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\ Outline |

e Motivations.

e Cusp anomalous dimension and integrability.

e Refresher on the calculation of gluon amplitudes.
e Basis of integrals and dual conformal invariance.
e BDS iterative ansatz for multiloop amplitudes.

e Strong and weak coupling tests and troubles.

e MHV amplitudes and Wilson loops.

e Two loop six point amplitude.

e Conclusions and open questions.



\ Motivations | |

® Gluon scattering amplitudes  in QCD and supersymmetric gauge the-
ories are very difficult to compute, so this is a fertile groun d for new
Insights and methods.

e Experimental program at the LHC requires many new calculations  of
QCD-associated processes. Development of new tools for com puting

scattering amplitudes is an important topic.




\ Motivations I |

e Over the past several years we have learned a lot about remarkably
rich mathematical structures  in Yang-Mills theories.

e On one hand, in the context of AdS/CFT a lot of work has been don e
exploring Yang-Mills integrable structures and computing anomalous
dimensions. Beisert, Eden and Staudacher proposed an exact’S-matrix’
for planar N\ = 4 Yang-Mills theory.

e On the other hand, following the discovery of twistor string theory,
we have seen a lot of progress in Yang-Mills scattering ampli tudes. Of
particular interest are Bern, Dixon and Smirnov iterative relations for
planar \/ = 4 Yang-Mills amplitudes.

e Cusp anomalous dimension is a player in both games.

e Alday and Maldacena proposed a prescription for computing scatter-
Ing amplitudes using AdS string theory at strong coupling.




‘ Integrability and Cusp Anomalous Dimension I

e Integrability is a very powerful tool for computing anomalo us dimen-
sions of operators.

e The cusp anomalous dimension  f(\) governs the behavior of twist-
two operators in the limit of very large spin:

A (Tr[ZD°Z)) =S+ f(A\)log S + O(SY), S>> 1.

This quantity has long played an important role in quantitat Ive checks
of AdS/CFT.

e Guess-S-matrix for planar N = 4 Yang-Mills, has been proposed
by Beisert, Eden, Staudacher. Via Bethe ansatz equations it gives the
entire Yang-Mills spectrum in large  J limit and in particular, it implies a
(complicated!) integral equation ~ f(\) valid for all .




‘ The Cusp Anomalous Dimension I

At strong coupling, the solution exhibits remarkable agreement with
AdS string
3log2 K
A) = ~2(1 — i
[Gubser, Klebanov, Polyakov; Frolov, Tseytlin] [Alday, Ar utyunov, Benna,
Eden, Kelbanov; Benna, Benvenuti, Eden, Klebanov, Scardic  chio; Castelll,

Kristjansen; Basso, Korchemsky, Kotanski; Roiban, Tseytl In].

At weak coupling, the solution agrees with perturbative Yang-Mills
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[Bern, Czakon, Dixon, Kosower, Smirnov; Cachazo, Spradlin , AV]




The rest of the talk will be devoted to the

calculation of this and other quantities from
perturbative scattering amplitudesin N = 4 YM.




‘ Gluon Scattering Amplitudes I

We have learned that Feynman diagrams are not the most efficie nt way
to calculate scattering amplitudes: too messy+too many ter ms+hide
the structure of amplitudes.

There has been a lot of progress on tree amplitude calculatio ns stimu-
lated by twistor string theory.  [Witten]

MHYV rules, recursion relations, etc. [Cachazo, Svrcek, Witten] [Britto,
Cachazo, Feng, Witten] [Roiban, Spradlin, AV] [Brandhuber , Spence,
Travaglini] [Dixon, Glover, Khoze] [Bern, Dixon, Kosower] [Berkovitz,
Motl] [Gukov, Motl, Neitzke] [Arkani-Hamed, Kaplan] [many others]

All tree level perturbative amplitides are under control.




‘ One-Loop Amplitudes I

In the V' = 4 theory, all one-loop integrals which appear in any Feynman
diagram calculation can be reduced toa  set of scalar box integrals.

In other words, scalar box integrals provide a complete basis for all
one-loop gluon amplitudesin A\ = 4 [Bern, Dixon, Kosower].
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Unitarity methods can be used to determine the coefficients for a de-
sired amplitude [Britto, Cachazo, Feng].




‘ Higher Loops I

Unitarity based methods for computing the coefficients can b e gener-
alized to higher loop amplitudes [Cachazo, Buchbinder] [Bern, Dixon,
Smirnov] [Bern, Carrasco, Johansson, Kosower]

The problem is that the complete basis of integrals is not kno wn even
for all two-loop amplitudes!

For example, the two-loop four-particle amplitude is given by the sum
of only two scalar integrals

But in general it is very difficult to determine which integra Is contribute
to any particular amplitude.




‘ The Rung Rule I

Cuts involving only two particles in an intermediate channe | are par-
ticularly easy to analyze; and in fact the relevant algebra e xtrapolates
nicely to all loops—this analysis led to what is called the ‘r ung rule’
[Bern, Rozowsky, Yan] which is easiest to explain in pictures.

At two and three loops, this is all there is.




‘ Rung Rule=Wrong Rule I

However at four loops the amplitude contains two additional integrals.

%

[Bern, Czakon, Dixon, Kosower, Smirnov]

The integrand of the five-loop amplitude involves the 21 rung rule in-
tegrals and an additional 13 non-rung-rule contributions. [Bern, Car-
rasco, Johansson, Kosower]

It seems that non-rung rule contributions can be determined by ‘dual
conformality’—conformal invariance in momentum space. [Drummond,
Henn, Smirnov, Sokachev]




‘ Dual Conformal Invariance at One Loop I

The one-loop four-particle amplitude contains the integra I

(k1 + k)2 (kg + k3)?
p2(p1 — k1)2(p1 — k1 — ko)2(p1 + k)2

I(l)(k17k27k37k4) :/d4p1

Now, pass to dual coordinates by defining
ki1 =w12, ka=wm23, k3=2x34, k4 =2x41, Pp1=T15,
where Tij = Tj — Ty .

In these new variables,
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which is easily seen to be invariant under arbitrary conform al transfor-
mations on the ;!




‘ Examples of Dual Conformal Integrals I

L1

(d)

e Points x; label the vertices of the dual graph, a solid line connecting

two points x; and x; corresponds to a factor of 1/:1322]-, while a dashed
line corresponds to a factor of SCZQJ

e An integral is dual conformal invariant if the difference between the
number of solid lines and dashed lines at a vertex equals 4 at the inter-
nal vertices and ( at the external vertices.




Dual Conformal Invariant Diagrams at Five Loops

[Bern, Carrasco, Johansson, Kosower]
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‘ Iteration Relation for Two-loop Amplitudes I

A

e In planar N\ = 4 Yang-Mills, MHV amplitudes MéL)(E) — 4@ com-

puted to date satisfy an iteration relation.

e At two-loops, the iteration conjecture expresses n-point amplitudes
entirely interms of one-loop amplitudes and a set of constants. For  two-
loop MHV amplitude, Anastasiou, Bern, Dixon and Kosower  conjecture
reads

M () = LMV ()2 + £ (e) MM (2€) + CD) + O(e), where

fPe) = = (G + Ge+ Qe +--+), C® =—-(2)2.

This form is based on explicit computations of two-loop ampl itudes for
four particles [Anastasiou, Bern, Dixon, Kosower]. For five-point am-
plitude, it has been confirmed by direct calculation [Cachazo, Spradlin,
AV] [Bern, Dixon, Kosower, Roiban, Smirnovyj.




‘ BDS lteration Relations for Multiloop Amplitudes I

e This iterative structure together with the exponential nat ure of IR
divergences suggests suggests an  all-orders resummation should be

possible.

e Bern, Dixon, Smirnov found three-loop generalization for four-particle
amplitude by direct calculation, guiding the all-loop orde r BDS proposal

In M, = 72, a(fO() M (le) + CO + O(e))
where
M, =37, aLM<L>< )

€) =
a = %(471‘6 7Y€,




Scattering Amplitudes and Anomalous Dimension

e The iterative relations imply that vast majority of the rati onal coeffi-
cients which specify the L-loop amplitude are completely de termined In
terms of lower loop amplitudes.

e The first unfixed number at order eiz IS the L-loop planar cusp anoma-

lous dimension  f(\), computed perturbatively up to four-loops  [Bern,
Czakon, Dixon, Kosower, Smirnov] [Cachazo, Spradlin, AV]

_ co [ p(l) _ 11X% 73 3 4
fA)=4) _,a'fy = 27T2 (1 — 48 T 11520 (1290240 T 512w6) A

e The second unfixed number at order % IS the L-loop planar collinear
anomalous dimension  g(\), computed perturbatively up to four-loops
[Cachazo, Spradlin, AV]

g\ =272 a i /1 = —Ca()? + 3(6¢5 +5CaGa) (527)° — 7756 (g2 )* -




‘ Gluon Scattering at Strong Coupling I

Alday and Maldacena have given a prescription for using AdS/CFT to
calculate gluon scattering amplitudes at strong coupling.

The prescription is computationally equivalent to evaluat INg a certain
Wilson loop composed of null line segments. For four gluons, the rele-
vant classical worldsheet is:

This calculation confirmed the strong coupling prediction f rom the BDS
iteration ansatz for the four-point amplitude.




‘ Scattering Amplitudes and Wilson loops I

Drummond, Korchemsky, Sokatchev and Brandhuber, Heslop, T ravaglini
showed that lowest-order contributions to a light-like rec tangular Wil-
son loop agrees with BDS ansatz for gauge theory  amplitudes.
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‘ Scattering Amplitudes and Wilson loops I

Drummond, Korchemsky, Sokatchev and Brandhuber, Heslop, T ravaglini
showed that lowest-order contributions to a light-like rec tangular Wil-
son loop agrees with BDS ansatz for gauge theory  amplitudes.

Relation between MHV amplitudes and Wilson loops is very sur prising!

Works for four and five-point amplitudes at one and two loops.

But four and five-point results are fixed by dual conformal sym metry....

What happens with a larger number of legs?

It seems very difficult to find explicit string solution beyon d four points
corresponding to strong coupling...




‘ Trouble at Large Number of Legs I

Alday and Maldacena (at strong coupling) have shown that in the limit
of a large number of legs, the Wilson loop calculation does not agree
with the BDS ansatz.

In the limit of very large /" and L and for 7" >> L, the expectation
value of the rectangular Wilson loop

A/rr T
T I(1/44L
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Either the connection between Wilson loops and the amplitud es breaks
down? Or BDS ansatz breaks down beyond five-point amplitudes ? To
answer, one needs six-point Wilson loop and amplitude calculations!




‘ Two Loops Six Point Amplitude I

We find the complete expression for the parity-even part of th e two-loop
six-particle amplitude [Bern, Dixon, Kosower, Roiban, Spradlin, Vergu,
AV]

We performed the calculation using the unitarity-based met hod, em-
ploying a variety of cuts to express the amplitude in terms of selected
set of six-point two-loop Feynman integrals.

15

5 1 .
Mg P=7 () = =Y e (o)

==,
1=1
We evaluated the integrals using AMBRE and MB packages and co m-

puted the amplitude numerically against BDS ansatz, and aga Inst val-
ues for the corresponding Wilson loop.




‘ Two Loops Six Point Amplitude: integrals I

D p p
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‘ Two Loops Six Point Amplitude: coefficients I
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‘ An example of an integral I
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‘ An example of an integral I

saz _ 1 35123 n 523556
€t | (—s12)112€ 561534845  S12561534545(—So34)112€

_|_

2 6

1 —l—i $123 1n< 52345345 )
DR

S61534(—8345) 1 12€ €3 | $12861534545 523534515556

2
523556 5235565 1 54552345345
+ In ) 4 In

2
5125615345455234 5195349545 5615345345 523534556

+

1 5455234512 + 25345523556 ln( 561534 )

561534 — $2345345 54552345125345 52345345

+3123453234 + (823856 + 381238234)8345 m(Sﬁ) 4 0(6—2) ’

51256153454552345345 S61




‘ Two Loops Six Point Amplitude: Results I

[Bern, Dixon, Kosower, Roiban, Spradlin, Vergu, AV]

e Discrepancy with BDS ansatz.

e But agreement with Wilson loop calculations by Drummond, Henn,
Korchemsky and Sokachev !l

kinematics (w1, u2, us) Aa

(1/4,1/4,1/4) —0.0181 £+ 0.017
(0.547253, 0.203822, 0.88127) |  —2.753 £ 0.012
(28/17,16/5,112/85) —4.74445 =+ 0.00653
(1/9,1/9,1/9) 4.1161 £ 0.10
(4/8,4/81,4/81) 9.9963 + 0.50




‘ Open Questions I

How far need one calculate before unlocking all the structur e?
How much is gained by adding one more loop, or one more leg?
Every new calculation has led to a new surprise!

In the case of loops, there were strong reasons to suspect tha t special
things would start happening at four loops (and they did!) so there

was great interest in the calculation of the four-loop cusp a nomalous
dimension. Five loops: cancellation of  ((6,2)?

In the case of legs, starting at six-points BDS ansatz breaks down while
Wilson loop/amplitude duality holds, suggesting that ther e should be
an additional mechanism besides dual conformal symmetry.

Resummations, non-MHYV, non-planar, connection to integra bility, other
guantities, string theory side, etc.




‘/\/ — 4 Yang-Mills Status Report I
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\ Conclusion |

We developed some technigues to aid in direct tests of the con jectured
planar ' = 4 Yang-Mills S-matrix and multiloop iterative relations.

The motivation behind this research is the desire to explore and un-
cover the rich mathematical structure underlying N = 4 Yang-Mills
theory.

Discovering such structures also has the pleasant side bene fit of mak-
Ing previously difficult calculations much simpler.

Prospects are great for continued progress, both in supersy mmetric
gauge theories as well as QCD. There is definitely a lot more to learn
and discover.




