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Motivations I

• Gluon scattering amplitudes in QCD and supersymmetric gauge the-
ories are very difficult to compute, so this is a fertile groun d for new
insights and methods.

• Experimental program at the LHC requires many new calculations of
QCD-associated processes. Development of new tools for com puting
scattering amplitudes is an important topic.



Motivations II

• Over the past several years we have learned a lot about remarkably
rich mathematical structures in Yang-Mills theories.

• On one hand, in the context of AdS/CFT a lot of work has been don e
exploring Yang-Mills integrable structures and computing anomalous
dimensions. Beisert, Eden and Staudacher proposed an exact ’S-matrix’
for planar N = 4 Yang-Mills theory.

• On the other hand, following the discovery of twistor string theory,
we have seen a lot of progress in Yang-Mills scattering ampli tudes. Of
particular interest are Bern, Dixon and Smirnov iterative relations for
planar N = 4 Yang-Mills amplitudes.

• Cusp anomalous dimension is a player in both games.

• Alday and Maldacena proposed a prescription for computing scatter-
ing amplitudes using AdS string theory at strong coupling.



Integrability and Cusp Anomalous Dimension

• Integrability is a very powerful tool for computing anomalo us dimen-
sions of operators.

• The cusp anomalous dimension f(λ) governs the behavior of twist-
two operators in the limit of very large spin:

∆
(

Tr[ZDSZ]
)

= S + f(λ) log S + O(S0), S ≫ 1.

This quantity has long played an important role in quantitat ive checks
of AdS/CFT.

• Guess-S-matrix for planar N = 4 Yang-Mills, has been proposed
by Beisert, Eden, Staudacher. Via Bethe ansatz equations it gives the
entire Yang-Mills spectrum in large J limit and in particular, it implies a
(complicated!) integral equation f(λ) valid for all λ.



The Cusp Anomalous Dimension

At strong coupling, the solution exhibits remarkable agreement with
AdS string

f(λ) =

√
λ

π
(1 − 3 log 2√

λ
− K

λ
+ · · ·),

[Gubser, Klebanov, Polyakov; Frolov, Tseytlin] [Alday, Ar utyunov, Benna,
Eden, Kelbanov; Benna, Benvenuti, Eden, Klebanov, Scardic chio; Casteill,
Kristjansen; Basso, Korchemsky, Kotanski; Roiban, Tseytl in] .

At weak coupling, the solution agrees with perturbative Yang-Mills

f(λ) = 8

(

λ

16π2
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− 8π2
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)2

+
88π4
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(

584π6
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)4

+ O(λ5)

[Bern, Czakon, Dixon, Kosower, Smirnov; Cachazo, Spradlin , AV]



The rest of the talk will be devoted to the
calculation of this and other quantities from

perturbative scattering amplitudes in N = 4 YM.



Gluon Scattering Amplitudes

We have learned that Feynman diagrams are not the most efficie nt way
to calculate scattering amplitudes: too messy+too many ter ms+hide
the structure of amplitudes.

There has been a lot of progress on tree amplitude calculatio ns stimu-
lated by twistor string theory. [Witten]

MHV rules, recursion relations, etc. [Cachazo, Svrcek, Witten] [Britto,
Cachazo, Feng, Witten] [Roiban, Spradlin, AV] [Brandhuber , Spence,
Travaglini] [Dixon, Glover, Khoze] [Bern, Dixon, Kosower] [Berkovitz,
Motl] [Gukov, Motl, Neitzke] [Arkani-Hamed, Kaplan] [many others]

All tree level perturbative amplitides are under control.



One-Loop Amplitudes

In the N = 4 theory, all one-loop integrals which appear in any Feynman
diagram calculation can be reduced to a set of scalar box integrals.

In other words, scalar box integrals provide a complete basis for all
one-loop gluon amplitudes in N = 4 [Bern, Dixon, Kosower].

A1−loop =
∑

boxes

(coefficient)

k1,...,i

ki+1,...,j kj+1,...,l

kl+1,...,n

Unitarity methods can be used to determine the coefficients for a de-
sired amplitude [Britto, Cachazo, Feng].



Higher Loops

Unitarity based methods for computing the coefficients can b e gener-
alized to higher loop amplitudes [Cachazo, Buchbinder] [Bern, Dixon,
Smirnov] [Bern, Carrasco, Johansson, Kosower]

The problem is that the complete basis of integrals is not kno wn even
for all two-loop amplitudes!

For example, the two-loop four-particle amplitude is given by the sum
of only two scalar integrals

+

But in general it is very difficult to determine which integra ls contribute
to any particular amplitude.



The Rung Rule

Cuts involving only two particles in an intermediate channe l are par-
ticularly easy to analyze; and in fact the relevant algebra e xtrapolates
nicely to all loops—this analysis led to what is called the ‘r ung rule’
[Bern, Rozowsky, Yan] which is easiest to explain in pictures.

At two and three loops, this is all there is.



Rung Rule=Wrong Rule

However at four loops the amplitude contains two additional integrals.

[Bern, Czakon, Dixon, Kosower, Smirnov]

The integrand of the five-loop amplitude involves the 21 rung rule in-
tegrals and an additional 13 non-rung-rule contributions. [Bern, Car-
rasco, Johansson, Kosower]

It seems that non-rung rule contributions can be determined by ’dual
conformality’–conformal invariance in momentum space. [Drummond,
Henn, Smirnov, Sokachev]



Dual Conformal Invariance at One Loop

The one-loop four-particle amplitude contains the integra l

I(1)(k1, k2, k3, k4) =

∫

d4p1
(k1 + k2)

2(k2 + k3)
2

p2
1(p1 − k1)2(p1 − k1 − k2)2(p1 + k4)2

.

Now, pass to dual coordinates by defining

k1 = x12, k2 = x23, k3 = x34, k4 = x41, p1 = x15,

where xij = xi − xj .

In these new variables,

I(1)(x1, x2, x3, x4) =

∫

d4x5
x2

13x
2
24

x2
15x

2
25x

2
35x

2
45

.

which is easily seen to be invariant under arbitrary conform al transfor-
mations on the xi!



Examples of Dual Conformal Integrals
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• Points xi label the vertices of the dual graph, a solid line connecting
two points xi and xj corresponds to a factor of 1/x2

ij , while a dashed

line corresponds to a factor of x2
ij .

• An integral is dual conformal invariant if the difference between the
number of solid lines and dashed lines at a vertex equals 4 at the inter-
nal vertices and 0 at the external vertices.



Dual Conformal Invariant Diagrams at Five Loops

[Bern, Carrasco, Johansson, Kosower]
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Iteration Relation for Two-loop Amplitudes

• In planar N = 4 Yang-Mills, MHV amplitudes M
(L)
n (ǫ) = A

(L)
n

A
(0)
n

com-

puted to date satisfy an iteration relation.

• At two-loops, the iteration conjecture expresses n-point amplitudes
entirely in terms of one-loop amplitudes and a set of constants. For two-
loop MHV amplitude, Anastasiou, Bern, Dixon and Kosower conjecture
reads

M
(2)
n (ǫ) = 1

2 (M
(1)
n (ǫ))2 + f (2)(ǫ)M

(1)
n (2ǫ) + C(L) + O(ǫ), where

f (2)(ǫ) = −(ζ2 + ζ3ǫ + ζ4ǫ
2 + · · ·), C(2) = −ζ2

2/2.

This form is based on explicit computations of two-loop ampl itudes for
four particles [Anastasiou, Bern, Dixon, Kosower]. For five-point am-
plitude, it has been confirmed by direct calculation [Cachazo, Spradlin,
AV] [Bern, Dixon, Kosower, Roiban, Smirnov].



BDS Iteration Relations for Multiloop Amplitudes

• This iterative structure together with the exponential nat ure of IR

divergences suggests suggests an all-orders resummation should be

possible.

• Bern, Dixon, Smirnov found three-loop generalization for four-particle
amplitude by direct calculation, guiding the all-loop orde r BDS proposal

ln Mn =
∑

∞

l=1 al(f (l)(ǫ)M
(1)
n (lǫ) + C(l) + O(ǫ))

where

Mn =
∑

∞

L=0 aLM
(L)
n (ǫ),

f (l)(ǫ) = f
(l)
0 + ǫf

(l)
1 + ǫ2f

(l)
2 ,

a = λ
8π2 (4πe−γ)ǫ.



Scattering Amplitudes and Anomalous Dimension

• The iterative relations imply that vast majority of the rati onal coeffi-
cients which specify the L-loop amplitude are completely de termined in
terms of lower loop amplitudes.

• The first unfixed number at order 1
ǫ2

is the L-loop planar cusp anoma-

lous dimension f(λ), computed perturbatively up to four-loops [Bern,
Czakon, Dixon, Kosower, Smirnov] [Cachazo, Spradlin, AV]

f(λ) = 4
∑

∞

l=0 alf
(l)
0 = λ

2π2

(

1 − λ
48 + 11λ2

11520 −
(

73
1290240 +

ζ2

3

512π6

)

λ3 + · · ·
)

• The second unfixed number at order 1
ǫ

is the L-loop planar collinear

anomalous dimension g(λ), computed perturbatively up to four-loops
[Cachazo, Spradlin, AV]

g(λ) = 2
∑

∞

l=0 alf
(l)l
1 /l = −ζ3(

λ
8π2 )2 + 2

3 (6ζ5 +5ζ2ζ3)(
λ

8π2 )3 − 77.56( λ
8π2 )4 · · ·



Gluon Scattering at Strong Coupling

Alday and Maldacena have given a prescription for using AdS/CFT to
calculate gluon scattering amplitudes at strong coupling.

The prescription is computationally equivalent to evaluat ing a certain
Wilson loop composed of null line segments. For four gluons, the rele-
vant classical worldsheet is:

This calculation confirmed the strong coupling prediction f rom the BDS
iteration ansatz for the four-point amplitude.



Scattering Amplitudes and Wilson loops

Drummond, Korchemsky, Sokatchev and Brandhuber, Heslop, T ravaglini
showed that lowest-order contributions to a light-like rec tangular Wil-
son loop agrees with BDS ansatz for gauge theory amplitudes.

x4

c d

e f g h

k lji

x1x2

x3

a b



Scattering Amplitudes and Wilson loops

Drummond, Korchemsky, Sokatchev and Brandhuber, Heslop, T ravaglini
showed that lowest-order contributions to a light-like rec tangular Wil-
son loop agrees with BDS ansatz for gauge theory amplitudes.

Relation between MHV amplitudes and Wilson loops is very sur prising!

Works for four and five-point amplitudes at one and two loops.

But four and five-point results are fixed by dual conformal sym metry....

What happens with a larger number of legs?

It seems very difficult to find explicit string solution beyon d four points
corresponding to strong coupling...



Trouble at Large Number of Legs

Alday and Maldacena (at strong coupling) have shown that in the limit
of a large number of legs, the Wilson loop calculation does not agree
with the BDS ansatz.

L

T

In the limit of very large T and L and for T >> L, the expectation
value of the rectangular Wilson loop

log〈W AM
rect 〉 =

4
√

λπ2

Γ(1/4)4
T

L
6= log〈W BDS

rect 〉 =

√
λ

4

T

L
.

Either the connection between Wilson loops and the amplitud es breaks
down? Or BDS ansatz breaks down beyond five-point amplitudes ? To
answer, one needs six-point Wilson loop and amplitude calculations!



Two Loops Six Point Amplitude

We find the complete expression for the parity-even part of th e two-loop
six-particle amplitude [Bern, Dixon, Kosower, Roiban, Spradlin, Vergu,
AV]

We performed the calculation using the unitarity-based met hod, em-
ploying a variety of cuts to express the amplitude in terms of selected
set of six-point two-loop Feynman integrals.

M
(2),D=4−2ǫ
6 (ǫ) =

1

16

15
∑

i=1

ciI
(i)(ǫ)

We evaluated the integrals using AMBRE and MB packages and co m-
puted the amplitude numerically against BDS ansatz, and aga inst val-
ues for the corresponding Wilson loop.



Two Loops Six Point Amplitude: integrals

p

×(p + k1)
2

p

×(p + k1)
2

p

×(p + k1)
2

p

×(p + k5)
2

p q

×(p + k3)
2

×(q + k6)
2

p q

×(p + k3)
2

×(q + k2)
2

p q

×λp · λq

p

×λ2
p



Two Loops Six Point Amplitude: coefficients

c1 = s61s34s123s345 + s12s45s234s345 + s2
345(s23s56 − s123s234) ,

c2 = 2s12s
2
23 ,

c3 = s234(s123s234 − s23s56) ,

c4 = s12s
2
234 ,

c5 = s34(s123s234 − 2s23s56) ,

c6 = −s12s23s234 ,

c7 = 2s123s234s345 − 4s61s34s123 − s12s45s234 − s23s56s345 ,

c8 = 2s61(s234s345 − s61s34) ,

c9 = s23s34s234 ,

c10 = s23(2s61s34 − s234s345) ,

c11 = s12s23s234 ,

c12 = s345(s234s345 − s61s34) ,

c13 = −s2
345s56 ,

c14 = −2s126(s123s234s345 − s61s34s123 − s12s45s234 − s23s56s345) ,

c15 = 2s61(s123s234s345 − s61s34s123 − s12s45s234 − s23s56s345) . (1)



An example of an integral

I(12) =
(−1)1+2ηe2ǫγ

Γ(−1 − 2ǫ − η)Γ(η)

∫ +i∞

−i∞

· · ·
∫ +i∞

−i∞

18
∏

j=1

dzj

2πi
Γ(−zj)

×Γ(3 + ǫ + η + z1,2,3,4,5,6,7,8,9,10)

Γ(4 + ǫ + η + z1,2,3,4,5,6,7,8,9,10)
Γ(1 + z3,5,9)

×(−s12)
z8,13(−s23)

z14(−s34)
z1,18(−s45)

z3,15(−s61)
z11

×(−s123)
z9,16(−s234)

z17(−s345)
z2,12

×(−s56)
−5−2ǫ−2η−z1,2,3,8,9,11,12,13,14,15,16,17,18

× Γ(−3 − ǫ − z1,2,3,4,5,6,7)

Γ(−3 − 3ǫ − 2η − z1,2,3,8,9,10)

×Γ(5 + 2ǫ + 2η + z1,2,3,8,9,10,11,12,13,14,15,16,17,18)

Γ(1 − z4)Γ(η − z5)Γ(−z6)Γ(1 − z7)
×Γ(−5 − 2ǫ − 2η − z1,2,3,6,8,9,10,11,12,13,14,15,16)

×Γ(−1 − ǫ − η + z4,5,6,7 − z11,12,14,15,17,18)

×Γ(−2 − ǫ − η − z1,2,3,8,9,10)Γ(η − z5 + z14,15,16)

×Γ(1 − z4 + z12,13,18)Γ(1 + z1,2,4,8)

×Γ(1 − z7 + z11,12,15)Γ(1 + z1,6,10)Γ(1 + z2,3,7)Γ(1 + z11,14,17)(2)



An example of an integral

I(12) = − 1

ǫ4

[

3s123

(−s12)1+2ǫ s61s34s45
+

s23s56

s12s61s34s45(−s234)1+2ǫ

+
1

s61s34(−s345)1+2ǫ

]

+
1

ǫ3

[

s123

s12s61s34s45
ln

(

s2
234s

6
345

s23s3
34s

3
45s56

)

+
s23s56

s12s61s34s45s234
ln

(

s23s56s
2
345

s2
12s34s45

)

+
1

s61s34s345
ln

(

s45s234s345

s23s34s56

)

+
1

s61s34 − s234s345

s45s234s12 + 2s345s23s56

s45s234s12s345
ln

(

s61s34

s234s345

)

+
s12s45s234 + (s23s56 + 3s123s234)s345

s12s61s34s45s234s345
ln

(

s12

s61

)

]

+ O(ǫ−2) ,



Two Loops Six Point Amplitude: Results

[Bern, Dixon, Kosower, Roiban, Spradlin, Vergu, AV]

• Discrepancy with BDS ansatz.

• But agreement with Wilson loop calculations by Drummond, Henn,
Korchemsky and Sokachev !!!

kinematics (u1, u2, u3) ∆A ∆W

K(1) (1/4, 1/4, 1/4) −0.0181 ± 0.017 < 10−5

K(2) (0.547253, 0.203822, 0.88127) −2.753 ± 0.012 −2.7553

K(3) (28/17,16/5, 112/85) −4.74445 ± 0.00653 −4.7446

K(4) (1/9, 1/9, 1/9) 4.1161 ± 0.10 4.0914

K(5) (4/8, 4/81, 4/81) 9.9963 ± 0.50 9.7255



Open Questions

How far need one calculate before unlocking all the structur e?

How much is gained by adding one more loop, or one more leg?

Every new calculation has led to a new surprise!

In the case of loops, there were strong reasons to suspect tha t special
things would start happening at four loops (and they did!) so there
was great interest in the calculation of the four-loop cusp a nomalous
dimension. Five loops: cancellation of ζ(6, 2)?

In the case of legs, starting at six-points BDS ansatz breaks down while
Wilson loop/amplitude duality holds, suggesting that ther e should be
an additional mechanism besides dual conformal symmetry.

Resummations, non-MHV, non-planar, connection to integra bility, other
quantities, string theory side, etc.
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Conclusion

We developed some techniques to aid in direct tests of the con jectured
planar N = 4 Yang-Mills S-matrix and multiloop iterative relations.

The motivation behind this research is the desire to explore and un-
cover the rich mathematical structure underlying N = 4 Yang-Mills
theory.

Discovering such structures also has the pleasant side bene fit of mak-
ing previously difficult calculations much simpler.

Prospects are great for continued progress, both in supersy mmetric
gauge theories as well as QCD. There is definitely a lot more to learn
and discover.


