}$
- zenith angle < 60 $^{\circ}$



#### strong correlation signal

- sharp energy threshold  $E \ge 56~{
  m EeV}$
- nearby sources  $z \le 0.018$ (D  $\le 75$  Mpc for  $H \approx 70$  km/sec/Mpc)
- resonable angular spread  $\Delta_{\Omega}(CR : AGN) \leq 3.1^{\circ}$
- 12 out of 15 events correlate
- expected 3.2 chance correlations ( $P_{\rm iso} \approx 21\%$ )
- Pierre Auger anisotropy search protocol
- fixing parameters *a priori* → PRESCRIPTION
- signal testing with NEW dataset

## Signal confirmation

#### new dataset

- 06/2006 08/2007 (additional  $\approx$  500.000 events)
- prescribed confidence level 99%
- 8 out of 13 events correlate (2.7 expected)





20 (exp. 5.6) out of 27 Auger events with E > 57 EeV ( $\psi$  < 3.2° radius circles)

\* 442 AGN (292 in the f.o.v.) at  $z \le 0.017$  (  $D \le 71$  Mpc )

arXiv:0712.2843

#### THEORETICAL INTERPRETATION: GZK HORIZON

Fraction of the protons with energy > E that arrive from sources at distances > D



E underestimated / Local inhomogeneities / Heavy nuclei ? Need to reconcile composition hints with the small angular separation from the AGNs, compatible with the expected Galactic Magnetic Field deflections for protons

Are the AGN sources, or just tracers ?

### Auger Collaboration : future prospects

475

diri'

Completion of Auger-South in a few months
 Good quality experimental data for many years

 Construction of Auger South Enhancements for hybrid work to 10<sup>17</sup> eV (arXiv:0709.0772) will start the day the last tank is deployed :

 high elevation FD telescopes (30th ICRC, paper #065),
 dense SD array plus muon detectors (arXiv:0710.1646),

 Auger North (arXiv:0706.3940) proposal submission soon
 R & D on radio detection of showers (arXiv:0708.1709)